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Abstract: Doxorubicin is widely used in the treatment of different cancers, and its side effects can
be severe in many tissues, including the intestines. Symptoms such as diarrhoea and abdominal
pain caused by intestinal inflammation lead to the interruption of chemotherapy. Nevertheless, the
molecular mechanisms associated with doxorubicin intestinal toxicity have been poorly explored.
This study aims to investigate such mechanisms by exposing 3D small intestine and colon organoids
to doxorubicin and to evaluate transcriptomic responses in relation to viability and apoptosis as
physiological endpoints. The in vitro concentrations and dosing regimens of doxorubicin were
selected based on physiologically based pharmacokinetic model simulations of treatment regimens
recommended for cancer patients. Cytotoxicity and cell morphology were evaluated as well as gene
expression and biological pathways affected by doxorubicin. In both types of organoids, cell cycle, the
p53 signalling pathway, and oxidative stress were the most affected pathways. However, significant
differences between colon and SI organoids were evident, particularly in essential metabolic pathways.
Short time-series expression miner was used to further explore temporal changes in gene profiles,
which identified distinct tissue responses. Finally, in silico proteomics revealed important proteins
involved in doxorubicin metabolism and cellular processes that were in line with the transcriptomic
responses, including cell cycle and senescence, transport of molecules, and mitochondria impairment.
This study provides new insight into doxorubicin-induced effects on the gene expression levels in
the intestines. Currently, we are exploring the potential use of these data in establishing quantitative
systems toxicology models for the prediction of drug-induced gastrointestinal toxicity.

Keywords: doxorubicin; toxicity; human organoid models; molecular mechanisms; transcriptomics

1. Introduction

Doxorubicin (DOX) is a chemotherapeutical drug that belongs to the class of anthra-
cyclines, being first isolated from Streptomyces peucetius var. caesius in 1967 [1]. DOX has
application in the treatment of a wide range of cancers, such as solid tumours, acute
myeloblastic and lymphoblastic leukaemia, breast, ovarian, prostate, gastric carcinomas,
osteosarcomas, and soft tissue sarcomas [2]. Despite being one of the most standardized
and recommended drugs to treat such malignancies in the last 40 years, DOX is often
associated with severe side effects. Common side effects include hair loss, vomiting, weight
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loss, rash and suppression of the bone marrow. DOX is also associated with rather serious
effects, including cardiotoxicity, leading to cardiomyopathy and subsequently congestive
heart failure, hepatotoxicity, erythema, and disruption of the intestinal epithelium [2,3].
Disruption and subsequent inflammation of the intestinal epithelium induce symptoms
such as diarrhoea, vomiting, abdominal pain and nausea. Consequently, cancer treatments
can be compromised, dramatically impairing patient’s survival and quality of life.

The mechanisms by which DOX exerts its toxic effects in the intestinal cells are not fully
understood yet. Although it is known that it targets and kills proliferative malignant cells,
which divide at a higher rate than healthy ones, DOX is not cancer cell-specific and can,
therefore, also affect healthy cells of multiple organs, leading to severe damaging effects
even at therapeutic doses [3]. There are two proposed mechanisms of action linked to DOX:
(1) intercalation into DNA and disruption of DNA topoisomerases and (2) generation of
reactive oxygen species (ROS) [4,5]. The first mechanism leads to the unwinding of DNA,
DNA replication, RNA transcription and translation, and ultimately, protein biosynthesis.
Consequently, cell cycle is interrupted, and cells stop proliferating [4,6]. This mechanism
is thought to be the main anti-cancer activity of DOX, whereas the generation of ROS
is more associated with its toxic effect [7]. ROS can be generated as a result of DOX
metabolism, in which a semiquinone, a rather unstable and oxidative molecule, is formed
at complex I of the electron transport chain (ETC) [8]. Oxidative stress causes membrane
damage, DNA damage, mitochondria dysfunction, lipid peroxidation, and trigger cell
death pathways [3,4,8]. Taken all together, these mechanisms can be associated with DOX-
induced toxicity due to inflammation, impairment of mitochondria and ATP synthesis, and
ultimately the induction of apoptosis [3,9]. However, the molecular mechanisms through
which DOX causes intestinal damage have not been investigated as the great majority of
studies focus on cardiotoxicity. For this reason, this study aimed at not only confirming the
hypothetical mode of action of the drug, but mainly at generating new data to advance our
knowledge of the mechanisms involved in DOX-induced intestinal toxicity. To accomplish
this, high-throughput transcriptomic analysis was performed on innovative 3D culture
models of colon and small intestine (SI) organoids, derived from human tissue biopsies [10].

The development and application of three-dimensional (3D) culture systems in various
fields, including disease modelling, drug discovery, screening, and drug target identifi-
cation has exponentially increased as these models replicate tissue-like structures and
characteristics more accurately than monolayer cultures [11,12]. Moreover, the introduction
of extracellular matrices (ECM), e.g., matrigel [13], in the establishment of 3D cell cultures
has enabled the replication of cell–environment interactions, leading to augmented cell
proliferation, differentiation, and cellular functions [12]. This is important for creating cell
culture conditions similar to the environment within tissues/organs, particularly in cancer
and anticancer drug research. Several studies have been conducted on 3D culture technolo-
gies in which these are reported as potential tools to investigate drug combinations for the
treatment of cancer, drug responses, and chemoresistance profiles [14–16]. More related
to the gastrointestinal (GI) tract, the investigation of GI tissue development, homeostasis,
diseases, and treatments has greatly benefited from 3D organoid models [17,18]. Similarly,
intestinal organoids have shown to possess key features of human in vivo cells, i.e., they
show similar cellular organization, behaviour, and crypt-like structures, which are more
advantageous than other cell and rodent models [19,20]. Therefore, 3D cell culture technolo-
gies hold promise in overcoming the limited cell conditions and drug responses observed
in 2D systems [11], and, consequently, in improving pre-clinical drug development studies.

In this study, we hypothesized that DOX could affect colon and SI tissues differently
since they have different cell physiology, dynamics, and function. Therefore, distinct gene
expression profiles would be observed reflecting distinctive response mechanisms in both
organoid types. The exposure concentrations of DOX were based on predictions from
physiologically based pharmacokinetic (PBPK) model simulations to better represent the
clinical dose regimens during cancer therapy [20–22]. Cytotoxicity measurements were
evaluated and checked if they were in line with the transcriptomic responses. In addition,
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proteomics data were assessed through computational simulations [23,24] based on known
DOX protein targets in the gut available in online repositories [25–28]. These data were
useful to assess if target proteins were reflected on the transcriptomic data generated on the
organoids, as well as to gain a broader insight into the drug mechanisms of toxicity. The
ultimate goal of this study is to further apply the new transcriptomic data and molecular
gene markers in quantitative systems toxicology (QST) models to predict drug-induced GI
toxicity (transQST project).

2. Results
2.1. PBPK Simulation for Selection of DOX In Vitro Concentrations

The predictive performance of the DOX PBPK model was verified against clinically
observed total DOX concentrations in plasma (Figure S1). Observed plasma concentrations
of DOX were generally captured within the 95% confidence interval of the simulated
plasma concentration-time profile. Figure 1 shows the predicted pharmacokinetic profiles of
systemic and gut DOX concentrations following 20 min infusions of 2.5, 15, and 40 mg/m2

DOX, respectively, in humans. The gut tissue Cmax was selected as the target exposure level
for in vitro experiments as it provides relevant tissue exposure and a ‘worst-case scenario’
to inform a conservative safety assessment. PBPK predicted gut tissue total concentrations
were eight-fold higher than that of total plasma concentration for all doses simulated.

Figure 1. Predicted (a) mean total systemic plasma concentration and (b) mean total gut tissue
concentration of DOX following 2.5, 15 and 40 mg/m2 intravenous (IV) dose infused over 20 min
in humans.

Based on the PBPK predicted DOX Cmax in gut tissue, the nominal concentration to
achieve equivalent intracellular steady-state concentration in human intestinal organoid
in vitro was predicted using the VIVD model. Table 1 shows the PBPK predicted gut tissue
Cmax for the three dosing regimens and the VIVD predicted in vitro nominal concentration.
A ratio of 1.10 between total intracellular concentration and nominal test concentration was
predicted, which is in line with DOX as a fairly lipophilic compound (Log Pow of 1.27, [22]).
These results were used to inform DOX dose ranges for subsequent in vitro experiments.
The VIVD model assumes a monolayer cell culture, which is not representative of human
intestinal organoids. However, the VIVD model does account for non-specific binding to
medium components and plastic culture-ware and can still inform on the design of in vitro
studies using organoids.
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Table 1. Nominal in vitro DOX concentrations that reach intracellular concentrations equivalent
to physiologically based pharmacokinetic (PBPK) predicted human in vivo gut tissue maximum
concentration (Cmax) after various intravenous (IV) doses.

IV Dose Infused Over 20
min in Human (mg/m2)

In Vivo Gut Tissue Total
Cmax (µM)

In Vitro Nominal
Concentration (µM)

2.50 1.06 0.96
15.00 6.36 5.76
40.00 17.00 15.40

2.2. Cytotoxicity Evaluation of Colon and SI Organoids: Viability and Apoptosis after Exposure
to DOX

Assessment of viability of organoids was based on quantification of ATP levels,
whereas apoptosis was assessed with caspase 3/7 activation assay. Overall, as shown
in Figure 2, the lowest dose (1 µM) did not have any significant effect on cell viability and
caspase 3/7 activation at all time points, in both colon and SI organoids. The temporal
concentration effect of DOX exposure was more evident at 10, 30 and 60 µM. ATP levels
tended to decrease across time and concentration in both organoids, whereas caspase 3/7
activation tended to increase in colon organoids but not as much in SI.

Figure 2. Functional assessment of healthy colon: (a) viability and (b) caspase 3/7 activation; and of
SI organoids: (c) viability and (d) caspase 3/7 activation, when exposed to 1, 10, 30 and 60 µM DOX
for 24 h in light grey, 48 h in dark grey and 72 h in black, compared with untreated controls. Values
are in % of Luminescence. SD was calculated for each condition. Ctrl, control; DOX, doxorubicin; SD,
standard deviation; SI, small intestine; Unt, untreated; Veh, vehicle. * p value of 0.03; ** p value of
0.002; *** p value of 0.0004; **** p value of 0.0001.

ATP levels of colon organoids treated with 10 µM of DOX decreased by 20 to 30%
(p value = 0.0004). All time points were similar, and thus time did not have much effect
at this concentration. Conversely, time played a more active role in the exposure of SI
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organoids, particularly at 72 h where ATP levels decreased by 40% (p value = 0.0001).
Regarding the concentrations 30 and 60 µM, ATP levels decreased more significantly in
the colon than in SI, particularly at 72 h. In colon organoids, differences between 24 and
48 h were not significant, but at 72 h, ATP levels decreased by 60% at 30 µM and more
than 60% at 60 µM DOX, compared to the untreated controls (Figure 2a) (p value = 0.0001).
In SI organoids, ATP levels decreased as drug concentrations increased. The effect of the
exposure was similar in SI, where ATP decreased by 20% to 50% in all concentrations
compared to the untreated controls (Figure 2c) (p value = 0.0001). Therefore, considering
only ATP levels, colon and SI organoids were similarly affected by DOX.

Conversely, caspase 3/7 activation in colon organoids was more affected by the drug
concentration with over three-fold difference between the untreated and treated groups
(Figure 2b) (p value = 0.0001). Similarly, in SI organoids, caspase 3/7 activation was
also significantly affected by the drug concentration compared to the untreated controls
(p value = 0.0001) (Figure 2d). Moreover, there was a three-time increase in caspase 3/7
activation at 48 and 72 h when exposed to 10 µM, for which there is no clear indication of
whether these are outliers or biological responses since transcriptomic analysis did not show
significant changes in apoptosis or cell cycle-related genes for these particular treatment
conditions in SI. In summary, although caspase 3/7 activation was significantly affected
in both organoids and mainly concentration-dependent rather than time-dependent, it
seems that in colon organoids the impact of the exposure to DOX was higher and more
progressive across treatment conditions.

2.3. Image Analysis

In addition to the evaluation of cell viability and caspase 3/7 activation, morphological
changes caused by DOX, including size and volume of the organoids, and percentage of
cell death, were observed after image processing (Figure 3). Total and average size of the
colon organoids (Figure 3a) did not significantly decrease after 24 h exposure to DOX,
whereas at higher concentrations after 48 and 72 h, the organoids became significantly
smaller (p value = 0.0001). Statistically significant changes in cell death were evident in all
treatment conditions (p value = 0.0001), except for 1 µM at 24 h, with an increase by 80%
for the highest concentration at 72 h (Figure 3b). Additionally, the total and average sizes
of SI organoids were affected at 1 µM after 24 h treatment (p value = 0.0001) (Figure 3c).
Cell death (Figure 3d) increased significantly in the SI organoids as well, particularly after
exposure to 10 µM DOX (p value = 0.0001), with an increase up to 60%, lower than in
colon organoids. Figure 3e,f show additional microscope images of colon and SI organoids,
comparing the controls with the doxorubicin treatments. The auto-fluorescence of DOX
was taken into account when comparing the differences in staining intensities such that the
image analysis was independent of DOX staining interferences. The morphology image
data confirmed the results of the viability and caspase 3/7 assays, demonstrating that DOX
inhibited cell growth and activated cell death processes.
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Figure 3. Morphological changes assessed through imaging analysis of healthy colon: (a) size,
(b) percentage of cell death, and (e) microscope image analysis; and SI organoids: (c) size,
(d) percentage of cell death, and (f) microscope image analysis, when exposed to 1, 10, 30 and
60 µM DOX for 24 h in light grey, 48 h in dark grey and 72 h in black, compared with untreated
controls. Values are in % based on fluorescent intensity for each measured parameter. SD was
calculated for each condition. Ctrl, control; DOX, doxorubicin; SD, standard deviation; SI, small
intestine; Unt, untreated; Veh, vehicle. * p value of 0.04; ** p value of 0.008; *** p value of 0.0009;
**** p value of 0.0001. Staining in control wells: Phalloidin-FITC (actin, in red) and Hoechst (DAPI
channel, nuclei, in blue); treated wells: DOX bound to the nuclei (TRITC channel, nuclei, in blue); 1
pixel is 3.25 µm.
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2.4. Identification of Biological Pathways and Gene Responses Affected by DOX

Gene expression data from DOX-exposed organoids were used to identify biological
pathways and differentially expressed genes (DEGs) involved in intestinal toxicity induced
by the drug. First, alignment of the reads to the whole human genome was performed,
ranging between 65% and 81% in colon samples and between 57% and 68% in SI samples,
and thus, further analysis could proceed. Second, two SI samples presented low-quality
RNA (RIN < 7) and two SI samples yielded less than 5 million reads, the recommended
cut-off for differential gene expression (DGE) analysis [29,30]. Thus, these samples were
regarded as unsuitable for analysis. As a consequence, the measurements of 60 µM at 72 h
in the SI were not included. All samples derived from colon organoids presented more than
5 million read counts. After Bonferroni correction, and considering adjusted p value < 0.05,
a consistent concentration-related increase in the number of DEGs was found in both
organoids. Across time of exposure, the number of DEGs was lower at 48 h and higher
again at 72 h.

PCA score scatter plots were generated to further explore the gene expression dif-
ferences between treated and untreated organoids and how the DOX concentration and
treatment duration would affect these (Figure S2). Regarding colon organoids (Figure S2a),
there was a clear separation between controls and treated samples, as well as between the
different DOX concentrations, although the two higher concentrations clustered together
on the right. In turn, PCA plot of SI organoids (Figure S2b) showed that the controls were
also clustering together along with the lower concentration of DOX. Similar to the colon
organoids, the two higher concentrations also appeared in the same cluster on the right.
Therefore, when comparing the distribution of samples from the colon with SI organoids, in
the colon, there was a more evident separation of samples and effect of concentration (PC1)
and time (PC2). Conversely, in SI, both the effect of concentration and time (particularly
from 24 and 48 to 72 h) could be observed in PC1, whereas in PC2, there seemed to be
a slight influence of earlier time points (24 to 48 h). Overall, the concentration of DOX
affected more the organoids than the duration of exposure as the variance was lower for
the latter. This is in line with the fact that, due to the limited metabolic clearance in the
organoid assays, the exposure concentration is constant, and thus, it is the main driver of
the observed drug effects rather than the duration of exposure.

The DEGs obtained for each treatment condition were used to perform ORA using
CPDB. As a result, an overview of the altered pathways for treated samples compared to
vehicle controls was obtained, from which the most significantly overrepresented pathways
were identified using the q values and the number of DEGs involved.

2.4.1. Pathway Analysis across Time and Concentration in Colon and SI Organoids

Pathway analysis showed several biological pathways being affected by the drug. In
both colon and SI, the most affected pathways were mostly related to cell cycle, the p53
signalling, and DNA methylation. Other pathways affected across the treatment conditions
were metabolism (especially of lipids, amino acids, and carbohydrates), cellular senescence,
oxidative stress-induced senescence, and DNA repair. Conversely, ATP synthesis was only
evident at the higher concentration in the colon, whereas apoptosis was observed neither
in the colon nor in SI organoids, except at 24 h, 10 µM. An overview of the q values of
these pathways, across time and concentration, for both organoids, is displayed in Table 2.
Moreover, from the q values of each of the selected pathways and the number of DEGs
affected by DOX, the responses from the colon organoids were statistically more significant,
and more pathways were significantly affected than in SI organoids.
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Table 2. Overview of the most relevant pathways and respective q values. Pathways identified by
ORA in CPDB, considering Reactome and KEGG databases, and organized into main groups of
biological pathways. Alterations in these pathways can be observed over time and concentration
of DOX. The q values were obtained after using the false discovery rate method and they were
considered as significant when below 0.05 (values in bold) or not applicable (NA) as the respective
pathways were not present for a certain condition after CPDB analysis.

Name of the Pathway Pathway Source Time of Exposure (h) DOX Conc. (µM) q Value

Colon SI

Cell Cycle Reactome

24

1 2.74 × 10−20 NA

10 1.64 × 10–13 3.04 × 10–4

30 2.57 × 10–8 0.14

60 2.04 × 10–6 NA

48

1 NA NA

10 4.19 × 10–3 9.96 × 10–3

30 1.08 × 10–3 0.16

60 NA 0.06

72

1 NA NA

10 0.01 0.06

30 0.04 0.24

60 0.09 NA

Cell cycle—DNA
repair Reactome

24

1 0.027 NA

10 2.81 × 10–8 2.16 × 10–3

30 1.04 × 10–3 NA

60 5.19 × 10–3 NA

48

1 NA NA

10 0.04 1.08 × 10–3

30 0.01 NA

60 0.06 NA

72

1 NA NA

10 NA NA

30 NA NA

60 0.25 NA

Gene
expression—the p53

signalling
KEGG

24

1 1.32 × 10–5 NA

10 7.84 × 10–13 0.02

30 2.79 × 10–7 7.77 × 10–3

60 4.99 × 10–5 0.11

48

1 0.03 NA

10 6.60 × 10–5 0.05

30 3.92 × 10–5 0.12

60 8.63 × 10–4 NA

72

1 0.06 NA

10 2.65 × 10–6 0.17

30 8.25 × 10–7 NA

60 4.56 × 10–6 NA
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Table 2. Cont.

Name of the Pathway Pathway Source Time of Exposure (h) DOX Conc. (µM) q Value

Colon SI

Epigenetic regulation
of gene

expression—DNA
methylation

Reactome

24

1 NA 0.04

10 6.63 x 10–14 4.95 × 10–11

30 3.98 × 10–14 8.08 × 10–6

60 4.44 × 10–11 1.03 × 10–3

48

1 NA NA

10 2.60 × 10–7 2.58 × 10–6

30 3.12 × 10–8 7.41 × 10–5

60 5.58 × 10–7 7.49 × 10–4

72

1 NA NA

10 0.02 NA

30 2.96 × 10–3 NA

60 9.08 × 10–5 NA

Metabolism of
carbohydrates—

Glycolysis/
Gluconeogenesis

KEGG

24

1 NA NA

10 NA NA

30 NA 0.15

60 NA NA

48

1 NA NA

10 6.81 × 10–3 NA

30 0.02 0.11

60 0.04 0.14

72

1 NA NA

10 6.43 × 10–4 NA

30 6.84 × 10–5 NA

60 7.95 × 10–6 NA

Metabolism—
Respiratory electron

transport, ATP
synthesis by

chemiosmotic
coupling, and eat

production by
uncoupling proteins

Reactome

24

1 NA NA

10 NA NA

30 NA NA

60 6.24 × 10–3 NA

48

1 NA NA

10 NA NA

30 NA NA

60 0.05 NA

72

1 NA NA

10 NA NA

30 NA NA

60 0.20 NA
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Table 2. Cont.

Name of the Pathway Pathway Source Time of Exposure (h) DOX Conc. (µM) q Value

Colon SI

Metabolism of lipids Reactome

24

1 NA NA

10 0.15 0.09

30 7.01 × 10–3 0.15

60 0.07 NA

48

1 NA NA

10 8.49 × 10–5 NA

30 5.41 × 10–5 NA

60 9.11 × 10–6 NA

72

1 NA NA

10 1.00 × 10–3 NA

30 5.19 × 10–4 NA

60 3.91 × 10–3 NA

Metabolism of amino
acids and derivatives Reactome

24

1 NA NA

10 0.08 0.03

30 0.15 4.46 × 10–17

60 0.07 1.29 × 10–36

48

1 0.13 NA

10 1.00 × 10–3 NA

30 0.05 6.77 × 10–27

60 NA 1.99× 10–4

72

1 NA NA

10 3.12 × 10–4 NA

30 2.13 × 10–10 NA

60 6.34 × 10–7 NA

Cellular responses to
external

stimuli—oxidative
stress induced

senescence

Reactome

24

1 NA 0.05

10 2.12 × 10–9 9.19 × 10–9

30 2.78 × 10–11 3.28 × 10–6

60 8.00 × 10–10 9.02 × 10–5

48

1 NA NA

10 1.45 × 10–5 1.88 × 10–5

30 3.09 × 10–7 1.82 × 10–4

60 4.63 × 10–6 2.00 × 10–3

72

1 NA NA

10 0.05 NA

30 4.82 × 10–3 NA

60 6.23 × 10–4 NA

Further analyses on how these pathways were perturbed in colon and SI organoids
across time and concentration of the drug showed significant differences between both
organoids’ responses, suggesting activation of different mechanisms in both cells. This is
particularly the case for cell cycle and DNA repair mechanisms, which were highly affected
at 24 h in the colon, with a tendency to become less affected across concentration and time,
whereas in SI these pathways were only significantly affected at 10 µM, after 24 and 48 h
exposure. Furthermore, in the colon, the p53 signalling pathway was highly affected at
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24 h, especially at 10 µM, at which the peak of dysregulation of this pathway seemed to be
reached, as across 48 and 72 h q values tended to increase. In SI, the p53 signalling pathway
was similarly affected, with the exception that q values were not significant at 48 and 72 h.
Metabolic pathways were only significantly affected in the colon: (1) glycolysis after 48
and 72 h exposure, with q values more significant across concentration; (2) respiratory
electron transport and ATP synthesis became affected only at the highest concentration,
particularly at 24 h; and (3) metabolism of lipids was more significantly affected at 48 h.
Metabolism of amino acids was also different in the colon and SI. Whereas in SI, it was
significantly affected at 24 and 48 h, in the colon, only became affected after 72 h exposure.
Conversely, DNA methylation was significantly affected in both tissues, although q values
were lower in the colon overall. Similarly, oxidative stress-induced senescence was highly
affected in both organoids, becoming less affected across time and concentration. Although
we measured increased caspase activities, at the gene expression level, apoptosis was
not significantly activated throughout the treatment conditions, except for SI after 24 h
exposure to 10 µM of DOX.

2.4.2. Expression Profiles of DEGs Affected in Colon and SI Organoids

Following pathway analysis, the expression levels of DEGs were further investigated to
check for trends of alterations in the expression profiles, focusing on genes involved in cell
cycle, the p53 signalling pathway, respiratory electron transport and ATP synthesis, DNA
methylation, and oxidative stress-induced senescence. Venn diagrams were used to identify
DEGs that were in common and affected in the same direction of expression in the colon
and SI (Figure S3), considering all time points and DOX concentrations. DEGs involved in
respiratory electron transport and ATP synthesis were not found for SI organoids as this
pathway was not significantly affected (Table 2).

Regarding cell cycle, expression levels of 41 genes were altered by DOX in both
organoids. Most DEGs were histone encoding genes, apart from cyclins and kinases, p53,
and MDM4 regulator of p53. The expression level changes across treatment conditions of
the two top genes involved in cell cycle in common between the organoids, H2BC11 (H2B
clustered histone 11) and CCND1 (cyclin D1), are sown in Figure 4. Regarding the gene
H2BC11, expression levels in colon organoids decreased over time considering the same
concentration, but for each time point, expression levels were increased until the highest
concentration was reached. This trend of alteration was similar in all time points. Similarly,
in SI organoids, the same pattern of alteration was observed, except at 72 h, as at 10 µM
DOX, expression levels of H2BC11 were higher as compared to the expression levels for
the other concentrations. Moreover, expression levels of this gene were higher in the colon
than in SI organoids. In turn, expression levels of CCND1 tended to increase over time and
concentration, particularly at 72 h in the colon and earlier at 48 h in SI.
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Figure 4. Gene plots representing the expression profiles of genes involved in cell cycle, the p53
signalling pathway, DNA methylation, and oxidative stress-induced senescence, after 24, 48 and
72 h exposure to all DOX concentrations of organoids derived from colon (on the left) and SI (on
the right). Values for gene profiles are based on the log2FC. Plot colours correspond to the different
concentrations of DOX: lighter grey represents 1 µM; grey represents 10 µM; dark grey represents
30 µM; black represents 60 µM; and DEG: with or without stripes.

As for the DEGs involved in the p53 signalling pathway, DNA methylation, and
oxidative stress-induced senescence, 7, 16 and 23 genes were in common, respectively,
between the organoids. Genes from each of these pathways were also selected to show
the trend of alterations in their expression levels across all exposure conditions (Figure 4).
Regarding the p53 signalling pathway, MDM4, a regulator of p53 activity, and THBS1,
which encodes for Trombospondin-1, an endogenous inhibitor of angiogenesis and whose
promoter is activated by p53 [31], were the top two common genes. These genes presented
different alterations in their expression levels. The first one, MDM4, was downregulated
across concentrations, whereas over time there was an increase in the expression levels
at 48 h and downregulation again at 72 h. The second one, THBS1, presented a gradual
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upregulation trend across time and concentration, particularly at 72 h, and its expression
levels were higher in SI than in the colon.

The gene H4C8, a different histone encoding gene involved in DNA methylation,
had a similar change in the expression levels as the gene H2BC11 in the colon, as it was
upregulated across concentration; however, downregulated over time. In SI, H4C8 was also
upregulated across concentration, but over time, unlike in the colon, the trend was of up-
regulation as well. Lastly, the gene TNIK, involved in oxidative stress-induced senescence,
which encodes for a protein kinase involved in activation of the WNT signalling pathway,
was downregulated across time and concentration, except at 72 h, in both organoids.

Taken all together, cell cycle- and DNA methylation-related genes had the most signif-
icant changes in their expression levels, in which histone encoding genes were downregu-
lated over time but upregulated across concentration, whereas cyclin D1 was upregulated
over time and concentration, except at 24 h. Genes associated with the p53 signalling
regulation MDM4 was downregulated and angiogenesis inhibitor THBS1 was upregulated,
particularly across concentration as time did not have a significant impact. Oxidative
stress-related gene TNIK was downregulated across concentrations and similar for each
time point, affecting also the WNT signalling. Therefore, the trend of alterations of the
DEGs expression levels involved in conservative pathways was similar in both organoid
types. Despite the similarities, major differences in DEGs expression levels and specific
pathways were observed between colon and SI. These are described in the section below
after performing STEM analysis.

2.5. Time-Dependent Gene Clustering Analysis

The DEGs, found significantly affected by DOX, were also used in time-series correla-
tion analysis, using the STEM tool, in which all time points and DOX concentrations were
included. Most conditions presented more than one significant time-dependent gene cluster
(p < 0.05), except the condition 1 µM DOX, which had one significant cluster for colon
organoids and no significant cluster for SI (Figure S4), as the expression levels of DEGs
was not significant enough to provide a relevant cluster. In the colon, the expression levels
of DEGs among clusters were variable between concentrations, as gene expression levels
seem to either decrease or increase, but mostly the latter. Regarding SI organoids, similar
trends were observed, with time-dependent clusters showing either gene upregulation
or downregulation. However, unlike in the colon, the most significant cluster for each
condition showed a decrease in the gene expression levels over time.

An enrichment network analysis using NetworkAnalyst tool was performed with the
genes listed in the most significant time-dependent cluster of each condition. For each
condition, clusters with the same colour had the same expression profiles, thus they were
considered as one group. Furthermore, time-dependent clusters with p value > 0.01 showed
pathways not related to DOX-induced toxicity and with intestinal cells function, hence they
were not further investigated. In colon organoids, at 1 µM, the most enriched pathways
were cell cycle and the p53 signalling pathway. At 10 µM, pathways prevailing in clusters 1
and 3 were DNA methylation, replication, cell cycle-related processes, cellular senescence,
the p53 signalling, and RNA expression. Cluster 2 showed enriched pathways related to
the p53 signalling pathway and metabolism, including biosynthesis of steroids and amino
acids, and carbon metabolism, which includes pyruvate metabolism and glycolysis. For the
two higher doses (30 and 60 µM), the p53 signalling pathway remained the most relevant
pathway along with, particularly, beta-alanine and histidine metabolism. Regarding SI
organoids, it was overall observed that the number of enriched pathways was lower than
in colon organoids. Moreover, most of the pathways found in SI were different from the
ones found in colon organoids. At 10 µM, the most enriched pathways were pyrimidine
metabolism and one carbon pool by folate. At 30 µM, pyrimidine metabolism remained as
a relevant pathway followed by other metabolic pathways, particularly vitamin B6 and
sphingolipid metabolism. For the highest concentration, the most relevant pathways were
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quite different, as they included HIF-1 and AMPK signalling pathways, RNA degradation,
and glycolysis.

Following enrichment pathways analysis, the most significantly affected genes derived
from those time-dependent clusters were investigated. As expected, the great majority of
DEGs observed in the colon and SI were different. For the two higher concentrations of
DOX (30 and 60 µM), the five most affected DEGs in the colon or SI were selected for further
analysis and they are described in Table 3. These results demonstrate the tissue-specific
responses that distinguish colon from SI organoids.

Table 3. The most significantly altered DEGs selected after analysis with STEM, considering cluster
1 and similar, and the exposure to 30 and 60 µM DOX concentrations over time are described. The
DEGs are either specific to colon or SI. The complete name of the DEGs as well as the main pathways
in which they are involved.

Concentration (µM) Gene Symbol Name Direction of Expression
(Control vs. DOX) Main Pathway(s) Involved

Colon

30

DHRS2 Dehydrogenase/reductase
SDR family member 2 ↑ Metabolism of several

compounds

RGCC Regulator of cell cycle ↑ Regulation of cell cycle
progression via p53

LAMP3 Lysosome-associated
membrane glycoprotein 3 ↑ Gene expression; adaptive

immunity

TP53I3 Tumour Protein P53
Inducible Protein 3 ↑ Cellular responses to

oxidative stress

TNFSF15 TNF Superfamily
Member 15 ↑ Apoptosis modulation

and signalling

60

ABCA12 ATP Binding Cassette
Subfamily A Member 12 ↑ Transport of molecules

RGCC Regulator of cell cycle ↑ Regulation of cell cycle
progression via p53

DHRS2 Dehydrogenase/reductase
SDR family member 2 ↑ Metabolism of

several compounds

MFAP3L Microfibril Associated
Protein 3 Like ↑ Nuclear signalling pathways

(EGFR and MAPK)

LAMP3 Lysosome-associated
membrane glycoprotein 3 ↑ Gene expression;

adaptive immunity

SI

30

CAPN8 Calpain 8 ↓ Degradation of the
extracellular matrix

CTNND1 Catenin Delta 1 ↓ Cell adhesion and
signal transduction

MPRIP Myosin Phosphatase Rho
Interacting Protein ↓ Signalling by BRAF and

RAF fusions

TSPAN1 Tetraspanin 1 ↓ Regulation of cell development,
activation, growth and motility

TPX2 Microtubule Nucleation
Factor ↓ Cell cycle and Regulation of

p53 activity

60

MCM5
Minichromosome

Maintenance Complex
Component 5

↓ DNA replication

DHRS9 Dehydrogenase/Reductase
9 ↓ Metabolism

SLC2A3 Solute Carrier Family 2
Member 3 ↓ Transport of glucose

PPP1R3C Protein Phosphatase 1
Regulatory Subunit 3C ↓ Glycogen synthesis

MT1X Metallothionein 1X ↓ Metallothioneins bind metals

Legend: ↑ - upregulated; ↓ - downregulated.

2.6. Proteome Analysis

DOX is a well-studied drug with many activity data points available in public reposi-
tories. The workflow that was used to obtain single protein targets of DOX generated a
diverse rather diverse profile of 39 proteins connected to DOX. Besides the obvious mode
of action target DNA topoisomerase 2-alpha, other enzymes such as carbonyl reductase 1,
nitric oxide synthase (endothelial and brain), as well as different CYP enzymes are part of
the list. Furthermore, transporters, such as the multidrug resistance-associated protein 1,
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the bile salt export pump, solute carriers, as well as the carrier albumin are present. After
applying the gut tissue filter, the number of target proteins decreased to 19 UniProt entries
(Table 4).

Table 4. Tissue-specific target proteins of DOX.

UniProt Accession Gene Name Protein Name

O43488 AKR7A2 Aflatoxin B1 aldehyde reductase member 2

O75251 NDUFS7 NADH dehydrogenase [ubiquinone]
iron–sulphur protein 7, mitochondrial

O75306 NDUFS2 NADH dehydrogenase [ubiquinone]
iron–sulphur protein 2, mitochondrial

O75489 NDUFS3 NADH dehydrogenase [ubiquinone]
iron–sulphur protein 3, mitochondrial

O75828 CBR3 Carbonyl reductase [NADPH] 3
P00352 ALDH1A1 Retinal dehydrogenase 1
P02768 ALB Albumin
P11388 TOP2A DNA topoisomerase 2-alpha
P14550 AKR1A1 Aldo-keto reductase family 1 member A1
P15559 NQO1 NAD(P)H dehydrogenase [quinone] 1

P16083 NQO2 Ribosyldihydronicotinamide dehydrogenase
[quinone]

P16152 CBR1 Carbonyl reductase [NADPH] 1
P16435 POR NADPH–cytochrome P450 reductase
P29474 NOS3 Nitric oxide synthase, endothelial
P29475 NOS1 Nitric oxide synthase, brain
Q14978 NOLC1 Nucleolar and coiled-body phosphoprotein 1
Q15311 RALBP1 RalA-binding protein 1

Q92887 ABCC2 Canalicular multispecific organic anion
transporter 1

Q9NUT2 ABCB8 Mitochondrial potassium channel
ATP-binding subunit

The NADH dehydrogenase iron–sulphur proteins are subunits of the mitochondrial
membrane respiratory chain NADH dehydrogenase (Complex I). Disturbance of Complex
I can lead to mitochondrial toxicity [32]. Pathological changes in the GI tract were linked to
nitric oxide synthetase [33]. CBR3 variants were discussed concerning DOX disposition and
toxicity [34]. Consequently, the target profile correlates with the toxic properties of DOX.

The list of various targets predicts a diverse systemic effect of the drug. This hypothesis
is supported by the interactome profile. The 19 tissue-specific targets directly interact with
164 proteins. The network is sparse with three highly connected hubs (Figure 5). There
are several nodes with only one edge. The network topology implicates the systemic
mechanisms triggered by DOX.
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Figure 5. Network of direct targets (red, from Table 4) and their first-degree interactors (blue) affected
by DOX. The topology of the network implicates a systemic effect of the drug.

2.7. Comparing DOX Effects on Transcriptomics and Proteomics

A comparison between the transcriptomic and proteomic findings was performed
in which the most relevant DEGs and proteins affected by DOX in both organoids were
considered, after exposure to the higher concentrations. A representation of the overall
changes in the expression levels of genes and their consequences can be observed in
Figure 6.
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Figure 6. Comparison between transcriptomics and proteomics data, starting from DOX entrance
to the cell to the several biological pathways and DEGs that are perturbed. For the alterations in
the gene expression levels, concentrations of 30 and 60 µM were considered, at every time point.
Genes in dark blue, significantly downregulated; light blue, not significantly downregulated; dark
red, significantly upregulated; light red, not significantly upregulated; grey, not available. Image
created with BioRender.com (accessed on 23 April 2021).

The proteins were considered as their encoding genes, and these include mostly
proteins that are involved in the metabolism of DOX and its elimination (membrane
transporters). Two of them though are involved in DNA replication, namely TOP2A and
NOLC1. The proteomic data were subsequently compared to the transcriptomic data to
check which of those proteins were encoded by significantly affected DEGs. Overall, 16
out of the 19 gene encoding proteins were found in both organoids, considering the higher
concentrations of exposure (30 and 60 µM) at 72 h. Nevertheless, only gene expression
levels of ALDH1A1, CBR1, NQO1, NQO2, NDUFS2, and ABCC2 were significantly affected,
particularly in the colon organoids as in SI organoids, only ABCC2 was found significant.

In Figure 6, it is demonstrated that genes involved in DOX metabolism were down-
regulated after the exposure, except CBR3, which was upregulated, but not significantly.
This is in line with the pathway analysis, as biological processes associated with drug
metabolism were not found significantly affected. This could be linked to the fact that DOX
metabolism is not the main function of intestinal cells [35] and, therefore, it does not prevail
in the intestinal organoids, increasing the probability of intestinal damage caused by DOX
and its metabolites. Similarly, genes that encode membrane transporters responsible for the
elimination of DOX and its metabolites were downregulated. Consequently, DOX inside the
organoid cells may lead to the generation of ROS, which in turn triggers several negative
effects. One of them is the downregulation of NDUFS2 and NDUFS7, both part of complex
I of the respiratory electron chain, and consequent mitochondria dysfunction. Another
consequence is upregulation of p53, in line with the observed relevance of the p53 signalling

BioRender.com
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pathway, which correlates with changes in the expression levels of genes involved in cell
cycle, DNA replication, and oxidative stress-induced senescence. In addition, ROS may
lead to downregulation of TNIK, which contributes to the decrease in the transcription of
WNT target genes.

Moreover, the exposure to DOX also caused downregulation of DHSR9 (only in SI) and
ALDH1A1 (only in the colon), affecting signalling by the retinoic acid pathway. Next, other
membrane transporters seem to be significantly affected, particularly ABCA12 (upregulated
only in the colon) and SLC2A3 (downregulated only in SI), whose main functions are
to export lipids and import glucose, respectively. Lastly, exposure to DOX led to the
upregulation of TNFSF15 in colon organoids. However, pathways activated by that gene,
including apoptosis or inflammatory responses, were not significantly upregulated.

In summary, the results showed that genes involved in DOX metabolism were not
significantly affected in contrast to those involved in its elimination, since genes encoding
membrane transporters were downregulated. The consequent accumulation of DOX and
its metabolites may lead to mitochondria complex I dysfunction, upregulation of the
p53 signalling pathway, downregulation of WNT target genes and retinoic acid pathway.
Additionally, transport of lipids and glucose were affected in the colon and SI, respectively.
Apoptosis activation did not seem to be significantly modulated in either colon or SI.

3. Discussion

The main goal of this study was to investigate molecular mechanisms of toxicity of
DOX in 3D human organoid models of both colon and small intestine. These new and
promising cell culture models have shown to be suitable for the investigation of diseases,
targeted therapies, drug development and screening overcoming the limitations of the
2D systems [11,12]. The ability to mimic the in vivo cell interactions, structures, and
environment makes the 3D organoid models an advantageous alternative in research and
pharmaceutical industry.

The 3D human colon and SI organoids were used to explore intestinal cell responses
to DOX exposure on the gene expression level. Exposure concentrations were based
on prediction from PBPK models used to simulate the clinical dosing that is usually
recommended for cancer patient treatment. Organoids’ gene expression and in silico
proteome responses were analysed to evaluate current hypotheses about DOX and to
gain novel insights into the molecular mechanisms of action involved in toxic effects on
intestinal epithelial cells at clinically relevant doses.

Overall, the responses observed in the colon were different from the responses ob-
served in SI, despite some similarities. Cytotoxicity assays showed a similar trend in both
organoids, although the decrease in ATP levels was stronger across conditions in colon
than in SI organoids. Similarly, caspase activation assays showed similar increasing trends
in both organoids, but it was more evident and progressive across treatment conditions
in colon organoids. In SI, changes in caspase activation were not as strong as in the colon.
Nevertheless, apoptosis or caspase-related pathways were not significantly affected in the
organoids. Additionally, substantial morphological changes were also observed in both
organoids with regard to the organoids’ size and percentage of cell death, demonstrating
the toxic effects of the drug. Taken together, exposure to DOX led to a strong proliferation
inhibiting effect in both types of organoids.

At the level of gene expression changes, exposure to DOX-induced alterations in cell
cycle, DNA repair, and the p53 signalling pathway, which are closely related to the inhibi-
tion of DNA replication and RNA transcription caused by DOX [4,6] and thus in line with
the hypothesis of DOX-induced mode of action. Moreover, alterations in the p53 signalling
pathway influence gene responses involved in cell cycle arrest, ATP production, apoptosis
and recruitment of inflammatory components (e.g., cytokines) [36,37]. These drug-induced
alterations were more evident and consistent over time and concentrations in the colon
than in SI. This could indicate that colon was not only more responsive towards DOX
exposure but also that a distinct timing occurs in the gene expression between both tissues.
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The gene expression changes in the DNA methylation pathway were similarly affected in
both organoids in a time and concentration-dependent manner. DNA methylation is an
essential mechanism for normal cell development and for controlling gene expression [38].
Therefore, a possible hypothesis is that gene expression changes affecting DNA methylation
could be an important mechanism through which DOX interferes with DNA/RNA related
processes in the intestinal cells. Furthermore, oxidative stress and cellular senescence
were found significantly affected by DOX in both organoids, in a time and concentration-
dependent manner. These biological pathways can be related to the generation of ROS,
thus supporting the hypothesis of the second mode of action associated with the drug [4,5].
Since oxidative stress caused by ROS leads to DNA damage, mitochondria impairment and
lipid peroxidation [3,4,8], this mechanism can also be a major cause of the alterations in the
biological pathways described above.

Novel findings indicated distinctive tissue responses in glycolysis and lipids metabolism,
as they were only significantly affected in the colon. Both pathways are important in energy
generation that fuels biological processes, including TCA cycle or fatty acid β-oxidation [39],
and consequently, the normal function of mitochondria. By perturbing these pathways and
impairing mitochondria functions, longer exposures to DOX can potentially lead to cell
death, especially if the time for recovery is limited. Furthermore, and despite being relevant
in both organoids, metabolism of amino acids was statistically significantly affected at
earlier time points in SI whereas in the colon, only at 72 h. Since colon organoids seem
to rely on other metabolic pathways that were not modulated in SI, namely glycolysis,
respiratory electron chain, and lipids metabolism, this might explain the later changes in
the metabolism of amino acids in the colon.

Time series analysis of gene expression changes showed additional differences between
colon and SI organoid responses, as well as it provided new insights on the molecular
changes induced by DOX. In colon organoids, cell cycle and the p53 signalling pathways
were confirmed as the most relevant pathways along with energy generation metabolic
pathways, including glycolysis, metabolism of pyruvate and amino acids, particularly
metabolism of β-alanine and histidine, which showed to be relevant at the higher doses.
Previously, it has been suggested that these two essential amino acids, apart from their role
in energy production, might have antioxidant properties by participating in the scavenging
of ROS and nitrogen species [40,41]. Therefore, metabolism of β-alanine and histidine are
new findings in the colon, and they may be involved in the protection against oxidative
stress caused by the drug in the colon cells. Regarding SI organoids, major effects were
found in one-carbon metabolism mediated by folate, metabolism of pyrimidine, vitamin
B6 and sphingolipids, HIF-1 and AMPK signalling pathways, and RNA degradation.
One carbon metabolism mediated by the folate (vitamin B9) cofactor is essential for the
maintenance of several biological processes including biosynthesis of nucleotides and redox
defence [42]. Perturbations in the metabolism of pyrimidine, vitamin B6, important in the
metabolism of amino acids [43], and consequent RNA degradation, are connected to one-
carbon metabolism. As for sphingolipids metabolism, it was a unique and new finding in SI
organoids. Sphingolipids are known key structural components of cell membranes, but they
seem to be also involved in signalling pathways that regulate cell growth, differentiation,
senescence, and apoptosis [44]. Similarly, HIF-1 and AMPK signalling pathways were
also uniquely observed in SI organoids for the highest concentration (60 µM), being both
involved in cell homeostasis and cellular adaptations to hypoxia [45]. A hypothesis could
be that these new pathways resulting from SI cell responses to DOX are linked to the drop
in cell viability (ATP levels), which didn’t necessarily reflect an increase in caspase activity.
Additionally, the shift in carbon metabolism caused by DOX can be related to the drug
inhibiting effect on the proliferation of colon and SI organoids.

Tissue-specific DEGs resulting from the STEM analysis in the most significant time-
dependent clusters were further evaluated for the two higher concentrations (Table 3). The
novel DEGs found in the colon included DHRS2, RGCC, LAMP3, TP53I3, TNFSF15, ABCA12
and MFAP3L. These genes are mainly involved in the regulation of cell cycle, gene expres-
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sion, nuclear signalling pathways, cellular responses to oxidative stress, and metabolism
of xenobiotics. The majority of these DEGs were upregulated in the colon organoids ex-
posed to DOX. An exception was TNFSF15, which belongs to the TNF superfamily and
whose role is linked to apoptosis modulation and signalling. SI novel specific DEGs in-
cluded CAPN8, CTNND1, MPRIP, TSPAN1, TPX2, MCM5, DHRS9, SLC2A3, PPP1R3C
and MT1X, which were all found to be downregulated in treated organoids. These genes
are involved in several pathways from cell cycle and DNA replication to cell adhesion
and signal transduction. Alterations on the expression levels of these tissue-specific genes
can potentially be indicators of DOX-induced toxicity in the colon or SI cells. Further
studies are required to establish how the DEGs can be used to detect DOX-induced toxicity
in both colon and SI tissue of patients since these findings are new and there is no data
available to support them. Additional pharmacogenomic studies should also be considered
to investigate the impact of the genetic background on drug-gene effects [46] to validate
the tissue-specific responses of colon and SI organoids as they derive from different donors.
Nevertheless, it is still challenging to generate paired healthy colon and SI organoids as
donors would need to undergo unnecessary surgical procedures, and these models are not
commercially available.

Regarding the proteomics side, 19 in silico proteins were found associated with DOX-
induced intestinal toxicity, the majority being involved in DOX metabolism and elimination,
with few exceptions such as ALDH1A1, TOP2A, and NOLC1, as they are involved in cell
growth, differentiation, and proliferation processes [47,48]. Comparison between proteomic
and transcriptomic responses resulted in a summary of DOX-induced effects presented
in Figure 6, starting from the entering of DOX into the cell to its elimination, through
metabolism and generating the drug’s different metabolites, with consequent formation of
radical oxygen species (ROS), and negative effects in several biological processes. It appears
that genes encoding for enzymes involved in both metabolism and elimination of DOX and
its metabolites were affected as they were found downregulated. Nevertheless, biological
processes related to DOX metabolism into its different metabolites was not among the most
significantly perturbed pathways, as these are not mechanisms that predominantly occur in
the intestinal cells but rather in the liver. This could mean that DOX is less metabolized and
eliminated from the organoids. As a result, the accumulation of this drug and its metabolites
led to the formation of ROS, which caused mitochondria dysfunction, evidenced by the
observed downregulation of complex I genes and the impairment of the respiratory electron
transport and ATP synthesis pathway. Another consequence was the observed activation
of oxidative stress-induced senescence pathway caused by not only the presence of ROS
but also via p21 pathway upon upregulation of p53 and Cyclin D1, a mechanism also
reported in a previous study [49]. Additionally, and due to oxidative stress, gene TNIK,
an important activator of WNT target genes [50], was affected and led to perturbations in
WNT signalling pathway, impairing cell growth and differentiation. DOX also contributed
to upregulation of DHSR2 followed by downregulation of MDM4, a known inhibitor of
p53, thus in line with the observed p53 upregulation and activation of the p53 signalling
pathway, as supported by previous studies [51,52]. Next, downregulation of TPX2 led to
increased levels of p53, as reported previously that depletion of TPX2 is required during the
synthesis of p53 [53]. In turn, upregulation of p53, apart from the already described effects
on oxidative stress and cell cycle mechanisms, upregulates RGCC, a response associated
with DNA damage that suppresses cell cycle progression [54]; inhibits THBS1, an inhibitor
of angiogenesis processes [31]; and downregulates MCM5, involved in DNA replication.
Similarly, impairment of signalling by retinoic acid, essential for cell growth and stem
cell differentiation [55], was also observed after comparing the omics data since the DEGs
involved, namely DHSR9 and ALDH1A1, were found downregulated [47]. Moreover,
membrane transporters of lipids and glucose were found to be perturbed as well. Gene
encoding membrane protein ABCA12, responsible for the export of lipids, was upregulated,
in line with the metabolism of lipids being affected by DOX in colon organoids. In turn,
glucose transporter SLC2A3 was found downregulated, which could mean that the cells
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are not taking in glucose necessary for glycolysis, in line with glycolysis being significantly
affected in colon organoids exposed to DOX. Lastly, apoptosis and inflammation processes
were not significantly affected pathways, despite the tendency of gene expression levels to
increase. This shows that those pathways are not prevailing as mechanisms occurring in
intestinal cells upon exposure to the drug. In summary, Figure 6 represents an overview of
the potential mechanisms through which DOX exerts its toxicity in the intestinal cells.

Although clinical studies on DOX are lacking and the majority focus on cardiotoxicity,
an attempt was made to compare the DEGs found in colon and SI-exposed organoids
with the transcriptomic data available. Two of the DEGs mentioned above were found in
cardiomyocytes exposed to DOX, namely CCND1 (cyclin D1) and TP53I3 (Tumour Protein
P53 Inducible Protein 3). Cyclin D1 was found upregulated in cardiomyocytes of mice
after a 16 h treatment with DOX [56]. Similarly, the expression levels of CCND1 in the
colon and SI cells increased over time and concentrations of DOX. In turn, the TP53I3 gene
was found in exposed cardiomyocytes that were originated from human embryonic stem
cells [57]. These two genes, despite not being tissue specific, could be of more relevance in
the investigation of gene responses to DOX effects as they seem to be implicated not only
in cardiotoxicity but also in intestinal toxicity.

Overall, this study demonstrates the usefulness and potential of the intestinal organoid-
based 3D culture model to provide new insights into the molecular mechanisms of DOX-
induced toxicity in the intestinal tissue, as most studies focus on cardiotoxicity. DOX
caused perturbations in cell cycle, oxidative stress, mitochondria function, activation of
the p53 signalling pathway, signalling by retinoic acid and transport of molecules essential
for energy metabolism, which in turn impaired the normal cell growth, proliferation and
differentiation. Confirmation of the mode of action of DOX, as well as new findings on DOX-
induced intestinal toxicity, are summarized in Figure 6. Promising new tissue-specific gene
markers of DOX toxicity are also highlighted in Figure 6. Future studies should include
the assessment of functional endpoints and transcriptomic responses at the intestinal level
in cancer patients taking DOX monotherapy. This is important for the investigation of
whether intestinal organoids can reflect these responses better than other cell or animal
models, and to check for potential translatability to clinical settings. Pharmacogenomic
studies, once the challenge of finding paired healthy colon and SI organoids is overcome,
should also be considered to confirm the tissue-specific responses of colon and SI to DOX
as patients can respond to therapies in different fashions due to the variability of genetic
backgrounds. The elucidation of the underlying mechanisms of toxicity is a starting point
for finding pharmacogenomics candidate markers. Furthermore, the new insights on DOX
mechanisms of toxicity and gene responses in the intestinal cells are being applied for the
development of predictive models of GI toxicity caused by drugs. Ultimately, and in the
context of the transQST project, integration of this work with in silico tools will be useful for
new drug design and to better assess the safety of drug candidates before clinical testing.

4. Materials and Methods
4.1. In Vitro Culture of Healthy Intestinal Organoids

Human healthy colon and small intestinal (SI) organoids were kindly provided by
Boehringer Ingelheim Pharmaceuticals Inc. (Ridgefield, CT, USA) and established in a
3D culture at our laboratory. Colon and SI organoids were derived from the healthy
tissue section of 67 and 74-year-old male donors, respectively, and purchased from Con-
versant Biologics (currently Discovery Life Sciences, Huntsville, Alabama, USA). The 3D
in vitro culture of the colon and SI tissue was established following the methods described
by Sato et al. [58]. Frozen organoids were recovered and cultured on a 24-well plate in
complete crypt medium composed of advanced DMEM/F12 medium (Life Technologies,
Bleiswijk, The Netherlands), Wnt3a conditioned medium, 1 µg/mL recombinant Human
R-Spondin-1 (Peprotech, Hamburg, Germany), 10 mM nicotinamide (Merck, Darmstadt,
Germany), 1× B27™ Supplement (50×) serum-free (Thermo Fisher Scientific, Waltham,
MA, USA), 1.25 mM N-Acetyl-L-cysteine (Merck, Darmstadt, Germany), 50 ng/mL re-



Int. J. Mol. Sci. 2022, 23, 1286 22 of 28

combinant Human HB-EGF (Peprotech, Hamburg, Germany), 0.5 µM A 83–01 (Tocris,
Abingdon, UK), 10 µM SB 202190 (p38i) (Merck, Darmstadt, Germany), 10 µM human
[Leu15]-Gastrin I (Merck, Darmstadt, Germany), 1× Primocin (Thermo Fisher Scientific,
Waltham, Massachusetts, USA), 0.1 µg/mL recombinant human Noggin (Peprotech, Ham-
burg, Germany) and 10 µM inhibitor Y-27632 (AbMole Bioscience, Houston, TX, USA) until
the plate showed high confluency and signs of cell differentiation. At this stage, organoids
were passaged, transferred, and cultured in 96-well plates.

Colon and SI organoids were passaged every 3–7 days, depending on the rate of
growth and/or differentiation. Culture plates containing organoids were put on ice to
promote easier disruption of the matrigel matrix (phenol-red free, Corning, NY, USA) and
washed with cold basal culture medium composed of advanced DMEM/F12 medium,
Glutamax 100×, HEPES buffer and FBS (Life Technologies, Bleiswijk, The Netherlands).
Organoids were collected into 15 mL conical tubes and centrifuged at 300× g for 5 min, at
4 ◦C. The pellet was re-suspended in Tryple Express 1× (Life Technologies, Bleiswijk, The
Netherlands) containing inhibitor Y-27632, followed by a quick vortex and two minutes
incubation at 37 ◦C. Basal culture medium was then added to the tube and organoids were
dissociated into single cells. Two more centrifugations at 800× g for 5 min, 4 ◦C, were per-
formed to wash the pellet, which was re-suspended in ice-cold matrigel. Drops of 10–15 µL
of matrigel containing organoids were seeded in pre-warmed culture plates and polymer-
ized at 37 ◦C for 15–20 min. Pre-warmed complete crypt medium was added to each
well and incubated at 37 ◦C, 5% CO2. The medium was refreshed every 2–3 days. Colon
and SI organoids were also grown in Human IntestiCult™ Organoid Growth Medium
(Stemcell, Cologne, Germany), prepared according to manufacturer’s instructions, to pro-
mote organoid differentiation. Differentiation was verified after 2–3 days, showing that
organoids started to form buds that resembled intestine-like features, as described in our
previous study [10].

4.2. Selection of DOX In Vitro Concentrations Based on PBPK Simulation

The Simcyp® PBPK simulator (Version 18 Release 2, Certara UK Ltd., Sheffield, UK)
was used to model and simulate DOX pharmacokinetics following intravenous (IV) dosing
in humans. Based on the understanding of DOX physiochemical properties and absorp-
tion, distribution, metabolism, and excretion (ADME) in humans, the PBPK model was
parameterized and verified using data from peer-reviewed literature. Details of the input
parameters for the DOX PBPK model are listed in Table S1. The predictive performance
of the DOX model was verified against DOX total plasma concentrations by simulating
reported human dosing studies [21,22]. The studies used for performance verification were
independent of data used to parameterise the model. To encompass a clinically relevant
range of DOX exposure, 20 min IV infusions at doses of 2.5, 15, and 40 mg/m2 were simu-
lated in a virtual population of North European Caucasian adults (n = 70, age 20 to 50 years,
the proportion of females = 0.5). The minimum and maximum doses were selected based
on 0.25-fold and 2-fold of the recommended weekly dosage of 10–20 mg/m2 [59].

The Simcyp in vitro data analysis toolkit (SIVA Version 3, Certara UK Ltd., Sheffield,
UK) for virtual in vitro intracellular distribution (VIVD) [60] was used to predict in vitro
distribution of DOX in human intestinal organoids. This informed a selection of nomi-
nal in vitro concentrations to achieve equivalent drug exposure between in vitro human
intestinal organoid intracellular concentrations and in vivo gut concentrations after IV
administration in humans, which is the common administration route in patients. Details of
the input parameters for the DOX in vitro distribution model based on intestinal organoid
study design and DOX physiochemical properties are in Table S2.

4.3. In Vitro Exposure to DOX

DOX was purchased from Merck (Darmstadt, Germany), with ≥99% purity. Intestinal
organoids were seeded in 96-well plates in complete crypt medium for 2 days, after which
it was replaced with Human IntestiCult Growth medium for 3 days to stimulate organoid
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differentiation, after which they were exposed to DOX. The selected concentrations were
within the range of therapeutic doses except for the highest one due to previous organoid
lack of response at lower concentrations of the drug. Differentiated intestinal organoids
were exposed to 100 µL Human IntestiCult Growth medium with 1, 10, 30 and 60 µM
DOX, selected based on Symcyp simulations, for 24, 48 and 72 h, and with no change of
medium in between. Control wells were also included for all time points, including vehicle
and untreated controls, consisting of organoids seeded in 100 µL IntestiCult medium with
0.1% DMSO and medium only, respectively. All exposures were performed in biological
triplicates in 96-well plates. A blank reaction was added to the treatment layout, consisting
of matrigel without organoids in 100 µL IntestiCult medium. Empty wells were filled
with 200 µL PBS to avoid edge effects. After exposure, samples were collected to perform
cytotoxicity assays and transcriptomic analyses.

4.4. Cytotoxicity Assays: ATP Measurement and Caspase 3/7 Activity

Measurement of the toxicity profile was performed using viability (ATP measurement)
and apoptosis (caspase 3/7 activity) endpoints using 3D Celltiter-Glo and Caspase-Glo
3/7 (Promega, Madison, Wisconsin, USA), respectively, according to the manufacturer’s
instructions. After each exposure time point, the medium was removed from the plates and
replaced by 100 µL of each kit reagent to the appropriate wells, followed by homogenization
of the matrigel. The plates were placed in a Scilogex MX-M 96 well plate shaker for
1 h (incubation time), at room temperature. Afterwards, samples were transferred to
white opaque 96-well plates (Corning, NY, USA) and luminescence was measured in
GloMax® 96 Microplate Luminometer (Promega, Madison, WI, USA). Luminescence values
corresponding to the levels of either ATP or caspase 3/7 activation, were transferred to
GraphPad Prism 9.0 (GraphPad Software) and corrected for the blank reaction to eliminate
possible interferences of the matrigel matrix in both curves. Statistical differences between
conditions were calculated by applying the analysis of variance (ANOVA) test.

4.5. Image Analysis

In parallel to viability and caspase assays, image-based analyses of the human intesti-
nal organoids’ morphology after treatment with DOX were performed in the 3D image
analysis solution Ominer® (Crown Bioscience Netherlands B.V.; Leiden, The Netherlands).
These analyses aimed to support the cytotoxicity assessment data and to confirm changes in
the size of the organoids and the percentage of cell death derived from the known mode of
action of DOX. For this, organoids were grown and treated with the same conditions as de-
scribed previously (see Section 4.3), i.e., the cells were grown in matrigel for a total of 5 days
after which they were exposed to DOX for 1, 2 or 3 days. Untreated controls and vehicle
controls were also included. After each time point, fixation and staining were performed
to visualize the nuclei and actin cytoskeleton, by applying a solution containing Hoechst
33258, final concentration 0.4 µg/mL (Merck, Darmstadt, Germany) and Phalloidin-FITC,
final concentration 0.1 µM (Merck, Darmstadt, Germany) [61]. Images were captured
as z-stacks in an ImageXpress Micro XLS (Molecular Devices, Silicon Valley, CA, USA)
wide-field microscope, using the 4x objective.

4.6. RNA Isolation from Intestinal Organoids

At each time point, the medium was removed from the plates and 200 µL of QIAzol
Lysis reagent (Qiagen, Venlo, The Netherlands) was added into the wells to promote
dissociation of the matrigel matrix and collection of each pellet to the respective tubes.
This process was repeated several times, until all organoids were collected, ensuring a
total volume of 700 µL of QIAzol Lysis reagent in each tube. Complete homogenization of
organoids in the lysis reagent was reached by vigorous pipetting and vortex. RNA isolation
was performed using the miRNeasy Mini Kit (Qiagen, Venlo, The Netherlands), following
the manufacturer’s protocol for Animal Cells including a DNase treatment. Total RNA
yield was measured on Nanodrop® ND-1000 spectrophotometer (Thermo Fisher Scientific,
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Waltham, Massachusetts, USA) and RNA quality was confirmed using RNA Nanochips on
a 2100 Bioanalyzer (Agilent Technologies, Leuven, Belgium). All samples with integrity
number (RIN) >7 and total amount of RNA ≥200 ng were approved for RNA sequencing.

4.7. Library Preparation and mRNA Sequencing

Samples containing purified RNA were prepared for sequencing using the Lexogen
SENSE mRNA library preparation kit (Lexogen, Vienna, Austria). After library preparation,
the samples were sequenced on the NovaSeq 6000 system (Illumina, Eindhoven, The
Netherlands). A pool of all DOX samples and controls was sequenced on the 2 lanes of an
S1 flow cell. Untreated, vehicle controls and DOX samples were sequenced with an average
of 10 to 15 million raw reads.

4.8. Pre-Processing and Data Analysis

For all samples, the first 12 bases of the 5′ end of all reads were removed using Trim-
momatic version 0.33 [62], because the sequencing reads still contained Lexogen adapter
sequences. Before and after trimming, the quality of the sequencing data was confirmed
using FastQC version 0.11.3 [63] and only samples with satisfactory parameters were kept
for downstream analysis. In addition, a cut-off of 5 million mapped reads was applied to
all samples, as recommended for DGE analysis [29,30]. Following trimming, reads were
aligned to the primary assembly of the human genome (Ensembl build v. 93 GRCh38) using
Bowtie 1.1.1 and quantified with RSEM 1.3.1. The profile and behaviour of the samples
were assessed according to the amount of (mapped) reads, hierarchical clustering, principal
component analysis (PCA), and sample dispersion. Following quantification of the read
counts, normalization was performed on the expected read counts from all samples and
the contrast function from the R package DESeq 2 (v. 1.14.1) [64] was used to extract DEGs
for each time point and concentration such that comparison between all conditions of
the experiment is possible. For each specific time point, the following comparisons were
performed: (a) untreated control vs. vehicle control; (b) 1 µM DOX vs. vehicle control;
(c) 10 µM DOX vs. vehicle control; (d) 30 µM DOX vs. vehicle control; (e) 60 µM DOX vs.
vehicle control. Bonferroni correction [65] was applied to the genes obtained, after which
genes with adjusted p value <0.05 were considered as DEGs.

4.9. Proteome Analysis

Protein type targets of DOX were collected from open repositories such as ChEMBL [25],
DrugBank [26], TTD [27], IUPHAR [28], PharmGKB [24] using a pre-constructed KNIME
data science workflow [23]. The criteria for a target protein were individually adjusted to
the guidelines of the corresponding database. For the list of target proteins, first-degree
interactors were obtained from the MINT [66] and IntAct [67] protein-protein interaction
databases, using the Reactome services [68]. A cut-off of 0.5 for the interacting scores
secured that only reliable interactions with experimental evidence were taken into con-
sideration. The curated list of targets and interacting proteins was filtered based on
tissue-specific information. For that, the Proteomics DB was used. The output of the data
mining is a table of target proteins and their first-degree interactors that can be connected
to DOX and are expressed in the gut.

4.10. Pathway Analysis

The lists of DEGs obtained for each time point and concentration were used as input
for pathway over-representation analysis (ORA) using ConsensusPathDB (CPDB) release
34 [69], considering a p value cut-off of 0.01. The Reactome database version 67 [70]
and Kyoto Encyclopedia of Genes and Genomes (KEGG) [71] were selected as preferred
databases for pathway analysis and interpretation of biological processes. Venn diagrams
to compare genes in colon and SI organoids and gene plots of the most relevant DEGs were
also generated using Venny 2.1 [72] (https://bioinfogp.cnb.csic.es/tools/venny/ (accessed
on 27 December 2021)) and Excel, respectively. Moreover, the tool Short Time Series
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Expression Miner (STEM) [73] was used to classify the DEGs according to their differential
expression degrees during the exposure to DOX, considering a p value ≤0.05. This analysis
aimed at identifying the time-dependency of the transcriptome response, following the
hypothesis that over time, gene responses are functionally interrelated. The list of genes
obtained from the most significant clusters in the STEM tool was further analysed by
performing a List Enrichment Network using the NetworkAnalyst 3.0 [74]. Ultimately,
the most relevant DEGs and proteins obtained from transcriptomics and proteomics data,
respectively, were compared and visually summarised using BioRender illustration tool [75]
(BioRender.com (accessed on 23 April 2021)).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms23031286/s1. References [22,35,60,76–81] are cited in the Supplemen-
tary Materials.

Author Contributions: D.R. was responsible for the design and execution of experimental work
(culture of colon organoids, exposure experiments, cytotoxicity assays, RNA isolation and RNAseq
libraries) and transcriptomics data analysis. D.J. supported transcriptomic data analysis. L.C. was
responsible for experimental work regarding the culture of small intestine organoids and exposure
experiments with SI organoids. B.F. contributed with the proteomic analysis. S.F., H.J. and C.F.
contributed to the PBPK simulations. B.H. assisted with the image analysis technology. S.-W.C.
contributed with his expertise in drug responses. T.M.d.K. and J.C.S.K. helped with the study design
and supervision. D.R. wrote this manuscript with the input of all co-authors, especially J.C.S.K., D.J.
and T.M.d.K. All authors have read and agreed to the published version of the manuscript.

Funding: The transQST project was funded by the Innovative Medicines Initiative 2 Joint Undertaking
under grant agreement No. 116030. This Joint Undertaking receives support from the European
Union’s Horizon 2020 research and innovation programme and EFPIA.

Institutional Review Board Statement: Human intestinal tissue samples were obtained by Boehringer
Ingelheim Pharmaceuticals Inc. (Ridgefield, CT, USA) from Discovery Life Sciences (Huntsville, AL,
USA; formerly, Conversant Biologics Inc.) under a bio-specimen purchase agreement.

Informed Consent Statement: All samples were collected with the written informed consent under
an approval of the institutional review board (IRB).

Data Availability Statement: The cytotoxicity data generated and analysed during the current study
are available in the BioStudies repository (www.ebi.ac.uk/biostudies/studies/S-TQST114 (accessed
on 27 December 2021)). The transcriptomic data generated and analysed during the current study
will be publicly available on ArrayExpress repository (www.ebi.ac.uk/arrayexpress/ (accessed on 27
December 2021)) with accession number E-MTAB-11297.

Acknowledgments: The authors thank Aaron Kalark (Boehringer Ingelheim) for providing initial
organoid cultures and the technical guidance on them. The authors also thank Marcel van Herwijnen
and Duncan Hauser for the technical support on RNA sequencing.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Arcamone, F.; Cassinelli, G.; Fantini, G.; Grein, A.; Orezzi, P.; Pol, C.; Spalla, C. Adriamycin, 14-hydroxydaunomycin, a new

antitumor antibiotic from S. peucetius var. caesius. Biotechnol. Bioeng. 1969, 11, 1101–1110. [CrossRef] [PubMed]
2. Carvalho, C.; Santos, R.X.; Cardoso, S.; Correia, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: The good, the bad and

the ugly effect. Curr. Med. Chem. 2009, 16, 3267–3285. [CrossRef] [PubMed]
3. Pugazhendhi, A.; Edison, T.; Velmurugan, B.K.; Jacob, J.A.; Karuppusamy, I. Toxicity of Doxorubicin (Dox) to different experimen-

tal organ systems. Life Sci. 2018, 200, 26–30. [CrossRef] [PubMed]
4. Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways:

Pharmacodynamics and adverse effects. Pharmacogenet. Genom. 2011, 21, 440–446. [CrossRef]
5. Damiani, R.M.; Moura, D.J.; Viau, C.M.; Caceres, R.A.; Henriques, J.A.P.; Saffi, J. Pathways of cardiac toxicity: Comparison

between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch. Toxicol. 2016, 90, 2063–2076. [CrossRef] [PubMed]

BioRender.com
https://www.mdpi.com/article/10.3390/ijms23031286/s1
https://www.mdpi.com/article/10.3390/ijms23031286/s1
www.ebi.ac.uk/biostudies/studies/S-TQST114
www.ebi.ac.uk/arrayexpress/
http://doi.org/10.1002/bit.260110607
http://www.ncbi.nlm.nih.gov/pubmed/5365804
http://doi.org/10.2174/092986709788803312
http://www.ncbi.nlm.nih.gov/pubmed/19548866
http://doi.org/10.1016/j.lfs.2018.03.023
http://www.ncbi.nlm.nih.gov/pubmed/29534993
http://doi.org/10.1097/FPC.0b013e32833ffb56
http://doi.org/10.1007/s00204-016-1759-y
http://www.ncbi.nlm.nih.gov/pubmed/27342245


Int. J. Mol. Sci. 2022, 23, 1286 26 of 28

6. Yang, F.; Teves, S.S.; Kemp, C.J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta 2014,
1845, 84–89. [CrossRef] [PubMed]

7. Berthiaume, J.M.; Wallace, K.B. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol. Toxicol. 2007, 23, 15–25.
[CrossRef]

8. Edwardson, D.W.; Narendrula, R.; Chewchuk, S.; Mispel-Beyer, K.; Mapletoft, J.P.; Parissenti, A.M. Role of Drug Metabolism in
the Cytotoxicity and Clinical Efficacy of Anthracyclines. Curr. Drug Metab. 2015, 16, 412–426. [CrossRef]

9. Kaczmarek, A.; Brinkman, B.M.; Heyndrickx, L.; Vandenabeele, P.; Krysko, D.V. Severity of doxorubicin-induced small intestinal
mucositis is regulated by the TLR-2 and TLR-9 pathways. J. Pathol. 2012, 226, 598–608. [CrossRef]

10. Rodrigues, D.; de Souza, T.; Coyle, L.; Di Piazza, M.; Herpers, B.; Ferreira, S.; Zhang, M.; Vappiani, J.; Sevin, D.C.; Gabor, A.; et al.
New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic
responses in human intestinal organoids. Arch. Toxicol. 2021, 95, 2691–2718. [CrossRef]

11. Chaicharoenaudomrung, N.; Kunhorm, P.; Noisa, P. Three-dimensional cell culture systems as an in vitro platform for cancer and
stem cell modeling. World J. Stem Cells 2019, 11, 1065–1083. [CrossRef]

12. Nii, T.; Makino, K.; Tabata, Y. Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening.
Cancers 2020, 12, 2754. [CrossRef]

13. Benton, G.; Arnaoutova, I.; George, J.; Kleinman, H.K.; Koblinski, J. Matrigel: From discovery and ECM mimicry to assays and
models for cancer research. Adv. Drug Deliv. Rev. 2014, 79, 3–18. [CrossRef]

14. Barros, A.S.; Costa, E.C.; Nunes, A.S.; de Melo-Diogo, D.; Correia, I.J. Comparative study of the therapeutic effect of Doxorubicin
and Resveratrol combination on 2D and 3D (spheroids) cell culture models. Int. J. Pharm. 2018, 551, 76–83. [CrossRef]

15. Senkowski, W.; Jarvius, M.; Rubin, J.; Lengqvist, J.; Gustafsson, M.G.; Nygren, P.; Kultima, K.; Larsson, R.; Fryknas, M. Large-Scale
Gene Expression Profiling Platform for Identification of Context-Dependent Drug Responses in Multicellular Tumor Spheroids.
Cell Chem. Biol. 2016, 23, 1428–1438. [CrossRef] [PubMed]

16. Nunes, A.S.; Costa, E.C.; Barros, A.S.; de Melo-Diogo, D.; Correia, I.J. Establishment of 2D Cell Cultures Derived From 3D MCF-7
Spheroids Displaying a Doxorubicin Resistant Profile. Biotechnol. J. 2019, 14, e1800268. [CrossRef]

17. Devarasetty, M.; Skardal, A.; Cowdrick, K.; Marini, F.; Soker, S. Bioengineered Submucosal Organoids for In Vitro Modeling of
Colorectal Cancer. Tissue Eng. Part A 2017, 23, 1026–1041. [CrossRef]

18. Darling, N.J.; Mobbs, C.L.; Gonzalez-Hau, A.L.; Freer, M.; Przyborski, S. Bioengineering Novel in vitro Co-culture Models That
Represent the Human Intestinal Mucosa With Improved Caco-2 Structure and Barrier Function. Front. Bioeng. Biotechnol. 2020,
8, 992. [CrossRef]

19. Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al.
Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. [CrossRef]

20. Zachos, N.C.; Kovbasnjuk, O.; Foulke-Abel, J.; In, J.; Blutt, S.E.; de Jonge, H.R.; Estes, M.K.; Donowitz, M. Human En-
teroids/Colonoids and Intestinal Organoids Functionally Recapitulate Normal Intestinal Physiology and Pathophysiology.
J. Biol. Chem. 2016, 291, 3759–3766. [CrossRef]

21. Perez-Blanco, J.S.; Santos-Buelga, D.; de Gatta, M.D.F.; Hernandez-Rivas, J.M.; Martin, A.; Garcia, M.J. Population pharmacoki-
netics of doxorubicin and doxorubicinol in patients diagnosed with non-Hodgkin’s lymphoma. Br. J. Clin. Pharmacol. 2016, 82,
1517–1527. [CrossRef] [PubMed]

22. Hanke, N.; Teifel, M.; Moj, D.; Wojtyniak, J.G.; Britz, H.; Aicher, B.; Sindermann, H.; Ammer, N.; Lehr, T. A physiologically based
pharmacokinetic (PBPK) parent-metabolite model of the chemotherapeutic zoptarelin doxorubicin-integration of in vitro results,
Phase I and Phase II data and model application for drug-drug interaction potential analysis. Cancer Chemother. Pharm. 2018, 81,
291–304. [CrossRef] [PubMed]

23. Fuzi, B.; Gurinova, J.; Hermjakob, H.; Ecker, G.F.; Sheriff, R. Path4Drug: Data Science Workflow for Identification of Tissue-Specific
Biological Pathways Modulated by Toxic Drugs. Front. Pharmacol. 2021, 12, 708296. [CrossRef] [PubMed]

24. Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics
knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [CrossRef]

25. Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Felix, E.; Magarinos, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka,
M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [CrossRef]

26. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank
5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [CrossRef]

27. Wang, Y.; Zhang, S.; Li, F.; Zhou, Y.; Zhang, Y.; Wang, Z.; Zhang, R.; Zhu, J.; Ren, Y.; Tan, Y.; et al. Therapeutic target database
2020: Enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020, 48,
D1031–D1041. [CrossRef]

28. Armstrong, J.F.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Southan, C.; Sharman, J.L.; Campo, B.; Cavanagh, D.R.;
Alexander, S.P.H.; Davenport, A.P.; et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: Extending immunophar-
macology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Res. 2020, 48,
D1006–D1021. [CrossRef]

29. Illumina Considerations for RNA-Seq Read Length and Coverage. Available online: https://support.illumina.com/bulletins/20
17/04/considerations-for-rna-seq-read-length-and-coverage-.html (accessed on 10 January 2022).

http://doi.org/10.1016/j.bbcan.2013.12.002
http://www.ncbi.nlm.nih.gov/pubmed/24361676
http://doi.org/10.1007/s10565-006-0140-y
http://doi.org/10.2174/1389200216888150915112039
http://doi.org/10.1002/path.3009
http://doi.org/10.1007/s00204-021-03092-2
http://doi.org/10.4252/wjsc.v11.i12.1065
http://doi.org/10.3390/cancers12102754
http://doi.org/10.1016/j.addr.2014.06.005
http://doi.org/10.1016/j.ijpharm.2018.09.016
http://doi.org/10.1016/j.chembiol.2016.09.013
http://www.ncbi.nlm.nih.gov/pubmed/27984028
http://doi.org/10.1002/biot.201800268
http://doi.org/10.1089/ten.tea.2017.0397
http://doi.org/10.3389/fbioe.2020.00992
http://doi.org/10.1038/nature07935
http://doi.org/10.1074/jbc.R114.635995
http://doi.org/10.1111/bcp.13070
http://www.ncbi.nlm.nih.gov/pubmed/27447545
http://doi.org/10.1007/s00280-017-3495-2
http://www.ncbi.nlm.nih.gov/pubmed/29204687
http://doi.org/10.3389/fphar.2021.708296
http://www.ncbi.nlm.nih.gov/pubmed/34721010
http://doi.org/10.1038/clpt.2012.96
http://doi.org/10.1093/nar/gky1075
http://doi.org/10.1093/nar/gkx1037
http://doi.org/10.1093/nar/gkz981
http://doi.org/10.1093/nar/gkz951
https://support.illumina.com/bulletins/2017/04/considerations-for-rna-seq-read-length-and-coverage-.html
https://support.illumina.com/bulletins/2017/04/considerations-for-rna-seq-read-length-and-coverage-.html


Int. J. Mol. Sci. 2022, 23, 1286 27 of 28

30. Robles, J.A.; Qureshi, S.E.; Stephen, S.J.; Wilson, S.R.; Burden, C.J.; Taylor, J.M. Efficient experimental design and analysis
strategies for the detection of differential expression using RNA-Sequencing. BMC Genom. 2012, 13, 484. [CrossRef]

31. Sundaram, P.; Hultine, S.; Smith, L.M.; Dews, M.; Fox, J.L.; Biyashev, D.; Schelter, J.M.; Huang, Q.; Cleary, M.A.; Volpert, O.V.; et al.
p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res. 2011, 71, 7490–7501.
[CrossRef]

32. Chan, K.; Truong, D.; Shangari, N.; O’Brien, P.J. Drug-induced mitochondrial toxicity. Expert Opin Drug Metab. Toxicol. 2005, 1,
655–669. [CrossRef]

33. Mourelle, M.; Casellas, F.; Guarner, F.; Salas, A.; Riveros-Moreno, V.; Moncada, S.; Malagelada, J.R. Induction of nitric oxide
synthase in colonic smooth muscle from patients with toxic megacolon. Gastroenterology 1995, 109, 1497–1502. [CrossRef]

34. Fan, L.; Goh, B.C.; Wong, C.I.; Sukri, N.; Lim, S.E.; Tan, S.H.; Guo, J.Y.; Lim, R.; Yap, H.L.; Khoo, Y.M.; et al. Genotype of
human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity. Pharmacogenet. Genom. 2008, 18, 621–631.
[CrossRef]

35. Mross, K.; Maessen, P.; van der Vijgh, W.J.; Gall, H.; Boven, E.; Pinedo, H.M. Pharmacokinetics and metabolism of epidoxorubicin
and doxorubicin in humans. J. Clin. Oncol. 1988, 6, 517–526. [CrossRef]

36. Pritchard, M.D.; Potten, C.S.; Hitknian, J.A. The relationships between p53-dependent apoptosis, inhibition of proliferation, and
5-fluorouracil-induced histopathology in murine intestinal epithelia. Cancer Res. 1998, 58, 5453–5465.

37. Chang, C.T.; Ho, T.Y.; Lin, H.; Liang, J.A.; Huang, H.C.; Li, C.C.; Lo, H.Y.; Wu, S.L.; Huang, Y.F.; Hsiang, C.Y. 5-Fluorouracil
induced intestinal mucositis via nuclear factor-kappaB activation by transcriptomic analysis and in vivo bioluminescence imaging.
PLoS ONE 2012, 7, e31808.

38. Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [CrossRef]
39. Rodrigues, D.; Pinto, J.; Araujo, A.M.; Jeronimo, C.; Henrique, R.; Bastos, M.L.; Guedes de Pinho, P.; Carvalho, M. GC-MS

Metabolomics Reveals Distinct Profiles of Low- and High-Grade Bladder Cancer Cultured Cells. Metabolites 2019, 9, 18. [CrossRef]
40. Derave, W.; Everaert, I.; Beeckman, S.; Baguet, A. Muscle carnosine metabolism and beta-alanine supplementation in relation to

exercise and training. Sports Med. 2010, 40, 247–263. [CrossRef]
41. Holecek, M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020,

12, 848. [CrossRef]
42. Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [CrossRef]
43. Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease.

Nutrients 2020, 12, 2867. [CrossRef]
44. Bartke, N.; Hannun, Y.A. Bioactive sphingolipids: Metabolism and function. J. Lipid Res. 2009, 50, S91–S96. [CrossRef]
45. Lee, M.; Hwang, J.T.; Lee, H.J.; Jung, S.N.; Kang, I.; Chi, S.G.; Kim, S.S.; Ha, J. AMP-activated protein kinase activity is critical for

hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J. Biol.
Chem. 2003, 278, 39653–39661. [CrossRef]

46. Roden, D.M.; Wilke, R.A.; Kroemer, H.K.; Stein, C.M. Pharmacogenomics: The genetics of variable drug responses. Circulation
2011, 123, 1661–1670. [CrossRef]

47. Verma, M.; Khan, M.I.K.; Kadumuri, R.V.; Chakrapani, B.; Awasthi, S.; Mahesh, A.; Govindaraju, G.; Chavali, P.L.; Rajavelu, A.;
Chavali, S.; et al. PRMT3 interacts with ALDH1A1 and regulates gene-expression by inhibiting retinoic acid signaling. Commun.
Biol. 2021, 4, 109. [CrossRef]

48. Yuan, F.W.; Zhang, Y.; Ma, L.W.; Cheng, Q.; Li, G.D.; Tong, T.J. Enhanced NOLC1 promotes cell senescence and represses
hepatocellular carcinoma cell proliferation by disturbing the organization of nucleolus. Aging Cell 2017, 16, 726–737. [CrossRef]

49. McGowan, E.M.; Tran, N.; Alling, N.; Yagoub, D.; Sedger, L.M.; Martiniello-Wilks, R. p14ARF post-transcriptional regulation of
nuclear cyclin D1 in MCF-7 breast cancer cells: Discrimination between a good and bad prognosis? PLoS ONE 2012, 7, e42246.
[CrossRef] [PubMed]

50. Mahmoudi, T.; Li, V.S.W.; Ng, S.S.; Taouatas, N.; Vries, R.G.J.; Mohammed, S.; Heck, A.J.; Clevers, H. The kinase TNIK is an
essential activator of Wnt target genes. EMBO J. 2009, 28, 3329–3340. [CrossRef]

51. Woodfield, S.E.; Shi, Y.; Patel, R.H.; Chen, Z.; Shah, A.P.; Whitlock, R.S.; Ibarra, A.M.; Larson, S.R.; Sarabia, S.F.; Badachhape, A.;
et al. MDM4 inhibition: A novel therapeutic strategy to reactivate p53 in hepatoblastoma. Sci. Rep. 2021, 11, 2967. [CrossRef]

52. Dewaele, M.; Tabaglio, T.; Willekens, K.; Bezzi, M.; Teo, S.X.; Low, D.H.; Koh, C.M.; Rambow, F.; Fiers, M.; Rogiers, A.; et al.
Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J. Clin. Investig. 2016, 126, 68–84. [CrossRef]
[PubMed]

53. Pascreau, G.; Eckerdt, F.; Lewellyn, A.L.; Prigent, C.; Maller, J.L. Phosphorylation of p53 Is Regulated by TPX2-Aurora A in
Xenopus Oocytes. J. Biol. Chem. 2009, 284, 5497–5505. [CrossRef] [PubMed]

54. Counts, S.E.; Mufson, E.J. Regulator of Cell Cycle (RGCC) Expression During the Progression of Alzheimer’s Disease. Cell
Transplant. 2017, 26, 693–702. [CrossRef] [PubMed]

55. Rhinn, M.; Dolle, P. Retinoic acid signalling during development. Development 2012, 139, 843–858. [CrossRef]
56. Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L.S.; Lyu, Y.L.; Liu, L.F.; Yeh, E.T. Identification of the molecular basis of doxorubicin-

induced cardiotoxicity. Nat. Med. 2012, 18, 1639–1642. [CrossRef]

http://doi.org/10.1186/1471-2164-13-484
http://doi.org/10.1158/0008-5472.CAN-11-1124
http://doi.org/10.1517/17425255.1.4.655
http://doi.org/10.1016/0016-5085(95)90636-3
http://doi.org/10.1097/FPC.0b013e328301a869
http://doi.org/10.1200/JCO.1988.6.3.517
http://doi.org/10.1038/npp.2012.112
http://doi.org/10.3390/metabo9010018
http://doi.org/10.2165/11530310-000000000-00000
http://doi.org/10.3390/nu12030848
http://doi.org/10.1016/j.cmet.2016.08.009
http://doi.org/10.3390/nu12092867
http://doi.org/10.1194/jlr.R800080-JLR200
http://doi.org/10.1074/jbc.M306104200
http://doi.org/10.1161/CIRCULATIONAHA.109.914820
http://doi.org/10.1038/s42003-020-01644-3
http://doi.org/10.1111/acel.12602
http://doi.org/10.1371/journal.pone.0042246
http://www.ncbi.nlm.nih.gov/pubmed/22860097
http://doi.org/10.1038/emboj.2009.285
http://doi.org/10.1038/s41598-021-82542-4
http://doi.org/10.1172/JCI82534
http://www.ncbi.nlm.nih.gov/pubmed/26595814
http://doi.org/10.1074/jbc.M805959200
http://www.ncbi.nlm.nih.gov/pubmed/19121998
http://doi.org/10.3727/096368916X694184
http://www.ncbi.nlm.nih.gov/pubmed/27938491
http://doi.org/10.1242/dev.065938
http://doi.org/10.1038/nm.2919


Int. J. Mol. Sci. 2022, 23, 1286 28 of 28

57. Holmgren, G.; Synnergren, J.; Bogestal, Y.; Ameen, C.; Akesson, K.; Holmgren, S.; Lindahl, A.; Sartipy, P. Identification of novel
biomarkers for doxorubicin-induced toxicity in human cardiomyocytes derived from pluripotent stem cells. Toxicology 2015, 328,
102–111. [CrossRef]

58. Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.; Van Es, J.H.; Van den Brink, S.; Van Houdt, W.J.; Pronk, A.; Van Gorp, J.;
Siersema, P.D.; et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s
epithelium. Gastroenterology 2011, 141, 1762–1772. [CrossRef] [PubMed]

59. Stevens, J. Temporary importation of Doxorubicin Hydrochloride 50 mg Powder for Injection (50 mg/Vial) to Address Drug Shortage Issue;
Hospira, Inc., Pfizer Company: New York, NY, USA, 2016.

60. Fisher, C.; Simeon, S.; Jamei, M.; Gardner, I.; Bois, Y.F. VIVD: Virtual in vitro distribution model for the mechanistic prediction of
intracellular concentrations of chemicals in in vitro toxicity assays. Toxicol In Vitro 2019, 58, 42–50. [CrossRef]

61. Di, Z.; Klop, M.J.; Rogkoti, V.M.; Le Devedec, S.E.; van de Water, B.; Verbeek, F.J.; Price, L.S.; Meerman, J.H. Ultra high content
image analysis and phenotype profiling of 3D cultured micro-tissues. PLoS ONE 2014, 9, e109688. [CrossRef]

62. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.
[CrossRef]

63. Andrews, S. FastQC. A Quality Control Tool for High Throughput Sequence Data. 2014. Available online: http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 21 April 2021).

64. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014, 15, 550. [CrossRef] [PubMed]

65. Aickin, M.; Gensler, H. Adjusting for multiple testing when reporting research results: The Bonferroni vs Holm methods. Am. J.
Public Health 1996, 86, 726–728. [CrossRef] [PubMed]

66. Licata, L.; Briganti, L.; Peluso, D.; Perfetto, L.; Iannuccelli, M.; Galeota, E.; Sacco, F.; Palma, A.; Nardozza, A.P.; Santonico, E.; et al.
MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012, 40, D857–D861. [CrossRef] [PubMed]

67. Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.; Chen, C.;
del-Toro, N.; et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic
Acids Res. 2014, 42, D358–D363. [CrossRef]

68. Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The
reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [CrossRef]

69. Kamburov, A.; Stelzl, U.; Lehrach, H.; Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res.
2013, 41, D793–D800. [CrossRef]

70. Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al.
The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [CrossRef]

71. Du, J.; Yuan, Z.; Ma, Z.; Song, J.; Xie, X.; Chen, Y. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway
analysis using a path analysis model. Mol. Biosyst. 2014, 10, 2441–2447. [CrossRef]

72. Available online: https://bioinfogp.cnb.csic.es/tools/venny (accessed on 11 November 2021).
73. Ernst, J.; Bar-Joseph, Z. STEM: A tool for the analysis of short time series gene expression data. BMC Bioinform. 2006, 7, 191.

[CrossRef]
74. Zhou, G.; Soufan, O.; Ewald, J.; Hancock, R.E.W.; Basu, N.; Xia, J. NetworkAnalyst 3.0: A visual analytics platform for

comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019, 47, W234–W241. [CrossRef]
75. Available online: BioRender.com (accessed on 23 April 2021).
76. Lombardo, F.; Berellini, G.; Obach, R.S. Trend Analysis of a Database of Intravenous Pharmacokinetic Parameters in Humans for

1352 Drug Compounds. Drug Metab. Dispos. 2018, 46, 1466–1477. [CrossRef]
77. Yee, S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—Fact or myth.

Pharm. Res. 1997, 14, 763–766. [CrossRef]
78. Rodgers, T.; Leahy, D.; Rowland, M. Physiologically based pharmacokinetic modeling 1: Predicting the tissue distribution of

moderate-to-strong bases. J. Pharm. Sci. 2005, 94, 1259–1276. [CrossRef]
79. Rodgers, T.; Rowland, M. Physiologically based pharmacokinetic modelling 2: Predicting the tissue distribution of acids, very

weak bases, neutrals and zwitterions. J. Pharm. Sci. 2006, 95, 1238–1257. [CrossRef]
80. Speth, P.A.; van Hoesel, Q.G.; Haanen, C. Clinical pharmacokinetics of doxorubicin. Clin. Pharmacokinet. 1988, 15, 15–31.

[CrossRef]
81. Meylan, W.M.; Howard, P. User’s Guide for HENRYWIN Version 3.10: Henry’s Law Constant Program; Syracuse Research Corporation:

Syracuse, NY, USA, 2000.

http://doi.org/10.1016/j.tox.2014.12.018
http://doi.org/10.1053/j.gastro.2011.07.050
http://www.ncbi.nlm.nih.gov/pubmed/21889923
http://doi.org/10.1016/j.tiv.2018.12.017
http://doi.org/10.1371/journal.pone.0109688
http://doi.org/10.1093/bioinformatics/btu170
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
http://doi.org/10.2105/AJPH.86.5.726
http://www.ncbi.nlm.nih.gov/pubmed/8629727
http://doi.org/10.1093/nar/gkr930
http://www.ncbi.nlm.nih.gov/pubmed/22096227
http://doi.org/10.1093/nar/gkt1115
http://doi.org/10.1093/nar/gkz1031
http://doi.org/10.1093/nar/gks1055
http://doi.org/10.1093/nar/gkx1132
http://doi.org/10.1039/C4MB00287C
https://bioinfogp.cnb.csic.es/tools/venny
http://doi.org/10.1186/1471-2105-7-191
http://doi.org/10.1093/nar/gkz240
BioRender.com
http://doi.org/10.1124/dmd.118.082966
http://doi.org/10.1023/A:1012102522787
http://doi.org/10.1002/jps.20322
http://doi.org/10.1002/jps.20502
http://doi.org/10.2165/00003088-198815010-00002

	Introduction 
	Results 
	PBPK Simulation for Selection of DOX In Vitro Concentrations 
	Cytotoxicity Evaluation of Colon and SI Organoids: Viability and Apoptosis after Exposure to DOX 
	Image Analysis 
	Identification of Biological Pathways and Gene Responses Affected by DOX 
	Pathway Analysis across Time and Concentration in Colon and SI Organoids 
	Expression Profiles of DEGs Affected in Colon and SI Organoids 

	Time-Dependent Gene Clustering Analysis 
	Proteome Analysis 
	Comparing DOX Effects on Transcriptomics and Proteomics 

	Discussion 
	Materials and Methods 
	In Vitro Culture of Healthy Intestinal Organoids 
	Selection of DOX In Vitro Concentrations Based on PBPK Simulation 
	In Vitro Exposure to DOX 
	Cytotoxicity Assays: ATP Measurement and Caspase 3/7 Activity 
	Image Analysis 
	RNA Isolation from Intestinal Organoids 
	Library Preparation and mRNA Sequencing 
	Pre-Processing and Data Analysis 
	Proteome Analysis 
	Pathway Analysis 

	References

