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Abstract: In this study, a novel combination of hybrid generative adversarial networks (GANs)
comprising cycle-consistent GAN, pix2pix, and (mask pyramid network) MPN (CGpM-metal artifact
reduction [MAR]), was developed using projection data to reduce metal artifacts and the radiation
dose during digital tomosynthesis. The CGpM-MAR algorithm was compared with the conventional
filtered back projection (FBP) without MAR, FBP with MAR, and convolutional neural network MAR.
The MAR rates were compared using the artifact index (AI) and Gumbel distribution of the largest
variation analysis using a prosthesis phantom at various radiation doses. The novel CGpM-MAR
yielded an adequately effective overall performance in terms of AI. The resulting images yielded good
results independently of the type of metal used in the prosthesis phantom (p < 0.05) and good artifact
removal at 55% radiation-dose reduction. Furthermore, the CGpM-MAR represented the minimum
in the model with the largest variation at 55% radiation-dose reduction. Regarding the AI and
Gumbel distribution analysis, the novel CGpM-MAR yielded superior MAR when compared with
the conventional reconstruction algorithms with and without MAR at 55% radiation-dose reduction
and presented features most similar to the reference FBP. CGpM-MAR presents a promising method
for metal artifact and radiation-dose reduction in clinical practice.

Keywords: tomosynthesis; metal artifact reduction; generative adversarial network; arthroplasty;
radiation-dose reduction

1. Introduction

The causes of metal artifacts are quite complicated. Depending on the shape and den-
sity of the metal objects, the appearance of metal artifacts can vary significantly. In medical
applications, metal objects can include metallic orthopedic hardware (e.g., surgical pins and
clips) or equipment attached to the patient’s body (e.g., biopsy needles) [1]. A metal object
can produce beam hardening, partial volume, aliasing, small-angle scatter, under-range
data acquisition electrons, or overflow of the dynamic range in the reconstruction process.
A previous study on digital tomosynthesis (DT) proposed several artifact compensation
approaches to minimizing metal artifacts [2–4].

Dual-energy DT (DE-DT) has recently become available. One of the inherent capabili-
ties of DE-DT is the generation of synthesized monochromatic images obtained at different
energy levels (keV) from a single data acquisition [3,4]. By generating monochromatic
images at higher energy levels (e.g., 140 keV), beam-hardening artifacts can be suppressed.
However, DT devices that enable dual-energy acquisition in clinical practice are rare; gen-
erally, DT acquisition is performed through single-energy acquisition. Therefore, from the
viewpoint of versatility, an improved method must be developed to achieve metal artifact
reduction (MAR) in polychromatic radiography.

Based on highly attenuating metal objects, nearly all X-ray photons are attenuated, and
few reach the detector, which results in under-range data acquisition electrons. Combined
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with the electronic noise in the data acquisition system, near-zero or negative readings are
often recorded in the measured signal after offset correction. The non-perfect treatment of
these signals prior to the logarithmic operation will bias the projection estimation. When
this occurs, image artifacts similar to photon starvation would appear. Combined with the
bias and beam-hardening effects caused by metals, both shading and streaking artifacts
appear in the reconstructed image. The effect of dose differences on metal artifacts related
to such corrupted readings has been reported [5,6].

Many studies have been conducted to overcome metal-induced image artifacts [1,7–11].
For projection samples that pass through highly attenuating metal objects, the measured
values become unreliable and must be replaced or significantly modified. Projection
in-painting is one of the approaches to replacing erroneous data [8–11]. Generally, this
approach first identifies the projection channels corrupted by the metallic objects. The
next step is to replace these channel readings with estimated projection signals generated
by the nonmetallic portion of the scanned object. The new projection samples allow the
reconstruction of a metal-free image volume of the scanned object.

This approach is associated with several challenges as follows [12]: inconsistency
between the synthetic and actual projections, loss of low-contract objects in the inpainted
projection due to influence of the synthetic projection, and a degraded spatial resolution
in the final reconstruction images. To meet these challenges, advanced image-processing
techniques are often used. However, all inpainting types of algorithms have limitations.
Using a large amount of missing information, the signal estimation process will not be able
to fully restore the information, which leads to residual artifacts.

The development of deep learning in the reconstruction of medical images has led
to recent advances in MAR featuring neural networks. Park et al. [13] used U-Net [14] in
the sinogram region to process artifacts associated with beam hardening in polychromatic
radiographic computed tomography (CT). Zhang et al. [15] suggested that a convolutional
neural network (CNN) [16] generates a priority image with less artifacts to correct the metal-
corrupted regions of the sinogram. While these methods have shown reasonable results
in MAR, they have limited ability to process new artifacts remaining in the reconstructed
CT image. Motivated by the success of deep learning in solving inappropriate inverse
problems in image processing [17–19], researchers have most recently formulated MAR
as an image restoration problem, and its resolution improves the quality of reconstructed
CT images, image-to-image translation networks [20–24], as well as conditional generative
adversarial networks (cGAN or pix2pix) [25], thereby further reducing metal artifacts [26].
GAN improves the recognition of lesions or tissues in medical images. For example,
Han et al. have reported that the combination of noise-to-image and image-to-image
improves the detection accuracy of brain tumors [27]. Sandfort et al. have also reported
that cycle-GAN [28] improves tissue segmentation accuracy on CT images [29].

In general, the metal mask or metal trace regions are usually small and occupy a small
portion of the whole image. The network input would weaken the metal trace information,
owing to the down-sampling operations of the network. Therefore, we used the mask
pyramid U-Net (mask pyramid network [MPN]) [30] to retain the model trace information
at each layer to explicitly enable the network to extract more discriminative features to
restore the missing information in the metal trace region. As GAN has been reported
to be useful for noise reduction [31], including MAR, it can be useful for image quality
improvement (artifact reduction) in DT.

In this paper, we present a novel projection-based cross-domain learning framework
for generalizable MAR. Distinct from previous image restoration-based solutions, MAR
was formulated as a deep learning- and projection-based completion task and training
for a deep neural network, that is, a combination of multiple GANs (cycle, pix2pix, and
MPN) to restore the unreliable projections within the metal region. The prior metal-free
image would provide a good estimation of the missing projections [23]. To ease the pix2pix
learning and improve the completion quality, we trained another neural network, cycle-
GAN, to generate a good prior image with fewer metal artifacts and guide the pix2pix
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learning by standardizing the low-dose projection of the prior image. Moreover, we
designed a novel mask pyramid projection learning strategy that would fully utilize the
prior projection guidance to improve the continuity of projection completion, thereby
alleviating the new artifacts in the reconstructed DT images. The final DT image was then
reconstructed from the completed projection using the conventional filtered back projection
(FBP) algorithm [32]. Compared with the previous MAR approaches for DT [2–4], the
whole framework was trained efficiently for the complementary learning of prior processed
images according to the method of each network so that the prior image generation and
deep projection completion procedures can be learned in a collaborative manner and
benefit from each other. Our recommended MAR algorithm (combination of hybrid GAN:
cycle-GAN_pix2pix_MPN [CGpM-MAR]) is described in the Methods section.

In addition, we investigated the causal relationship between dose reduction and
quality of MAR. Our findings suggest the possibility of reducing exposure dose and
improving image quality using the CGpM-MAR algorithm. The developmental process
and basic evaluation of the method are presented in this study.

2. Materials
2.1. Phantom Specifications

To evaluate image quality (with the implant and artificial bone introducing the artifacts
and contrast, respectively), we immersed a prosthesis phantom containing an implant in
the center of a polymethyl methacrylate case (custom-made product, Kyoto Kagaku Co.,
Tokyo, Japan) filled with water (case dimensions: ϕ 200 × 300 mm). Given that water is
often used as a substitute for soft tissue in phantom experiments, the area of the phantom
filled with water thus simulated soft tissue. The phantom was an artificial bone (orthopedic
humeral model: normal anatomy; foam cortical shell; canal diameter: 9 mm; overall length:
300 mm, Pacific Research Laboratories Inc., Vashon, WA, USA). The TRIGEN Humeral
Nails Proximal Straight System (Model: 38153000; titanium alloy; diameter: 8 mm; overall
length: 160 mm, Smith & Nephew Orthopaedics KK Inc., Tokyo, Japan) was used. In the
prosthesis phantom, we used an internal fracture fixation (intramedullary fracture fixation)
to simulate a humeral proximal fracture.

2.2. DT System

The DT system (SonialVision Safire II, Shimadzu Co., Kyoto, Japan) contained an
X-ray tube (anode, made of tungsten with rhenium and molybdenum; real filter; aluminum
[1.1 mm]; additional aluminum [0.9 mm]) with a 0.4 mm focal spot and amorphous selenium
(362.88 × 362.88 mm) digital flat-panel detector (detector element, 0.15 × 0.15 mm). The dis-
tances between source (focal spot)-to-isocenter and source-to-detector were 924 and 1100 mm,
respectively (anti-scatter grid, focused type; grid ratio, 12:1). Tomography was performed
linearly with a total acquisition time of 6.4 s (reference radiation dose: 80 kVp, 250 mA,
and 20 ms/view; effective dose, in accordance with the International Commission on
Radiological Protection [ICRP]: 0.69 mSv [ICRP 103]; 37% reduced radiation dose: 80 kVp,
250 mA, 12.8 ms/view, and 0.43 mSv; 55% radiation-dose reduction: 80 kVp, 250 mA,
9.6 ms/view, and 0.31 mSv; and 71% reduced radiation dose: 80 kVp, 250 mA, 6.4 ms/view,
and 0.20 mSv). The acquisition angle was 40◦ and 74 projection images (1024 × 1024 matrix).
The effective dose was calculated using Monte Carlo-based software (PCXMC version
2.0, STUK-Radiation and Nuclear Safety Authority, Helsinki, Finland) [33]. The reference
radiation dose was the dose generally used in clinical practice (the clinical task was to
assess the prosthesis). To produce reconstructed tomograms of the required height, we
used a 512 × 512 matrix with 32 bits (single-precision floating number) per image.

3. Methods
3.1. Overview of CGpM-MAR

The novel CGpM-MAR algorithm was implemented in the case of projection-space
data to reduce metal artifacts while reducing the radiation dose during DT. This method is
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based on a combination of multi-training networks (cycle-GAN and pix2pix) with MPN
and a mask pyramid learning strategy to fully utilize prior projection guidance completion,
and thus, alleviate new artifacts in a projection space involving hybrid and subjectively
reconstructed MAR images.

Cycle-GAN allows translations between domains (reference and low doses) that are
not fully associated and can solve problems of image quality deterioration due to low-dose
acquisition. By applying another style to the image during the pix2pix translation process
to get prior projection images, final MPN learning could be introduced to recover more
structural and anatomically plausible information from the metallic component.

The overview of the recommended CGpM-MAR) algorithm is as follows:

Step 1 [Cycle-GAN]: Translates low-dose images to reference-dose images.
Step 2 [Prior images for linear interpolation (LI) [8] processing and pix2pix GAN]: Gen-

erates a metal-free image by extracting the metal region and by LI interpolation.
A prior image with a deep neural network (pix2pix) is generated to facilitate the
projection completion.

Step 3 [MPN]: The mask information is obtained across the network’s encoding layers,
and a mask fusion loss reduces the early saturation of adversarial training.

The flowchart shows the interrelations of cycle-GAN, pix2pix, and MPN, which form
the core of CGpM-MAR (Figure 1).
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3.2. CGpM-MAR

The variable definitions required for the outline of the algorithm are shown below:
B reference-dose projection domain
A low-dose projection domain
a training samples {ai}Q

i=1 where a ∈ A

b training samples
{

bj

}P

j=1
where b ∈ B

a ∼ p(a) b ∼ p(b) data distribution
AB mapping A→ B
BA mapping B→ A
DA distinguish between images {a}

and translated images BA{b}
DB discriminate between {b}nd AB{a}
D discriminator
G generator

3.2.1. Cycle-GAN

The purpose of cycle-GAN is to translate low-dose projections into reference-dose
projections. In the learning process, a low-dose projection can be effectively translated
into a reference-dose projection using two discriminators and a generator. Cycle-GAN is
used to learn mapping functions between two domains A and B that were given training
samples. The network objective contains three types of terms: Adversarial loss, cyclic
consistency loss, and identity loss. The training dataset included 148 projection images and
each corresponding image related to the input image pair (A (74), B (74)) were randomly
selected from the generated acquisition data as the training set.

Input_1 →B (reference)
Input_2 →A (objective)
The adversarial loss is given as

LGAN(AB, DB, A, B) = Eb∼p(b)[log DB(b)] + Ea∼p(a)[log(1− DB(AB(a))] (1)

The cyclic consistency loss is given as

a→ AB(a)→ BA(AB(a)) ≈ a (2)

b→ BA(b)→ AB(BA(b)) ≈ b (3)

Lcyc(AB, BA) = Eb∼p(b)[‖AB(BA(b))− b‖1] + Ea∼p(a)[‖BA(AB(a))− a‖1] (4)

The identity loss is given as

Lidentity = Ea∼p(a)[‖BA(a)− a‖1] + Eb∼p(b)[‖AB(b)− b‖1] (5)

The total loss is given as

L(AB, BA, DA, DB) = LGAN(AB, DB, A, B)
+LGAN(BA, DA, B, A)
+λLcyc(AB, BA)
+Lidentity

(6)

where λ controls the relative importance of the two objectives. In this study, λ was set to
10 at an initial learning rate of 0.0002 [28].

cycle-GAN was developed to solve the following problem:

AB†, BA† = arg min
AB,BA

max
DA ,DB

L(AB, BA, DA, DB) (7)
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In cycle-GAN, the Adam optimization algorithm [34] was used with a batch size of 1.
The architecture of the building components is shown in Appendix A (Table A1).

3.2.2. Linear Interpolation

We generated a prior image with a deep neural network to facilitate the projection
completion procedure [23], as the metal-free prior image would provide a good estimation
for the original projection. We first applied the LI [8] to produce an initial estimation of the
metal trace region and acquire the LI-corrected projection Ptemp_LI for the following procedures:

Step_1: extract metal from AB† ∈ {0, 1}i×j(i: high, j: width)→ Msk
Step_2: AB† −Msk → Ptemp
Step_3: LI processing for Ptemp → Ptemp_LI

3.2.3. Pix2pix

In this procedure, the original projection with metal artifacts was used as the input
and to train a neural network to generate the prior image with fewer metal artifacts.
In particular, with relatively large metal objects, the metal artifacts in the original projection
would be strong, and the neural network would have difficulty reducing the metal artifacts.
Therefore, besides the original projection, we also used the LI-corrected image into the
prior image generation procedure [23] and used the pix2pix neural network, to refine the
LI-corrected image by backpropagation learning.

G and D trained adversarially with GAN are expressed as follows:
Input_1 →AB† (objective)
Input_2 →Ptemp_LI (reference).
The training dataset included 148 projection images, and each corresponding images

related to the input image pair (AB†(74), Ptemp_LI (74)) were randomly selected as the
training set from the cycle-GAN processed data:

min
D
LGAN_c = EAB† ,Ptemp_LI

[
log D

(
AB†, Ptemp_LI

)]
+EAB† ,z

[
log(1− D(AB†, G(AB†, z))

] (8)

min
G
LGAN_L1 = EAB† ,Ptemp_LI,z

[
‖Ptemp_LI − G

(
AB†, z

)
‖

1

]
(9)

where z is the random noise vector (Gaussian noise).
The pix2pix was developed to solve the following problem:

AB†† = argmin
G

max
D
LGAN_c(G, D) + γmin

G
LGAN_L1(G) (10)

where γ controls the relative importance of the two objectives LGAN_c and LGAN_L1. In this
study, γ was set to 100, the initial learning rate was set to 0.0002, and the momentum
parameters were set to β1 = 0.5, β2 = 0.999 [25].

In pix2pix, we used the Adam optimization algorithm [34] with a batch size of 1. The
architecture of the building components is shown in Appendix A (Table A2).

3.2.4. MPN

We used a novel mask pyramid projection learning strategy to fully utilize the prior
projection guidance to improve the continuity of projection completion and thus alleviate
the new artifacts in the reconstructed DT images. We used the MPN to retain the metal trace
information in each layer explicitly so that the network can extract more discriminative
features to restore missing information in the metal trace region.

Input_1 →Ptemp (objective)
Input_2 →AB†† (reference)
Input_3 →Msk (objective)
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The training dataset included 222 projection images and each corresponding related
to the input image (Ptemp (74), AB††(74), Msk(74)) were randomly selected as the training
set from the data processed in metal extract, LI, and pix2pix.

In computing the loss function, the network only considered the content of the metal
mask. The content loss is given as follows:

min
G
Lc = EPtemp ,AB††

[
‖ ˆAB†† − AB††‖1

]
(11)

where ˆAB†† = MskG
(

Ptemp
)
+ (1−Msk)Ptemp (12)

The output score matrix from the discriminator was modulated by the metal mask
Msk so that the discriminator can selectively ignore the unmasked regions. The adversarial
part of the mask fusion loss is given as:

min
D
LGAN_M = EAB††

[
‖S(Msk)

(
1− D

(
AB††))‖2

]
+EPtemp

‖S(Msk)D

(
∧

AB††

)
‖

2
 (13)

min
G
LGAN_M = EPtemp

[
‖S(Msk)

(
1− D

(
ˆAB††
))
‖

2
]

(14)

where S takes metal mask Msk as the input, and each block of S is coupled with an encoding
block in D.

The total mask fusion loss is given as

AB f inal = LGAN_M + ηLc (15)

where η is the balance the between LGAN_M and η. In this study, η was set to 100,
the initial learning rate was set to 0.0002, and the momentum parameters were set to
β1 = 0.5, β2 = 0.999 [30].

In MPN, we used the Adam optimization algorithm [34] with a batch size of 1. The
architecture of the building components are shown in Appendix A (Table A3).

3.3. Evaluations
3.3.1. Optimization Parameters of the Epochs

The optimizations epochs in each network (cycle-GAN, pix2pix, and MPN) were
evaluated based on the mean square error (MSE) [35] and structural similarity (SSIM) [36]
for the projection image (straightforward on the detector). The MSE of the identified
projection image can be obtained as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[
<re f (i, j)−<low(i, j)

]2

(16)

where <re f (i, j) is the (i, j)th entry of the reference-dose projection image, and <low(i, j) is
the (i, j)th entry of the low-dose projection image in each epoch.

The SSIM index between pixel values i and j was calculated as follows:

SSIM(i, j) = [l(i, j)]ω · [c(i, j)]ξ · [s(i, j)]ψ (17)

where l is the luminance, c is the contrast, and s is the structure (ω = ξ = ψ = 1.0).
The mean SSIM (MSSIM) was then used to evaluate the overall image quality as follows:

MSSIM[<re f (i, j),<low(i, j)] =
1
K

K

∑
q=1

SSIM(iq, jq) (18)
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where iq and jq are the image contents at the qth pixel, and K is the number of pixels in
the image.

Optimization was evaluated based on the MSE and MSSIM. The lowest MSE, highest
MSSIM, and epochs were selected as the optimum parameters.

3.3.2. Evaluation of Image Quality

The DT system-derived real projection data were used for image reconstruction.
MATLAB (version 9.7.0.1216025, MathWorks, Natick, MA, USA) was used to reconstruct
and process images. The artifact index (AI) values [37] for metal artifacts containing
low-frequency components in the CGpM-MAR and the conventional algorithms (FBP
(reference-dose FBP image; reference FBP, low-dose FBP image; original FBP), DT-MAR [2],
and CNNMAR [15] with reconstruction from the original projections) were compared to
assess the decrease in metal artifacts on each in-focus plane image. A weighting factor of
0.6 was used in DT-MAR [(FBP ∗ 0.4) + (BP ∗ 0.6)] (FBP; FBP reconstructed images and
BP; back projection imgaes) [2]. We further ascertained the metal artifacts containing high-
frequency components. Gumbel distributions [3,38] are statistical models for determining
the influence of high-frequency artifacts. The characteristics of the CGpM-MAR and
conventional algorithms were evaluated based on the MAR. CGpM-MAR was evaluated
using the optimized parameters generated based on the application image.

3.3.3. AI

The AI of the identified metal artifacts was calculated as follows:

AIn =

√∣∣∣ROIarti f act_n − ROIBG

∣∣∣ (19)

where n = 1, 2, . . . , 6, or 8 defines the formula for ROIarti f act_n (regions of interest
(ROI)_location_1; ROIarti f act_1, ROIarti f act_2, . . . , ROIarti f act_6, ROI_location_2; ROIarti f act_1,
ROIarti f act_2, . . . , ROIarti f act_8; Figure 2a) that represents the corresponding ROI for the
relative standard deviations (SDs) of real features (metal artifacts) in the in-focus plane.
ROIBG is the relative SD of the background in the in-focus plane. To evaluate each feature
(metal artifacts) and background, the ROI was set at 3 × 9 pixels (ROI_location_1; streak
artifact area) and 3 × 7 pixels (ROI_location_2; dark artifact area).

In this study, we compared the AI values of the reconstruction algorithms at different
radiation doses between two groups (ROI_location_1 and ROI_location_2). The numbers
of samples in the groups were 18 (ROI_location_1) and 24 (ROI_location_2). Statistical
analyses were performed using IBM SPSS Statistics for Windows (version 24.0, SPSS Inc.,
Chicago, IL, USA). Probability (p) values < 0.05 were considered statistically significant.

3.3.4. Statistical Model with Gumbel Distributions

The analysis method is outlined as follows: First, a rectangular window with a width
of 8 pixels and a length (X-ray sweep direction) of 24 pixels was placed on each in-focus
plane image to reduce metal artifacts, as shown in Figure 2b. Second, the parallel-line
profiles of the pixel values at 1-pixel intervals resulted in 23 parallel-line pixel-value profiles
(each sampling size: 23). Third, the pixel-value profiles were graphed, and the maximal
variations between the adjacent pixel values were determined and analyzed based on the
Gumbel distribution. Finally, the cumulative probability function was measured using the
symmetry rank method with order statistics:

cumulative probability Γ(xδ) =
δ− 0.5

q
, (δ = 1, . . . q) (20)

where q is the sampling size with order statistics.
To evaluate linearity, the Pearson correlation coefficient was determined and analyzed

(p values < 0.01) using IBM SPSS Statistics for Windows (version 24.0, SPSS Inc., Chicago,
IL, USA).
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Figure 2. Assessment of improvements in image quality using the artifact index (AI), a statistical model with a Gumbel
distribution of the selected features. The in-focus plane images shows the (a) artifact and background areas of the AI and (b)
measurements and high-frequency artifact with prosthetic areas of the Gumbel analysis.

4. Results
4.1. Optimization Parameters

After measuring the MSE and SSIM of each training network at different radiation
doses, the optimal epoch was selected at the lowest MSE and highest SSIM (0.43 mSv:
cycle-GAN, 1600 epochs; pix2pix, 300 epochs; MPN, 330 epochs; 0.31 mSv: cycle-GAN,
1600 epochs; pix2pix, 280 epochs; MPN, 250 epochs; and 0.2 mSv: cycle-GAN, 1900 epochs;
pix2pix, 250 epochs; and MPN, 400 epochs). Using the optimization verification results,
each training network image was generated by setting epochs for CGpM-MAR and then
evaluated and compared with those of the images obtained using conventional algo-
rithms (Figure 3). The training was performed on a GPU (Geforce RTX 2080 Ti; 11 GB
of memory, NVIDIA Co., Santa Clara, CA, USA). The total calculation time required to
process the CGpM-MAR algorithm was 116.84 h (cycle-GAN [epochs 1900]; 79.63 h, pix2pix
[epochs 300]; 10.05 h, MPN [epochs 400]; 27.16 h).

4.2. Image Quality

Figure 4 shows the reconstructed images of the prosthesis phantom acquired with
the CGpM-MAR algorithm and each of the established algorithms for reconstruction with
and without MAR processing at 55% reduction of the radiation dose of up to 0.31 mSv.
Remarkably, the DT images produced using the CGpM-MAR algorithm showed decreased
metal artifacts in the radiographic sweep direction (i.e., vertical direction), specifically in
the peripheral regions of the prosthesis phantom. On the other hand, images produced with
the help of DT-MAR demonstrated noise and metal artifacts. Comparison of the difference
between CGpM-MAR and the conventional algorithm resulted in the smallest DT-MAR.
CNNMAR showed a certain reduction in artifacts, but the streak artifacts generated from
around the metal were remarkable.
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levels: (a) cycle-GAN 0.43 mSv; (b) cycle-GAN 0.31 mSv; (c) cycle-GAN 0.20 mSv; (d) pix2pix2 0.43 mSv; (e) pix2pix 0.31 mSv;
(f) pix2pix 0.20 mSv; (g) MPN 0.43 mSv; (h) MPN 0.31 mSv; and (i) MPN 0.20 mSv.

Figure 5 presents the placement of the ROI in the prosthesis phantom and a plot of the
AI results. CGpM-MAR yielded the lowest metal artifact characteristic values and features
most similar to the reference FB,P regardless of the MAR processing status at 55% radiation-
dose reduction, which is up to 0.31 mSv (ROI_location_1; 0.43 mSv: average AI ± standard
error: 0.1020 ± 0.0179, 0.31 mSv: 0.1416 ± 0.0173, 0.20 mSv: 0.1651 ± 0.0142, ROI_location_2;
0.43 mSv: 0.1295 ± 0.0036, 0.31 mSv: 0.1226 ± 0.0051, and 0.20 mSv: 0.4308 ± 0.0313). For
conventional imaging algorithms with and without MAR processing, metal artifact genera-
tion depended on the type of reconstruction algorithm ([reference FBP] ROI_location_1;
0.1103 ± 0.0267, ROI_location_2; 0.3021 ± 0.0356, [original FBP_0.43 mSv] ROI_location_1;
0.2155 ± 0.0082, ROI_location_2; 0.3893 ± 0.0309, [original FBP_0.31 mSv] ROI_location_1;
0.1998 ± 0.0182, ROI_location_2; 0.3850 ± 0.0239, [original FBP_0.20 mSv] ROI_location_1;
0.1924 ± 0.0165, ROI_location_2; 0.4264 ± 0.0283, [DT-MAR_0.43 mSv] ROI_location_1;
0.1496 ± 0.0246, ROI_location_2; 0.1469 ± 0.0067, [DT-MAR_0.31 mSv] ROI_location_1;
0.1579 ± 0.0305, ROI_location_2; 0.1439 ± 0.0058, [DT-MAR_0.20 mSv] ROI_location_1;
0.1578 ± 0.0297, ROI_location_2; 0.1411 ± 0.0062, [CNNMAR_0.43 mSv] ROI_location_1;
0.1493 ± 0.0191, ROI_location_2; 0.3473 ± 0.0388, [CNNMAR_0.31 mSv] ROI_location_1;
0.1768 ± 0.0273, ROI_location_2; 0.3559 ± 0.0402, [CNNMAR_0.20 mSv] ROI_location_1;
0.2142 ± 0.0165, ROI_location_2; 0.3512 ± 0.0407).
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Figure 4. Comparisons between the combined hybrid GAN, cycle-GAN_pix2pix_MPN algorithm[CGpM-MAR, and the
conventional reconstruction algorithms with and without metal artifact reduction (MAR; reference FBP [showing window:
0.15–0.44], 0.43 mSv; CGpM-MAR [0.27–0.34], original FBP [0.15–0.44], DT-MAR [0–0.72], CNNMAR [0–0.20], 0.31 mSv;
CGpM-MAR [0.24–0.32], original FBP [0.15–0.44], DT-MAR [0–0.72], CNNMAR [0–0.20], 0.20 mSv; CGpM-MAR [0.05–0.22],
original FBP [0.15–0.44], DT-MAR [0–0.72], CNNMAR [0–0.20]) in the in-focus plane. Metallic implants were replaced with
constant values (white) after processing with CGpM-MAR and CNNMAR. The display variety of the prosthesis phantom
was changed for visual comparison of the contrast and background gray levels. The X-ray source was moved along the
image vertically. In the displayed areas, the artifact indexes were determined.

In ROI_location_1, the differences in the metal artifacts, except for CGpM-MAR com-
pared with the conventional low-dose FBP without MAR processing, were statistically
significant (p < 0.05; Table 1). In ROI_location_2, the differences in metal artifacts be-
tween the CGpM-MAR and low-dose with and without MAR processing reconstruction
algorithms were statistically significant (p < 0.05; Table 2). These AI results showed that
the CGpM-MAR algorithm most effectively reduced metal artifacts in areas with a large
number of artifacts (ROI_locations_2). In addition, CGpM-MAR had the closest AI value
to the reference FBP.
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GAN_pix2pix_MPN (CGpM-MAR) and other traditional reconstruction algorithms with and without metal artifact re-
duction (MAR) processing. Metal artifacts originating from the AIs of 6 (ROI_location_1) and 8 (ROI_location_2) selected
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ROI_location_2, 0.31 mSv; and (f) ROI_location_2, 0.20 mSv.

Table 1. Metal artifact reduction performances of tomosynthesis reconstruction algorithms. (streak artifact area).

ROI_Location_1

Variable Difference Standard Error p
95% CI *

Lower Limit Upper Limit

CGpM-MAR vs. Original-FBP −0.0664 0.01717 0.002 −0.1118 −0.0211
CGpM-MAR vs. DT-MAR −0.0190 0.01717 0.686 −0.0644 0.0263
CGpM-MAR vs. CNNMAR −0.0441 0.01717 0.060 −0.0895 0.0013

Original FBP vs. DT-MAR 0.0474 0.01717 0.037 0.0021 0.0928
Original FBP vs. CNNMAR 0.0224 0.01717 0.565 −0.0230 0.0677
Original FBP vs. CGpM-MAR 0.0664 0.01717 0.002 0.0211 0.1118

DT-MAR vs. Original-FBP −0.0474 0.01717 0.037 −0.0928 −0.0021
DT-MAR vs. CNNMAR 0.1389 0.0601 0.468 −0.0704 0.0203
DT-MAR vs. CGpM-MAR 0.8692 0.0537 0.686 −0.0263 0.0644

CNNMAR vs. Original-FBP −0.0224 0.01717 0.565 −0.0677 0.0230
CNNMAR vs. DT-MAR 0.0251 0.01717 0.468 −0.0203 0.0704
CNNMAR vs. CGpM-MAR 0.0441 0.01717 0.060 −0.0013 0.0895
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Table 1. Cont.

ROI_Location_1

Variable Difference Standard Error p
95% CI *

Lower Limit Upper Limit

Source of variation df * sums of squares mean square F p

Algorithm 3 0.045 0.015 5.709 0.002
Dose 2 0.010 0.005 1.827 0.170
Algorithm × Dose 6 0.017 0.003 1.086 0.381
Error 60 0.159 0.003 - -

* CI: confidence interval; dependent variable: artificial index value. Tukey–Kramer test; p < 0.05 indicates a significant difference (without
metal artifact reduction processing). * df: degree of freedom; dependent variable: artificial index value. Tukey–Kramer test; p < 0.05
indicates a significant difference (without metal artifact reduction processing).

Table 2. Metal artifact reduction performances of tomosynthesis reconstruction algorithms. (dark artifact area).

ROI_Location_2

Variable Difference Standard Error p
95% CI *

Lower Limit Upper Limit

CGpM-MAR vs. Original-FBP −0.1726 0.02142 0.000 −0.2288 −0.1165
CGpM-MAR vs. DT-MAR 0.0836 0.02142 0.001 0.0274 0.1397
CGpM-MAR vs. CNNMAR −0.1238 0.02142 0.000 −0.1800 −0.0677

Original FBP vs. DT-MAR 0.2562 0.02142 0.000 0.2001 0.3124
Original-FBP vs. CNNMAR 0.0488 0.02142 0.111 −0.0074 0.1049
Original-FBP vs. CGpM-MAR 0.1726 0.02142 0.000 0.1165 0.2288

DT-MAR vs. Original-FBP −0.2562 0.02142 0.000 −0.3124 −0.2001
DT-MAR vs. CNNMAR −0.2074 0.02142 0.000 −0.2636 −0.1513
DT-MAR vs. CGpM-MAR −0.0836 0.02142 0.001 −0.1397 −0.0274

CNNMAR vs. Original-FBP −0.0488 0.02142 0.111 −0.1049 0.0074
CNNMAR vs. DT-MAR 0.2074 0.02142 0.000 0.1513 0.2636
CNNMAR vs. CGpM-MAR 0.1238 0.02142 0.000 0.0677 0.1800

Source of variation df * sums of squares mean square F p

Algorithm 3 0.979 0.326 59.273 0.000
Dose 2 0.154 0.077 13.960 0.000
Algorithm × Dose 6 0.351 0.058 10.618 0.000
Error 84 0.462 0.006 - -

* CI: confidence interval; dependent variable: artificial index value. Tukey–Kramer test; p < 0.05 indicates a significant difference (without
metal artifact reduction processing). * df: degree of freedom; dependent variable: artificial index value. Tukey–Kramer test; p < 0.05
indicates a significant difference (without metal artifact reduction processing).

Figure 6 shows a Gumbel plot of the relationships between the largest variations and
estimated cumulative probabilities. Here, the largest variations are distributed linearly
(reference FBP r = 0.925 [p < 0.01], 0.43 mSv: original FBP r = 0.909 [p < 0.01]; DT-MAR
r = 0.935 [p < 0.01]; CNNMAR r = 0.919 [p < 0.01]; CGpM-MAR r = 0.919 [p < 0.01], 0.31 mSv:
original FBP r = 0.961 [p < 0.01]; DT-MAR r = 0.982 [p < 0.01]; CNNMAR r = 0.930 [p < 0.01];
CGpM-MAR r = 0.976 [p < 0.01], 0.20 mSv: original FBP r = 0.986 [p < 0.01]; DT-MAR
r = 0.981 [p < 0.01]; CNNMAR r = 0.918 [p < 0.01]; CGpM-MAR r = 0.986 [p < 0.01]). These
findings further verified the Gumbel distribution as a reasonable statistical model for
describing the largest variations in each largest difference between adjacent pixel-value
profiles. Furthermore, the largest variations in the Gumbel plot showed the CGpM-MAR
had the minimum number of high-frequency artifacts and features most similar to the
reference FBP at 55% radiation-dose reduction, which is up to 0.31 mSv. Furthermore, the
original FBP and CNNMAR algorithms exhibited similar distributions at 55% radiation-
dose reduction of up to 0.31 mSv. Whereas, the original FBP algorithm distribution differed
at 71% radiation-dose reduction of up to 0.20 mSv. The AI results and Gumbel distribution
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indicate that CGpM-MAR had characteristics similar to the reference FBP at doses of up to
0.31 mSv (55% reduction).
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5. Discussion

This study revealed that the CGpM-MAR algorithm yielded an adequate overall per-
formance, reducing the radiation dose by 55%. The combination of multi-training network
images produced using this algorithm yielded good results independently of the type of
metal present in the prosthesis phantom. In addition, this algorithm successfully removed
low- and high-frequency artifacts from the images. CGpM-MAR was particularly useful in
reducing a large number of artifacts. Therefore, this algorithm is a promising new option
for prosthetic imaging, as it generated artifact-reduced images and reduced radiation doses
that were far superior to those obtained from images processed using conventional algo-
rithms. The flexibility of CGpM-MAR in the choice of imaging parameters, which is based
on the desired final images and prosthetic imaging conditions, promises increased usability.
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The projection-space combination of multi-training approaches described here can be
used to generate images to formulate the MAR as a deep learning algorithm for projection
completion problems to improve the generalization and robustness of the framework.
Since directly regressing accurate missing projection data is difficult to undertake [23],
we propose to incorporate the prior projection image generation procedure and adopt
a combination of multiple networks and a projection completion strategy. This method
can improve the continuity of the projection values at the boundary of metal traces and
alleviate the new artifacts, which are common drawbacks of projection completion-based
MAR methods. Therefore, we believe that our novel CGpM-MAR could effectively reduce
metal artifacts in actual practice.

The ability of CGpM-MAR to obtain MAR images and reduce the radiation dose by
approximately 55% (Figures 5 and 6) may be due to the benefits of the first process, cycle-
GAN. Training an image-to-image translation framework requires fully associated images,
which is often difficult to learn. Cycle-GAN allows the translation between domains that
are not fully associated and can therefore solve this problem. Cycle-GAN has three types
of losses: First, the cycle consistency loss calculates the difference between the original
image and the original domain after translation into another domain and the original
domain. Second, adversarial loss guarantees that the image is real. Third, identity loss
preserves the quantization of the pixel space of the image. The two generators use a
U-Net [14] structure, and the two discriminators have a Patch-GAN-based structure [39]
for learning. By applying another style to the image during the translation process, the
low-dose projection image can then be applied to the reference-dose projection image.

The MPN used as the final learning process in CGpM-MAR contributed to the MAR.
The reason was that adversarial learning could be introduced into the projection to recover
more structural and anatomically plausible information from the metallic domain. In
addition, a new MPN has been developed, which extracts geometric information of different
scales and mask fusion loss that penalizes premature saturation, making learning more
robust for different shapes of metal implants, were introduced.

In DT-MAR processing without deep learning methods [2], voxels containing artifacts
tended to have higher values than their neighboring artifact-free voxels, which affected
the prosthetic appearance, wherein former voxels stood out against the background of
the latter. Accordingly, these residual artifacts are conspicuous when images subjected
to the FBP method are compared with non-artifact-reduced images. Therefore, DT-MAR
processing based on the polychromatic radiographic imaging method has a limited ability
to reduce metal artifacts.

The usefulness of image quality improvement for reducing noise and metal artifacts
in DT using deep learning has recently been reported [4,31]. Although noise and radiation-
dose reductions using deep learning in the DT of the breast are possible, no studies have
reported on the reduction of radiation dose related to MAR. The radiation-dose reduction
is approximately 20% in MAR without deep learning [6], thus, applying deep learning can
further improve MAR and radiation-dose reduction.

Our CGpM-MAR algorithm has some limitations. First, this study was to reduce DT
metal artifacts by single-energy (polychromatic) acquisition depending on the versatility
of the processing. When DE-DT acquisition becomes widespread in the future, we would
like to apply CGpM-MAR in monochromatic radiographic imaging. Second, because
CGpM-MAR combines multiple deep learning processes, generating the final image takes
time. Therefore, improvements in hardware processing are desired to speed up the process.
Third, the model used for learning used a phantom. By acquiring data, such as prosthesis
size and the positional relationship between prosthesis and normal structure, under various
conditions according to clinical use, image quality can possibly be improved further.
Moreover, further knowledge of various other structural patterns is needed in processing
complicated structures.

Although the results of this study is limited to prosthesis phantom, the evaluations
were performed in a state closest to actual biological composition in vivo. Furthermore, this
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approach will accelerate clinical application in terms of radiation-dose reduction and image
quality improvement, which are issues in X-ray imaging. We believe that the CGpM-MAR
algorithm will optimize the acquisition protocol in future X-ray imaging and radiation-dose
reduction technology and improve the accuracy of medical images.

Recently, some works studied GAN applications with and without MAR [40,41]. These
studies applied GAN technology to the reconstructed image to improve the accuracy of
the tomographic image in the in-plane and longitudinal directions. Although the images
processed were projection images, we predict that further improvements to the image
quality (MAR) of the reconstructed image can be made by theoretically using GAN in the
three-dimensional direction or in multiple slice generation from the input slice images.
In addition, investigating the simultaneous reduction of GAN and metal artifacts in three-
dimensional data would be an interesting future research direction.

6. Conclusions

This prosthesis phantom study revealed that a 55% reduction in radiation dose is
feasible with our novel CGpM-MAR algorithm. Our algorithm was particularly useful in
reducing dark artifacts and yielded relatively better statistical results (P < 0.05) in terms of
metal artifact reduction than conventional reconstruction algorithms. Therefore, the CGpM-
MAR algorithm can be integrated into the clinical application workflow to accelerate image
acquisition and reconstruction, and reduce metal artifacts while maintaining excellent
image quality in radiologic imaging with prostheses.
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Appendix A

Architecture of the building components. Channel, Kernel, Stride, Padding, and
Activation denote the configurations of the convolution layers in the blocks.

BN Batch Normalization
Prelu Parametric Rectified Linear Unit
LRelu Leaky Rectified Linear Unit
Tanh Hyperbolic Tangent function
* U-net connect
# Average Pool layer (metal mask)
$ U-net connect
& Discriminator final output layer (count 5) �Discriminator Average Pool layer

(final output)
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Table A1. Cycle-GAN.

Network Block Count Channel Kernel Stride Padding Activation

Generator

encoder

1 32

4 × 4 2 1 BN + Prelu
2 64

3 128

4 256

residual

1

256 3 × 3 1 1 BN + Prelu

2

3

4

5

6

decoder

1

256
4 × 4 2 same

BN + Prelu2

3

4 1 -

Discriminator

1 32

4 × 4 2 1

LRelu

2 64

BN + LRelu3 128

4 256

5 1 1 × 1 1 0 -

Table A2. Pix2pix.

Network Block Count Channel Kernel Stride Padding Activation

Generator

encoder

1 128

4 × 4 2

same LRelu

2 256

1 LRelu + BN

3 512

4 1024

5 1024

6 1024

7 1024

decoder

1 1024

4 × 4 2 same LRelu + BN

2 1024 + 1024 *

3 1024 + 1024 *

4 1024 + 1024 *

5 512 + 512 *

6 256 + 256 *

7
128 + 128 *

1 - - - Tanh
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Table A2. Cont.

Network Block Count Channel Kernel Stride Padding Activation

Discriminator

1 128

4 × 4 2 1

LRelu

2 256

LRelu + BN3 512

4 1024

5 1 1 0 Sigmoid

Table A3. MPN.

Network Block Count Channel Kernel Stride Padding Activation

Generator

encoder

1 128 + 1 #

4 × 4 2 1

LRelu

2 256 + 2 #

BN + LRelu

3 512 + 4 #

4 1024 + 6 #

5 1024 + 8 #

6 1024 + 10 #

7 1024 + 12 #

# 1–7 1 4 × 4 2 1 -

decoder

1 1024 + 13 $

4 × 4 2 same

BN

2 1024 + (1024 + 24) $

BN + LRelu

3 1024 + (1024 + 21) $

4 1024 + (1024 + 17) $

5 512 + (512 + 9) $

6 256 + (256 + 5) $

7 128 + (128 + 1) $

1 - - - Tanh

Discriminator

1 128

4 × 4
2 1

BN

2 256

BN + LRelu
3 512

4 1024

5 1 1 0

#
1–4 1

4 × 4
2 1 -

5 1 1 0 -

& 1 - - - Sigmoid
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