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ABSTRACT

RNA sequencing (RNAseq) has become the method
of choice for transcriptome analysis, yet no consen-
sus exists as to the most appropriate pipeline for its
analysis, with current benchmarks suffering impor-
tant limitations. Here, we address these challenges
through a rich benchmarking resource harnessing (i)
two RNAseq datasets including ERCC ExFold spike-
ins; (ii) Nanostring measurements of a panel of 150
genes on the same samples; (iii) a set of internal,
genetically-determined controls; (iv) a reanalysis of
the SEQC dataset; and (v) a focus on relative quan-
tification (i.e. across-samples). We use this resource
to compare different approaches to each step of
RNAseq analysis, from alignment to differential ex-
pression testing. We show that methods providing
the best absolute quantification do not necessarily
provide good relative quantification across samples,
that count-based methods are superior for gene-level
relative quantification, and that the new generation of
pseudo-alignment-based software performs as well
as established methods, at a fraction of the comput-
ing time. We also assess the impact of library type
and size on quantification and differential expression
analysis. Finally, we have created a R package and a
web platform to enable the simple and streamlined
application of this resource to the benchmarking of
future methods.

INTRODUCTION

RNA sequencing (RNAseq) has become the method of
choice for transcriptome analysis, and a large variety of
softwares and methods have been developed for the differ-

ent steps leading to quantification and differential expres-
sion analysis (DEA). Several benchmarking efforts (1–12)
have allowed their comparison, showing a fairly high repro-
ducibility of the most popular methods (9), while highlight-
ing their respective strengths and weaknesses (see especially
(1) for alignment and (3) for differential expression). In ad-
dition, some studies demonstrated the effect of ambiguous
alignments or multi-mapping reads on quantification bi-
ases (7,11), and of differential isoform length on gene-level
quantification (4,13), although the effect of the latter in real
datasets appears relatively small, and gene-level estimates
were shown to be more stable than transcript-level ones
(14). Regarding DEA, in addition to a comparison of sta-
tistical models (3), previous contributions have for instance
studied the effect of ‘zero-count genes’ on some methods
(6,15), and shown that isoform filtering can improve differ-
ential transcript usage (16).

While these efforts have all been critical to guide the
choice and development of analysis methods, little consen-
sus has yet emerged as to the most appropriate pipeline. Part
of the problem is due to the constant release of new meth-
ods, which makes previous comparisons obsolete, and this is
especially true with the recent emergence of new, alignment-
free (or pseudo-alignment-based) methods (17). In addi-
tion, previous benchmarking efforts also have important
internal limitations. The most important (and largely in-
evitable) is arguably the absence of a clear and robust gold
standard on which to judge performance. In facing this is-
sue, a first strategy has been to rely on simulated data that
are generated however through in-built assumptions and
might thus not accurately reflect the biological conditions,
as well as the technical biases and variations of a real ex-
periment. A second strategy has been to rely on established
technologies such as microarrays or RT-qPCR, which have
however a very different dynamic range and suffer them-
selves from systematic biases (18,19). Moreover, for practi-
cal reasons, RT-qPCR validation is typically performed on
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a small set of genes, and/or for very few samples. Finally,
another strategy has been to seek the method that maxi-
mizes the agreement between replicates, which guarantees
some internal validity but cannot assess the accuracy of the
quantification.

In addition, and despite the fact that a considerable pro-
portion of RNAseq experiments are aimed at detecting dif-
ferential expression, most benchmarking efforts have fo-
cused on absolute rather than relative (i.e. cross-sample)
quantification, or have reduced the problem of relative
quantification to that of differential expression analysis. Ac-
curately quantifying differences across samples is necessary
and prior not only to DEA, but also to a variety of other ap-
plications, such as classification and the reverse-engineering
of gene regulatory networks. Moreover, the assessment of
accuracy is generally performed by correlating observed ex-
pression values with expected ones, which can be heavily bi-
ased for heteroscedastic data that are non-homogeneously
distributed across a large dynamic range (as is the case
for RNAseq), and might thereby obfuscate proportionally
small but potentially critical inaccuracies in the estimation
of expression differences across samples.

To face these challenges, it is critical to use a plurality of
complementary benchmarks relying on both empirical and
in silico data, in order to mitigate their respective limita-
tions. Therefore, we present here an empirically-grounded
computational resource for benchmarking RNAseq anal-
ysis methods that addresses the main aforementioned is-
sues: RNA on the Benchhmark of Expression by nCounter
Hybridisation (RNAontheBENCH). RNAontheBENCH
harnesses a number of innovative features: (i) a RNAseq
dataset from 12 human induced pluripotent stem cell (iPSC)
lines all including the External RNA Controls Consortium
(ERCC) ExFold spike-ins (20), i.e. 92 transcripts in known
concentrations, some of which are differentially-expressed
across mixes; (ii) a panel of 150 genes representative of the
transcriptome (Supplementary Figure S1), including mul-
tiple isoforms for some genes, measured in the same sam-
ples by the highly reproducible Nanostring nCounter tech-
nology (21); (iii) a set of genetically-determined, internal
controls, i.e. genes present at different copy-numbers and
known to be expressed linearly with copy-numbers; (iv)
a further validation dataset for which the same RNA ex-
traction was assayed using both RNAseq and Nanostring;
(v) reanalyses of the Sequencing Quality Control (SEQC)
dataset (9); (vi) accuracy metrics based on relative expres-
sion across samples, i.e. the comparison of feature-wise z-
scores or foldchanges across samples; and (vii) an in silico
dataset specifically designed to further establish the accu-
racy of relative expression at the transcript level. We use this
resource to compare different approaches to each step of
RNAseq analysis, from alignment to differential expression
testing, and to assess the impact of coverage and library de-
sign.

The tested software can be divided into different cate-
gories on the basis of the task performed. First are genome
alignment methods, which map genes onto genomic loca-
tion but do not perform quantification. Of these, we tested
Tophat 2.0.14 (22), STAR 2.4.1 (23), HISAT 0.1.6 (24)
and MapSplice 2.1.9 (25). Second are methods quantifying
genomic features on the basis of these previously aligned

reads. The simplest such methods are based on count-
ing the number of reads/fragment unambiguously over-
lapping a single feature (e.g. exon/transcript/gene), hence-
forth referred to as count-based methods. We chose not to
test specifically the popular HTseq-count method (26), be-
cause featureCounts 1.4.4 proved equivalent and consider-
ably faster (27). More refined quantification methods in-
stead assign reads to features probabilistically, and among
these we tested the popular Cufflinks 2.2.1 (22). Where pos-
sible, we tested both these methods (i.e. featureCounts and
Cufflinks) in combination with each aligner. In addition,
we tested RSEM 1.2.22 (28), which first performs align-
ment to the transcriptome using bowtie 2.1.0 (29) before
performing transcript quantification through expectation-
maximization. Third, a new and very different type of soft-
ware skips traditional alignment and performs quantifi-
cation at unprecedented speed through pseudo-alignment,
and as such promises to transform RNAseq analysis. Of
these, we tested Sailfish 0.7.6 (17), Salmon 0.5.0 (unpub-
lished; manuscript: Patro, Duggal, and Kingsford, bioRxiv
2015, doi:10.1101/021592), and Kallisto 0.42.3 (unpub-
lished but available at http://pachterlab.github.io/kallisto).
Fourth and last are methods performing differential expres-
sion analysis on the basis of previously established quantifi-
cations. We tested DESeq2 1.10 (30,31), limma/voom 3.22.7
(32,33), edgeR 3.8.6 (34), sleuth 0.28.0 (unpublished but
available at http://pachterlab.github.io/sleuth/) and Cuffdiff
2.2.1 (22). The software details are listed in Supplementary
Table S1, while the different pipelines and parameters used
are listed along with the results in Supplementary Table S2.

Rather than attempting an exhaustive review of all avail-
able methods, we focused on developing a resource that
users could easily apply to other methods. To this end, all
the benchmarking code is available through the RNAon-
theBENCH R package (source available on github at https:
//github.com/plger/RNAontheBENCH). In addition, and
similarly to some previous efforts with microarrays (35),
we developed a user-friendly online platform allowing an
in-depth benchmarking of analysis methods (https://bio.
ieo.eu/rnaseqBenchmark), making the current study eas-
ily accessible by the community and extensible to future
software/methods.

MATERIALS AND METHODS

RNAseq and spike-in distribution

The RNAseq data has been previously published in GEO
series GSE63055 (see Supplementary Table S3). The two
different ExFold ERCC mixes were added to total RNA
before RiboZero treatment and library preparation. For
the main dataset, libraries were sequenced at a coverage
of ∼45–75 M of 100 bp read pairs. For the smaller, val-
idation dataset, libraries were sequenced at a coverage of
∼44–57 M of 51 bp read pairs. Reads were aligned to the
NCBI GRCh38 genome including the spike-in and EBV se-
quences.

Nanostring panel

We designed a panel of Nanostring probes for 150 genes
(including probes for different isoforms of two genes), and
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quantified them across all 12 samples (see Supplementary
Table S4 for details on the probes’ design). The genes in-
clude 21 genes that have different copy-numbers across
samples (and were shown to be expressed accordingly), as
well as other genes of interests and putatively differentially-
expressed genes. Importantly, the panel of genes is repre-
sentative of the whole human transcriptome in terms of
transcript lengths, number of exons, and expression lev-
els (Supplementary Figure S1A–C). Probes expected (by
the Nanostring CodeSet design team) to cross-hybyidize
with other genes were excluded from the analysis, as well
as, for the primary dataset, one probe related to a gene
which we had independent evidence to be differentially-
expressed between the RNA extractions used respectively
for RNAseq and Nanostring (see Supplementary Figure
S2). For the purpose of comparing RNAseq and Nanos-
tring quantifications, we summed the TPM values of tran-
scripts matching each Nanostring probe. Since the Nanos-
tring itself relies on housekeeping genes for normalization
(GAPDH, TUBB, and TBP), for the purpose of compar-
ison with Nanostring we re-normalized the RNAseq data
using the same housekeeping genes (using geometric nor-
malization of TPM values) when dealing with gene-level
quantification. For transcript-level quantification, for many
samples count-based methods were unable to assign reads
unambiguously to the housekeeping transcripts, preventing
their use for normalization. For this reason, we used TMM
normalization (36) on final values for transcript-level anal-
ysis.

For differential-expression analysis, we compared the
WBS samples to the 7dup samples (see Supplementary
Table S3), and we considered a Nanostring probe to be
differentially-expressed if a t-test on the log-transformed
Nanostring intensities gave a P-value smaller than 0.01.

In silico data

We simulated 100 bp paired RNAseq reads from 17817 Ref-
seq transcripts for eight samples (>5 M reads per sam-
ple) using the R package Polyester (37). For half of the
samples, we introduced foldchanges ranging from 1.1 to
10-fold difference (random noise was added for half of
the foldchanges). The exact foldchanges introduced are
available in Supplementary Table S5, and the generated
reads are available from our website (see below). The reads
were simulated on the basis of Refseq transcripts with the
simulate experiment function, ran with the following pa-
rameters: (i) empirical fragment length distribution (distr
= ‘empirical’), (ii) Illumina sequencing error distribution
(error model = ‘illumina5’), (iii) positional bias (bias =
‘rnaf’), and (iv) read counts based on length (meanmodel
= TRUE). Random quality scores following a usual Truseq
pattern were added when converting reads to FASTQ.

SEQC data

We downloaded all SEQC (9) Illumina reads from the BGI
site, merged the different lanes for each sample, aligned
with HISAT and quantified with Cufflinks (as described
in the HISAT-Cufflinks pipeline in Supplementary Table
S2). Between-group DEA was performed using respectively

all five replicates or replicates 1, 3, 5 of each group, while
within-group DEA was performed comparing replicates 1,
2, 3 to replicates 4, 5 in each group.

Spike-in normalization

To avoid eventual biases in the loading of the spike-in
mixes, we normalized the spike-ins independently of the
rest of the transcriptome. However, most normalization
methods assume that most of the genes/transcripts are not
differentially-expressed, while most spike-ins are in fact in
different concentration across mixes, biasing normaliza-
tion. To address this issue, we homogenized the two mixes
for the purpose of calculating normalization factors, by
multiplying values of samples containing one of the mix by
their expected foldchange to the other mix (the exact code
can be found in the RNAontheBENCH R package). For the
purpose of comparing quantification, we used linear nor-
malization factors because they maximized the correlation.
For the purpose of differential expression analysis, we used
TMM normalization. Since Cuffdiff was not amenable to
this spike-in homogenization and does not offer the free-
dom to input custom normalization factors, we hard-coded
them into the program’s source and recompiled a custom
version to ensure comparability.

FPKM and TPM calculations

Unless specified otherwise, all tests were performed using
normalized Transcripts Per Million (TPM). If the software
produced TPM values, we used these directly. If it produced
Fragments Per Kilobase of transcript per Million reads se-
quenced (FPKM), we converted these values to TPM. If it
produced counts, we first calculated FPKM values (using
effective length), and converted them to TPM.

For gene-level analysis, when the quantification method
provided gene-level quantification, these were used (and
eventually converted as described above); otherwise we
summed the TPM values of the gene’s transcripts.

Downsampling

For Salmon, the downsampling analysis was performed us-
ing the first N reads of the fastq files, where N was the
number of reads corresponding to the given proportion for
the given sample. For alignment-based methods, we instead
used samtools 1.2 (38) to randomly select the corresponding
number of reads from the aligned ones.

Software selection

The packages/methods used for comparison were selected
either because (i) they are widely used, (ii) previous bench-
marks have found them among the most accurate, and/or
(iii) they were recently released and promising. The software
versions are available in Supplementary Table S1. We used
default or recommended settings unless we had reasons to
think that some parameters would yield better results (the
detailed parameters used can be found in Supplementary
Table S2).
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RESULTS

Transcripts and spike-ins detection

We first assessed the capacity of the different pipelines to
detect the spike-ins as well as transcripts known to be ex-
pressed on the basis of the Nanostring data. We considered
a transcript detected if the software gave it an expression
level above zero. As shown in Figure 1A, the most impor-
tant difference was the inability of count-based methods to
detect a large proportion of transcripts. This is not surpris-
ing given that these methods normally discard most of the
reads as ambiguous and hence require a greater coverage to
quantify overlapping transcripts. Counts based on the Map-
Splice2 alignment showed the best detection rate (73%), fol-
lowed by STAR (72%), but no difference in detection rate
could be found among the other pipelines.

Instead the spike-ins, which were designed partly to as-
sess the sensitivity of an experiment and therefore contain
several RNAs in very low concentrations, did not show dif-
ferent detection rates between count-based quantification
and other methods (Figure 1B). Since the spike-ins have
no overlapping isoforms, this is consistent with the hypoth-
esis of ambiguous reads being responsible for the count-
based methods’ poor performance in detecting transcripts.
Finally, the spike-ins revealed a slightly better detection rate
for Sailfish (86%, versus 84–85% for most others).

Spike-in and gene-level abundance estimates

To assess the accuracy of each pipeline in measuring spike-
in and gene abundances, we calculated the overall corre-
lations (using both Pearson and Spearman coefficients) of
the quantification with, respectively, the real concentrations
of the spike-ins (Figure 1C) and the Nanostring quantifi-
cation of the genes (Figure 1D). In general, count-based
methods performed worst, except for Sailfish which per-
formed poorly specifically on the spike-in quantification.
Salmon performed best for spike-ins, followed by Kallisto
and RSEM; for gene abundance estimation, RSEM per-
formed best but was nearly equalled by Cufflinks and
pseudo-alignment-based methods. We also looked at the
distribution of per-sample correlation, which displayed the
same general trend but revealed a high variability of Cuf-
flinks and Sailfish’s spike-in (but not gene) quantification
(Supplementary Figure S2).

Transcript abundance estimates

When performing the same analysis at the transcript level,
count-based quantification performed extremely poorly,
partly but not entirely due to its low detection rate (Supple-
mentary Figure S3A). In addition, the abundance of a large
number of transcripts was underestimated. An important
reason is that when calculating expression in Fragments
Per Kilobasepair of transcript per Million reads (FPKM),
the entire length of the transcript (or minus the fragment
length) is used, whereas large proportions of the transcript
might not be uniquely mappable (e.g. exons shared by all
isoforms of a gene) and hence have a null read count. If
the length of these regions is counted in the transcript
length, FPKM values (and derived Transcripts Per Million

reads, TPM) will necessarily deviate from expected abun-
dances. Therefore, for count-based methods we calculated
FPKM not based on the real transcript length, but on its
‘unique length’, i.e. the length that is uniquely attributable
to that transcript. While this represents only an approxi-
mation of the length across which fragments can be un-
ambiguously assigned, it dramatically improved the per-
formance of count-based methods (Supplementary Figure
S3B). Nevertheless, these methods could not compare with
alternative methods (Figure 1E-F), even when excluding un-
detected transcripts, and should therefore be avoided for
(absolute) transcript abundance estimation. Among the re-
maining methods, Cufflinks and RSEM performed better
than alignment-free methods. (See Supplementary Figure
S4 for the distributions of per-sample correlations).

Accuracy of relative expression estimates

For many purposes such as differential expression analysis,
it is much more important to be able to detect and quan-
tify differences across samples than to be able to accurately
quantify the relative abundance of each transcript within a
sample. Given imperfect quantification estimates, the meth-
ods that perform best at one task do not necessarily perform
best at the other, and we therefore tested the accuracy of
quantification of differences across samples.

In our experimental design, each sample was spiked-in
with one of two mixes of the ERCC ExFold kit, each con-
taining different concentrations of the same set of spike-ins
(see Supplementary Table S2 for the mix distribution across
samples). To assess the accuracy of relative spike-in abun-
dance estimates, we therefore simply correlated the mea-
sured and the expected foldchanges between mixes.

For gene-level and transcript-level differences, we calcu-
lated both the foldchange-to-the-mean and the z-score for
each gene/transcript. However, given that the foldchange-
to-the-mean is easily distorted (e.g. random differences at
low expression levels), we focused on the z-scores, which
provide more stable measure of relevant differences by scal-
ing deviations from the mean on the standard deviation.

Importantly, when quantifying differences at the gene
level, count-based methods performed better than other
methods (Figure 2A), confirming the hypothesis that the
ability to quantify differential expression does not nec-
essarily hinge on the ability to quantify abundance, and
warranting the use of count-based methods for gene-level
differential-expression analysis. These results were partly
confirmed when looking at the foldchange between spike-
in mixes (Figure 2B), although the differences are small in
magnitude (foldchange correlation ranging from 0.789 to
0.82): with the exception of STAR-based counts, count-
based methods had a higher correlation with real fold-
change, and a lower median or total error (Supplementary
Table S2). Pseudo-alignment methods were in the middle,
while Cufflinks (with the exception of the Tophat-Cufflinks
pipeline) and RSEM performed worst.

Given the small magnitude of these differences, we sought
to further validate them using genetically-determined in-
ternal controls: genes of the Williams-Beuren Syndrome
Critical Region (WBSCR), which are either duplicated or
hemizygously deleted in, respectively, Somerville-van der
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Figure 1. Accuracy of abundance estimates. (A) Proportion of transcripts detected by each pipeline. (B) Proportion of spike-ins detected. (C) Correlation
of spike-in abundance estimates with real spike-in concentrations. Triangles indicate Pearson’s correlation, while discs indicate the Spearman’s correlation.
(D) Correlation of gene expression estimates with Nanostring. Triangles indicate Pearson’s correlation, while discs indicate the Spearman’s correlation.
Pearson (E) or Spearman (F) correlation of transcript abundance estimates with Nanostring. Triangles indicate the overall correlation, discs indicate the
correlation for transcripts expressed below the median expression level, and squares indicate the correlation for transcript above the median.
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Figure 2. Accuracy of relative quantification. (A) Correlation of gene-wise z-scores (across samples) with Nanostring. (B) Correlation of observed fold-
changes between spike-in mixes 1 and 2 with real fold-changes. (C) Correlation of WBSCR genes with their copy-number. (D) Correlation of transcript-wise
z-scores with Nanostring. (E) Median transcript-wise correlation (across samples) between observed and expected values in the simulated dataset.
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Aa syndrome and Williams-Beuren syndrome, from which
we derived iPSC cell lines and profiled their transcriptomes
(39). Importantly, the vast majority of these genes are ex-
pressed in iPSC and have been shown to vary linearly with
copy-number both at the RNA and protein levels ((39)
and data not shown). We therefore tested to what extent
the expression of each of these genes correlated with its
copy-number using the different methods outlined above
(Figure 2C). Again, this showed a good performance of
count-based methods (except STAR-based counts), along
with Salmon and closely followed by Tophat-Cufflinks and
Kallisto.

Transcript-level quantification is much more difficult,
and consequently it revealed more substantial differences
between methods (Figure 2D). Here, count-based methods
performed very poorly as expected, while Salmon, RSEM,
and Cufflinks (especially Tophat-Cufflinks) performed best.
The fact that count-based methods performed well at the
gene-level or with spike-ins, and very badly at transcript-
level (which is beyond their purpose), corroborates the idea
that their limitation lies in their inability to use ambiguous
reads. We looked more closely at the differences between
the other methods, which are very robust across a variety
of metrics (see Supplementary Table S2), and concluded
that the Tophat-Cufflinks pipeline is superior to others in
all respects, except for estimating the absolute abundance
of lowly-expressed transcripts, where RSEM performs best.
However, the differences between Tophat-Cufflinks, RSEM
and Salmon are very small, especially when looking at tran-
script z-scores, where they represent little more than 2% dif-
ference in correlation or median error. Importantly, Salmon
was not among the best performing methods for abso-
lute transcript quantification, but was slightly better than
RSEM when looking at transcript z-scores. We therefore
conclude that these three approaches appear to most accu-
rately quantify relative differences.

Confirmation with in-silico data

The spike-ins had the limitation that they are not spliced
and do not produce alternative isoforms from the same ge-
nomic region, while the Nanostring dataset described so far
had the limitation that most probes hybridize with more
than one isofrom, and that it was not assayed on the very
same RNA extraction as the RNA-seq. We therefore sought
to further solidify our analysis using in-silico data generated
for two groups of four samples each (see methods and sup-
plementary materials).

Of note, the simulated data is deliberately highly artificial
in that the distributions of expression levels across features
does not resemble a real experiment, but was rather specif-
ically designed to make transcript quantification difficult
(see methods). In particular, most isoforms of most genes
were expressed, and transcripts were assigned a foldchange
randomly, independently of which gene they belonged to.
Therefore, while this dataset can reveal differences between
methods in dealing with difficult loci, it does not show the
effective relevance of those differences in a normal context
(see also (14)), and should be interpreted as a further vali-
dation of the previous results.

We first calculated each transcript’s foldchange between
groups, and correlated them to the real ones. We were sur-
prised to see major differences (Supplementary Figure S6A)
between methods which, so far, had given comparable re-
sults, and while investigating the issue we noted that this
difference was mostly due to very few transcripts that were
assigned an extremely high foldchange (Supplementary Fig-
ure S6B). We therefore calculated, for each transcript, the
correlation between real and measured expression across
samples, and plotted the distribution of correlations (Sup-
plementary Figure S7). The mean and median transcript
correlation of the best performing methods are plotted in
Figure 2E. While the differences are once again small in
magnitude, RSEM performed best, followed by Sailfish.
Thus, when considering both the in silico data and the com-
parison with Nanostring, RSEM appears to give the best
performance.

Confirmation with a different dataset

Given the relatively small magnitude of the differences ob-
served between the top-performing methods, we further val-
idated them in a different, smaller dataset of 6 samples for
which the very same RNA extraction was used for both
RNAseq and the aforementioned Nanostring panel (Figure
3). RSEM was again the best method in quantifying tran-
script abundances, with a high correlation (Figure 3A) and
a low median absolute error (Figure 3B) when compared
to Nanostring, while Tophat-Cufflinks had the lowest mean
correlation and the highest median absolute error. In terms
of relative transcript quantification, Tophat-Cufflinks per-
formed best for lowly-expressed transcripts (Figure 3E), but
alignment-free methods showed the highest correlation of
z-scores overall (Figure 3D) and among highly-expressed
transcripts (Figure 3F). In addition, Salmon and RSEM
were superior to other methods in estimating the ratio be-
tween different EIF4H isoforms (Figure 3C), a gene of the
WBSCR for which both expressed isoforms were indepen-
dently assayed by Nanostring. While these results bring nu-
ance to the previous ones, they also corroborate the supe-
riority of RSEM in estimating abundance, and further sup-
port Salmon for relative quantification, in agreement with
the results obtained from the previous Nanostring dataset.

Difficult genes

It was recently reported that some genes are particularly dif-
ficult to quantify via RNAseq, mostly due to multi-mapping
reads (11). To test whether the difficulty in estimating the
abundance of these transcripts translated into a difficulty
to estimate their relative expression across samples, we com-
pared their transcript-wise correlation in our simulated data
(Supplementary Figure S8). We found no significant dif-
ference in the accuracy of the quantification of transcripts
from ‘difficult genes’ versus the rest of the transcriptome,
with a 95% confidence interval of the difference in mean
absolute log2(fc) deviation between ‘difficult genes’ and the
rest of the transcriptome of −0.037 to 0.054 (P ∼ 0.71).
Once more, this corroborates the idea that it is not necessary
to accurately estimate abundance, in order to accurately es-
timate differences across samples.
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Figure 3. Accuracy of transcript quantification in the validation dataset for top-ranking methods. (A) Distribution of samples’ Pearson correlation with
Nanostring. (B) Median absolute error of abundance estimates. (C) Correlation of EIF4H isoform ratios with Nanostring. Pearson correlation of transcript-
wise z-scores with Nanostring, for all transcripts (D), those expressed below the median (E), and those expressed above the median (F).

Although the relative expression of ‘difficult genes’ is no
less accurately quantified, it is possible that differences in
those features are more difficult to detect due to discarded
ambiguous reads. Indeed, an analysis of variance showed
that log-transformed P-values for differentially-expressed
transcripts belonging to multi-mapping groups tended to be
larger (P ∼ 2.3e−5, blocking for real foldchange and read
count), supporting the idea that although the relative quan-
tification of these features is not more difficult, the identi-
fication of statistically significant differences is indeed less
efficient.

Finally, to investigate whether some characteristics of
the transcripts might explain the difficulty in their relative
quantification, we performed an analysis of variance on
the transcript-wise correlations with expected values. As ex-
pected, the most important association was with the magni-
tude of the foldchange (P < 2e−16), followed by the number
of transcripts associated to the same gene (P ∼ 3.87e−06).
We also observed a weak association with transcript length
(P ∼ 0.0061), but no significant association with the num-
ber of exons (P ∼ 0.767). For each transcript, the correla-
tion between expected and observed quantifications across
samples is reported in Supplementary Table S7.

Spike-in differential expression analysis

We next tested the ability of differential expression analy-
sis (DEA) methods to accurately detect differences in con-
centration between the two spike-in mixes. For all methods,
we calculated normalization factors in the same way, us-
ing the trimmed mean of M-values (TMM) method (36) on
the homogenized mixes (see methods). We then computed
the receiver operating characteristic (ROC) curve, which
plots sensitivity against false positive rate at different sig-
nificance thresholds (Figure 4A). In addition, we observed
the sensitivity and specificity at different P-value thresholds,
fold-change deviations, and the distribution of P-values by
expected foldchange for each method (see Supplementary
Figures S9–S16). As expected given the absence of alter-

native isoforms for spike-ins (and hence virtually no am-
biguous reads), the quantification method used had very
little impact on DEA accuracy. Moreover, all DEA meth-
ods appeared fairly specific, identifying no false positive at
P < 0.01, but there were important differences in sensitivity
(Figure 4A and B). The ROC curves summarize well the per-
formance of each method (Figure 4A). EdgeR performed
best, closely followed by limma/voom, while Cuffdiff and
especially Sleuth were the least performing. For Sleuth, in-
creasing the number of bootstrap samples (from 10 to 100)
made no noticeable difference to its performance (Supple-
mentary Figures S10–S11).

Upon repeating the same analysis on an external data-
set (SEQC; see Materials and Methods and (9)) which also
included the two spike-in mixes, the results were similar, ex-
cept that Sleuth proved more specific and Cufflinks more
sensitive at P < 0.01, although with overall performances
below voom and edgeR (Figure 4D and E).

Finally, since some users are (against recommendations
of the edgeR and DESeq documentations) using TPM esti-
mates directly for DEA, we tested the performance of edgeR
and voom with these values. While using TPM rather than
count estimates resulted in a mild loss of specificity with
voom (Supplementary Figure S17), with edgeR it resulted
in a substantial loss of sensitivity (Supplementary Figure
S18). Therefore, while the use of TPM values for DEA is
not advisable, users who wish to do so should preferably
use voom.

Differential expression analysis compared to Nanostring and
simulated data

Since the spike-ins are neither spliced nor overlapping, we
sought to confirm these results using the Nanostring panel
(Figure 4C and Supplementary Figures S19–S22). While
voom had a slightly higher area under the ROC curve and
correlation with Nanostring P-values, edgeR again per-
formed best overall, with the highest accuracy at P < 0.01.
Of note, however, Cuffdiff proved to have the highest sensi-
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Figure 4. Accuracy of differential expression analysis (DEA) methods in different contexts. (A) ROC curve of each method in comparing spike-in mixes
(see Supplementary Figures S9 to S16 for more detail). (B) Accuracy metrics at P < 0.01 in the comparison between spike-in mixes. (C) Area under the ROC
curve and accuracy metrics at P < 0.01 when comparing to Nanostring data. (D) ROC curves for the spike-ins of the SEQC data. (E) Accuracy metrics at
P < 0.01 for the spike-ins of the SEQC data. (F) Area under the ROC curve of transcript-level DEA methods in the simulated data. False discovery rate
(FDR) and area under the positives’ curve for each method when calling differential expression within and across cell lines, at the transcript (G) and gene
(F) levels (see Supplementary Figures S27 to S30 for more detail).

tivity at P < 0.01, despite being less accurate overall (Sleuth
was not tested here because it does not perform gene-level
differential expression, and the Nanostring panel had too
few differentially-expressed probes hybridizing with a sin-
gle transcript to perform a meaningful test at the transcript-
level).

To further confirm these results and extend them to a
context where isoform deconvolution is particularly chal-
lenging, we ran the same analysis methods on the simu-

lated dataset (Figure 4F). As expected, using transcript-
level quantification from featureCounts resulted in a ma-
jor loss of accuracy, and we therefore focused on Cufflinks
quantifications. In contrast to the spike-ins, in this context
voom had the worst performance, and while edgeR gave the
best performance, it was closely followed by Cuffdiff, which
was superior to DESeq2 and voom.
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Differential expression analysis within and across SEQC
data

Given the contrasting results of Cuffdiff and Sleuth across
the different datasets, we extended our tests by reanalyz-
ing the SEQC data (9), which include transcriptomes from
two human RNA samples (‘A’ and ‘B’, respectively stand-
ing for the Universal Human Reference RNA and the Hu-
man Brain Reference RNA), as well as from two mixtures of
those samples (‘C’ and ‘D’) in known ratios (respectively 3:1
and 1:3), each with five replicates. In contrast to the previ-
ous cases (Nanostring, spike-ins, and simulated data), here
the true differential expression is not known, and the work-
ing assumption behind this dataset is that a detected differ-
ential expression between groups (i.e. mixtures) is putatively
true, while a detected differential expression within groups
(i.e. between replicates of a given sample) is a false posi-
tive. Therefore, plotting the number of genes in both com-
parisons that are below a sliding nominal false-discovery
rate (FDR) threshold gives a picture analogous to the ROC
curve, which we call here a ‘positives’ curve’ (see Supple-
mentary Figures S23–S26). Of note, the RNA mixtures are
very different from one another, and the high degree of
replication makes this a rather simple task for differential
expression analysis. For this reason, we recommend focus-
ing on the (slightly more subtle) C versus D comparison.

Given that, in this context, the number of differentially-
expressed genes/transcripts is unknown, we compared for
each method the area under the positives’ curve, and the ac-
tual false-discovery rate when using a nominal FDR thresh-
old of 0.05 (Figure 4G–H; an equivalent of this Figure using
instead unadjusted P-values in available in Supplementary
Figure S27). We compared these values when performing
the analysis at the level of transcripts (Figure 4G) or genes
(Figure 4H), and when using all five or only a subset (3) of
the replicates. EdgeR and voom had overall the best area
under the positives’ curve. Although Cuffdiff generally had
a poor area under the positives’ curve, it systematically had
the lowest FDR (reporting no false positive), closely fol-
lowed by voom and, at the transcript level, Sleuth. A possi-
ble explanation is that Cuffdiff and Sleuth use information
ignored by other approaches (namely the bootstrap samples
for Sleuth and the uncertainty in count estimates for Cuffd-
iff), which could improve their performance especially at the
transcript level and with low counts or replicates. Indeed,
at the transcript-level with only three replicates, the begin-
ning of the positives’ curve shows for Cuffdiff and Sleuth
a greatly improved performance (see especially right panels
of Supplementary Figure S30), which diminishes however
upon increasing the threshold. Nevertheless, in this assay
voom had the best performance, with a FDR closely match-
ing that of Cuffdiff and Sleuth, and an area under the posi-
tives’ curve on a par with edgeR (Figure 4G–H).

Given the assumption underlying the SEQC analysis that
any detected differential expression between cell lines is true
(9), these results must be interpreted with care. However,
in light of the previous results (Figure 4C–F), they suggest
that the additional information used by Cuffdiff and Sleuth
might increase performance of transcript-level differential
expression in some contexts, and eventually lead to the de-
velopment of methods that combine the robust statistical

methods of voom and edgeR with this additional informa-
tion.

Effect of library type and size

To probe the impact of lower coverage on the accuracy
of relative quantification, we performed a downsampling
analysis using one pseudoalignment method (Salmon) and
one alignment method (HISAT-Cufflinks). By and large,
both methods were equally sensitive to coverage (Figure
5). Spike-in detection rate increased steadily with coverage
without reaching a plateau (Figure 5A), while the transcript
detection rate plateaued at around 40–50% of the reads,
which correspond to roughly 25–30M pairs of reads (Fig-
ure 5C). The accuracy of relative quantification appeared
instead to reach a plateau already at 30% of reads, or at
about 19M reads (Figure 5B–D).

We next assessed the effect of library type and read size
on the accuracy of the quantification. To emulate single-end
reads, we aligned and analysed only the first mates of each
read pair, while to emulate shorter reads, we trimmed the
right-most 50 bp of all original reads. We then compared
this derivative quantification with that obtained with the
original reads. For transcript-level abundance estimates, 50
bp single-end reads proved highly inaccurate, with a very
low correlation to Nanostring (Figure 5E) and a very high
median absolute error (Figure 5F). A major part of this
massive drop in correlation (0.4 compared to 0.9 and above
for other library types) appears to be due to few undetected
or under-estimated transcripts, especially for Salmon (Sup-
plementary Figures S28–S29). Nevertheless, the observa-
tion of the same pattern in median absolute error (where
Salmon instead shows lower error than Cufflinks, see Figure
5F) suggests that the effect cannot entirely be attributed to
those few transcripts. These results indicate that either long
(100 bp) reads or paired reads are needed, with paired reads
providing a slightly better improvement (Figure 5E and F).
Of note, the respective improvements provided by longer
or paired reads were not additive, but rather redundant. A
similar pattern could be observed on the accuracy of rela-
tive transcript quantification (Figure 5G), with paired-reads
again providing the best relative quantification, although
differences in this case were much smaller. However, when
we measured the capacity of the different libraries to detect
the ratio between the two expressed isoforms of EIF4H (in-
dependently measured by two Nanostring probes), it was
instead read size that had the strongest impact (Figure 5H).
Together, these results suggest that either long (100 bp) or
paired reads are very important for transcript-level quantifi-
cation, but that they offer improvements that are partially
redundant with each other.

Finally, we assessed the extent to which library size af-
fected each DEA method (Figure 5I). Since the downsam-
pling analysis had suggested that 30% of the reads were suf-
ficient for accurate quantification, we tested differential ex-
pression analysis when using 100%, 30% and 10% of the
reads. DESeq2 and edgeR were most affected by the loss
in coverage, closely followed by Cuffdiff. Sleuth and voom
were less affected, with Sleuth showing very little reduction
of accuracy with 30% of the reads, and only dropping when
using 10%.
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Figure 5. Downsampling analyses. Effect of downsampling coverage (i.e. library size) on spike-in detection rate (A), median absolute error in spike-in
foldchange estimations (B), transcript detection rate (C), and transcript-wise z-score estimation (D), using both an alignment based method (HISAT-
Cufflinks) and a pseudo-alignment method (Salmon). E-H: Effect of library type and read length on the correlation with Nanostring, specifically for
transcript abundance estimates (E and F), transcript z-score estimates (G), and estimates of the ratio between EIF4H isoforms (H). (I) Effect of coverage
on the detection of differences between the spike-in mixes.
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Time and memory requirements

Finally, in order to assess the computing resources required
by each software, we measured the actual real time of com-
putation (wall clock time using eight cores) and the maxi-
mum peak of RAM memory used by each software for pro-
cessing each sample (Supplementary Figure S30). A first
major distinction must be made between alignment-based
and pseudo-alignment based pipelines, with the former re-
quiring considerably more time. Among the aligners, the
best results were obtained by HISAT and STAR, taking
∼1 h per sample, while Tophat required 9 times as long.
For quantification, Cuffquant required ∼7 h per sample,
while featureCounts’s average time was less than 45 min-
utes per sample. RSEM, which performs both alignment
and quantification, performed better than any pipeline in-
volving Cuffquant. All pseudo-alignment software outper-
formed alignment-based methods, and in particular Sailfish
was the fastest with around 7 minutes per sample, roughly
half of the time required by Kallisto and Salmon (disabling
bootstraps). Finally, Salmon was considerably faster than
Kallisto at generating bootstraps samples, merely scaling
linearly while Kallisto took over a day per sample with 10
bootstraps.

Memory consumption is a major problem for STAR,
which required over 32GB of RAM. All the other align-
ers required a reasonable amount of memory, with HISAT
performing slightly better than Tophat. Cuffquant had a
peak consumption of almost 7GB, while featureCounts had
a very low memory footprint. Among pseudo-aligners, Sail-
fish was the most demanding with a peak memory require-
ment of 5GB.

Given that differential expression software ran relatively
fast, we did not compile or compare their processing time
and requirements.

DISCUSSION

Relative (i.e. across-samples) quantification is critical for
most RNAseq applications, especially given the increasing
prominence of transcriptomics in the unravelling of human
diseases and the attending need to capture meaningful rel-
ative differences within large cohorts of often highly het-
erogeneous samples. Here, we have shown that the methods
providing the best absolute quantification (i.e. across-genes
within individual samples) are not necessarily those that
provide good relative quantification. Consequently, bench-
marking should pay more attention to relative differences
across samples, focusing on gene- and transcript-wise fold-
changes and z-scores, as we have done here, or using other
approaches (40).

This approach allowed us to note that although methods
based on counting reads/fragments unambiguously over-
lapping a feature systematically give worse absolute quan-
tifications than alternatives, they provide equal or even su-
perior results for assessing relative expression at the gene-
level, warranting their use for gene-level differential expres-
sion analysis. At the transcript-level, Cufflinks, RSEM and
Salmon had a comparable performance, with RSEM being
superior for absolute (but not relative) quantification. It is
particularly noteworthy that Salmon, which (like Sailfish
and Kallisto) bypasses traditional alignment and thereby

quantifies a single sample in a matter of minutes, had a com-
parable performance to Cufflinks and RSEM. Importantly,
we confirmed these results using a variety of assays on both
empirical and simulated data.

We next benchmarked differential expression analysis
methods. Most popular methods gave fairly good results,
and while relevant differences could be observed, all bench-
marks did not uniformly agree, which again shows the ne-
cessity of a plurality of assays to compare these methods.
Nevertheless, we can say that in general voom and edgeR
showed the most stable performance, being superior to al-
ternatives in most assays, with voom significantly under-
performing only in the (highly challenging) transcript-level
simulation (Figure 4F), and edgeR showing suboptimal re-
sults only in the SEQC dataset (Figure 4G-H). In a few of
the tests (especially at lower coverage or sample size), Sleuth
and Cuffdiff appeared promising for transcript-level analy-
sis, but overall they proved inferior to alternative methods.
This suggests that further development might allow to har-
ness the additional information used by Sleuth and Cuffdiff
within a more robust statistical framework.

Finally, we studied the effect of library size and type on
the accuracy of RNAseq quantification, and showed that
either long (100 bp) reads or (slightly better) paired reads
were needed for transcript-level quantification, although
the respective improvements provided are partially redun-
dant with each other. Indeed, using single-end 50 bp reads
resulted in a massive drop in correlation with Nanostring
and a corresponding increase in median absolute error (Fig-
ure 5E and F). Instead, coverage had little impact on quan-
tification above a certain minimum (roughly 20M reads with
this experimental design), a relatively small impact on DEA,
but a considerable impact on the capacity to detect spike-
ins, which had not yet plateaued at full library size. This sug-
gests that although high coverage might improve detection
and quantification of rare transcripts, it is not particularly
useful for the quantification of most of the transcriptome.
Obviously, coverage might still be useful for other purposes,
such as transcript assembly, study of RNA editing, etc., but
in general it seems much preferable to invest in paired li-
braries and/or longer reads.

Most packages include a variety of options, whose multi-
ple combinations clearly escape the range of tests we could
perform. In addition, new methods are continually being re-
leased. For this reason, we created a R package, as well as an
online platform, enabling researchers to apply the same ex-
tensive benchmarking we have performed to their pipeline
of choice by simply uploading the quantification. The plat-
form produces and displays above 30 diagnostic plots for
each pipeline uploaded, and allows the comparison of a
large array of accuracy measurements (including correla-
tions and median absolute errors of values, foldchanges and
feature-wise z-scores) across methods, thereby providing a
rich resource for continued benchmarking efforts.

By design this benchmarking resource cannot settle all
aspects of RNAseq analysis. In particular, it cannot as-
sess normalization methods because the Nanostring quan-
tification relies on housekeeping genes for normalization;
similarly, it cannot test the impact of different transcrip-
tome annotations or assembly methods, because the Nanos-
tring panel was built and defined on the basis of Refseq
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transcripts. Further efforts, and different resources, will
therefore be required to address these issues. One such re-
source was published during the revision of this manuscript
(40), featuring a complementary benchmarking platform
for relative RNAseq quantification, based on standard de-
viation for assessing accuracy of relative expression esti-
mates. The method was used to compare popular quantifi-
cation pipelines, yielding conclusions consistent with our
results, such as a comparatively small effect of the align-
ment method, and a very good performance of RSEM and
Salmon. Of note, however, their analysis rests on very differ-
ent empirical evidence, with a first dataset composed of few
(4) samples probed by microarrays to detect real biological
differences, and a second based on simulated differential-
expression added to real transcriptomes. Moreover, their
package is explicitly not designed to assess DEA meth-
ods. Therefore, the resource we offer here is comparatively
broader, richer in empirical data, and based on a larger set
of tests and metrics. Nevertheless, as each benchmark car-
ries its own limitations, a careful assessment of RNAseq
analyses methods benefits from a plurality of benchmark-
ing resources.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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