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Abstract: As cities grow in size and number of inhabitants, continuous monitoring of the environmen-
tal impact of sound sources becomes essential for the assessment of the urban acoustic environments.
This requires the use of management systems that should be fed with large amounts of data captured
by acoustic sensors, mostly remote nodes that belong to a wireless acoustic sensor network. These sys-
tems help city managers to conduct data-driven analysis and propose action plans in different areas
of the city, for instance, to reduce citizens’ exposure to noise. In this paper, unsupervised learning
techniques are applied to discover different behavior patterns, both time and space, of sound pressure
levels captured by acoustic sensors and to cluster them allowing the identification of various urban
acoustic environments. In this approach, the categorization of urban acoustic environments is based
on a clustering algorithm using yearly acoustic indexes, such as Lday, Levening, Lnight and standard
deviation of Lden. Data collected over three years by a network of acoustic sensors deployed in the
city of Barcelona, Spain, are used to train several clustering methods. Comparison between methods
concludes that the k-means algorithm has the best performance for these data. After an analysis of
several solutions, an optimal clustering of four groups of nodes is chosen. Geographical analysis of
the clusters shows insights about the relation between nodes and areas of the city, detecting clusters
that are close to urban roads, residential areas and leisure areas mostly. Moreover, temporal analysis
of the clusters gives information about their stability. Using one-year size of the sliding window,
changes in the membership of nodes in the clusters regarding tendency of the acoustic environments
are discovered. In contrast, using one-month windowing, changes due to seasonality and special
events, such as COVID-19 lockdown, are recognized. Finally, the sensor clusters obtained by the
algorithm are compared with the areas defined in the strategic noise map, previously created by the
Barcelona city council. The developed k-means model identified most of the locations found on the
overcoming map and also discovered a new area.

Keywords: environmental noise assessment; clustering; k-means; strategic noise map; urban acoustic
environment; wireless sensor network data

1. Introduction

As the size of cities grows, the well-being and quality of life of citizens have become a
priority for city managers [1]. Although it is well known that noise is one of the pollutants
of greatest concern to citizens [2] and the World Health Organization has recently recom-
mended the reduction of exposure to noise from the most common sources of community
noise [3], other factors of the acoustic environment in addition to excessive noise levels
should be taken into account in its assessment.

The European directive 2002/49/EC [4] encouraged agglomerations of people, i.e., cities
or groups of cities nearby, to create their strategic noise mapping (SNM) sharing the
results with citizens. Moreover, the results of these noise maps led to the establishment of
noise-reduction action plans where noise exposure protection zones are defined. To create
performance reports with the data obtained in the strategic noise map and to define special
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noise protection areas within the city, data are usually analyzed by descriptive analysis,
with basic statistics such as the average or median of the defined noise indicator obtained
for the overall assessment period. In general, using these statistics, two main types of areas
are proposed relying on the places where values are higher than a certain recommended
sound level, known as special regime areas, and others where their noise exposure is lower
than the average, known as quiet areas.

In recent years, large cities are deploying Wireless Acoustic Sensor Networks (WASN),
based on Internet of Things (IoT) technologies [5], in order to perform continuous monitor-
ing of environmental acoustic parameters at many locations [6]. The acoustic nodes that
compose these networks continuously capture information about the sound environment
over long periods of time, generating a large amount of data. These acoustic data, together
with further environmental data, such as water quality [7] or air pollution [8], are being
used by city managers to make decisions and propose improvement actions. Moreover,
this smart city system has given rise to the creation of the so-called dynamic noise maps
where SNM are more often updated, each day for instance, by integrating data obtained
from acoustic sensors and the application of predictive models of sound propagation in
cities [9].

The advantages provided by IoT technology [10], including low power consumption
of the equipment and wide area coverage, allow for easy deployment of a large number
of devices throughout the city as well as transmitting values of acoustic parameters every
short time interval, e.g., every minute [11]. The analysis of this large amount of information
generated by the WASN can be considered a big data problem [12].

Therefore, this work is focused on performing a cluster analysis of urban acoustic
environments, evaluating the suitability of applying an unsupervised machine learning
model to automatically classify several groups of nodes with different behavior patterns,
both time and space, of sound pressure levels. For the description of this technique,
data captured during three years in a WASN deployed in the city of Barcelona, Spain,
are used [13]. In this work, the categorization of urban acoustic environments is based on
a clustering algorithm using the following yearly acoustic indexes, Lday, Levening, Lnight
and standard deviation of Lden. A detailed analysis of the obtained clusters is conducted,
showing both geographical and temporal additional information to that provided by the
city’s SNM [14].

This paper is organised into the following sections. After this introduction, a review
of the state of the art of machine learning in environmental acoustics is presented in
Section 2. Section 3 presents the data-set and the proposed methodology for unsupervised
identification. In next Section 4, results obtained from the analysis are shown and discussed.
Finally, Section 5 provides the main conclusions of this research.

2. Machine Learning for Analysis of Environmental Acoustics

Machine learning (ML) is a type of artificial intelligence whereby an algorithm or
method will extract patterns out of data [15]. ML methods are often divided into three major
categories: supervised, unsupervised and reinforced learning [15]. The second is being
used in this work, in which, in contrast to supervised and reinforced learning, no labeled
input and output data are needed to train the model. The goal of these unsupervised
techniques is to find out interesting or useful structures within the data.

As in other research fields, ML is being applied in the area of acoustics and audio
signal processing [16]. The application of ML in acoustics is a field of research that has
recently attracted great interest in the scientific community. Application examples can be
found in a wide range of acoustics fields, such as speech signal processing [17], underwater
acoustics [18], medical diagnosis [19], design of acoustic materials [20], bioacoustics [21],
room acoustics [22] and environmental acoustics [23].

Signals generated by sound sources, e.g., human speech and musical instruments,
contain useful insights that can be used by ML techniques to detect and model complex
patterns. Regarding ML approaches, sound captured by acoustic transducers can be
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classified into two groups depending on the nature of the data created: (i) audio signal,
from which it is possible to apply techniques such as event detection [24], classification of
sound sources [25], and source location [26], and (ii) acoustic parameters calculated from
the audio signal, that have been used to predict sound pressure level values [27] or estimate
loudness level values [28] for instance.

As enunciated above, ML techniques are data-driven and they are typically fed
with a large amount of data to obtain optimal results. The acquisition and processing
of these data require advanced monitoring and management systems. Technological
advances have developed new ways of obtaining massive data on environmental quality
parameters in cities, the most commonly used being the crowd-sourced data using smart-
phone applications [29] and the deployment of wireless acoustic sensor networks [30].
WASN consists of a set of nodes with acoustic transducers that are deployed at locations in
the area of interest. These acoustic nodes continuously capture sound with high quality,
allow long-term monitoring of urban acoustic environments [31], and also can contribute
to create dynamic noise maps [32].

During the last few years, WASNs have been deployed in cities around the world
and several studies have been published regarding machine learning techniques for envi-
ronmental acoustics. Most of the works found in the literature apply supervised machine
learning methods to the audio signal, the first group that was defined above. In this ap-
proach, the method is firstly trained with labeled data-set, i.e., annotated sound recordings.
After the resulting model is evaluated and optimized, the algorithm is then implemented
and run in the acoustic nodes.

In the city of New York, a large data-set [33] of labeled audio recording was created
by taking advantage of a WASN [34] for the development and evaluation of machine
learning techniques, also known as deep-learning techniques because of the high amount
of data used to train the model, for real-world urban noise monitoring. Using this data-set,
methods for both detection [35] and classification [36] of acoustic scenes and events have
been carried out. Recently, a deep learning structure has been developed with this data-set
for sound event retrieval [37] of urban sound events, such as car horns and human speech,
on multi-label audio recordings.

In an European project, DYNAMAP [38], several machine learning techniques were
evaluated for anomalous noise source detection [39], such as birds, people talking, sirens,
etc., in order to remove unrelated to road traffic noise events, and then, generate a
noise map.

Other supervised ML techniques were applied for sound source classification. A pat-
tern classification algorithm, using Mel-frequency cepstral coefficients as features, was pre-
sented in Reference [40] to identify the main noise source of the acoustic environment.
Two types of supervised classifiers, Gaussian mixture model and artificial neural net-
works, were compared in this latter work. An aggregation scheme that combine local
features, short-term sound recording features, with long-term descriptive statistics was
presented by Ye et al. [41] using a convolutional neural network for the classification of
urban sound events.

On the other hand, the application of machine learning to acoustic parameters calcu-
lated from the audio signal is a promising topic wherein there are still a few publications
that use their advantages to create analytical models in the environmental acoustics field.
Segura-Garcia et al. [42] explored the application of the ordinary Kriging technique to
perform spatial interpolation of sound pressure level values obtained by a WASN in a small
town and automatically generate a noise map. In Reference [43], predicted road-traffic
noise level produced with a noise mapping software together with urban form indicators
were considered to develop a neural network model. With this machine learning model,
statistical noise maps for other cities can be estimated. Recently, a Long Short-Term Mem-
ory deep neural network technique was presented to model temporal dependency of sound
levels and therefore to predict near-time future values at a certain location [27].
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Other studies in the literature implement machine learning algorithms to create models
for predicting sound pressure levels at a location. To do this, instead of using acoustic data
as input, they use features of location of the sound source, for instance traffic flow and
street width to predict road traffic noise [44,45]. In Reference [46], geospatial features are
used as input of a random forest algorithm obtaining a model to predict seasonal sound
pressure level at different locations. Neural networks can also be used to estimate the
sound pressure level that will be produced by an aerofoil in its design phase [47].

Within the previously cited DYNAMAP project [38], which aim is to develop a dy-
namic noise mapping system of road traffic noise, unsupervised machine learning tech-
niques including clustering and dimensionality reduction have been used to optimize the
choice and the number of monitoring sites [48]. Using hourly averaged LAeq1h acoustic
data of a 24 h measurement campaign in the city of Milan, Italy, a methodology for a more
efficient way to estimate the mean Ld and Ln levels in urban roads compared with the
legislative road classification [9] was presented. Moreover, in order to associate each of
the streets of the pilot zone with one of the two noise profiles detected in the clustering
and then calculate the dynamic map, different non-acoustic parameters were evaluated [9].
Recently, the intermittency ratio indicator was combined with the LAeq1h data to improve
the classification of different types of road in two identified clusters [49].

In this current research, an analysis of urban acoustic environments of the city of
Barcelona is made applying clustering techniques for the identification and classification
of different urban acoustic profiles, rather than only urban roads. To achieve this goal,
data collected in a long-term period of three years by a WASN are used to train different
clustering techniques. In our approach, the categorization is based on a clustering algorithm
using yearly acoustic indexes, instead of daily based, allowing to perform comparison with
the special acoustic zones defined in the city’s SNM.

3. Materials and Methods

In this section, the acoustic data-set and the statistics calculated are introduced first.
Then, a classical descriptive analysis is briefly presented. Finally, the performed unsuper-
vised learning method is described.

3.1. Data-Set Definition

The network of acoustic nodes deployed in Barcelona by the city council during last
years consists of 86 sound sensors [13,50]. The data-set used in this research was collected
by 70 of the 86 sound sensors which provide long-term analysis, from January 2018 until
December 2020. As it is shown in Figure 1, the acoustic nodes are evenly distributed
throughout the city, but the city center concentrates the largest number of nodes.

Figure 1. Map showing the location of the 70 acoustic nodes deployed in the city of Barcelona, Spain.
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Each node captures sound pressure of its location in a continuous mode, 24 h/7 days
a week, using a Cesva TA120 [51] remote sonometer. The accuracy of this type of sensors is
defined as class 1 precision sensor according to the International Standard IEC 61672-1 [52].
Most of the sensors are attached to post lamps or similar urban structures at about 4 m above
the floor level as is required in ISO1996-2 [53]. Then, the node transmits the dataframe to
the central database that stores and processes all the data [13] to be shown in the Plataforma
de Sensors i Actuadors de Barcelona [54], also known as smart city platform.

The sound pressure p(t) is usually measured continuously over a given time period
T = [t1, t2] for all t ∈ T, to quantify the sound level on a single value using the equivalent
sound pressure level in dB, denoted as LeqT [53],

LeqT = 10 · log

[
1
T

∫ t2

t1

p2(t)
p2

0
dt

]
where T = t2 − t1, (1)

where p0 is the sound pressure reference value equal to 20 µPa. In particular, deployed
nodes compute the A frequency-weighting equivalent sound pressure level of one minute
period, denoted as LAeq1m in dBA unit, applying Equation (1).

In this work, sound pressure level results are presented applying a long-term average
of LAeq1m. Different time periods T can be defined, for instance, it is denoted as LAeq1d for
a 24 h day period and LAeq1y for a generic year period. Moreover, the equivalent sound
pressure level in a specific year Y is denoted as LAeqY, for instance LAeq2020 represents the
equivalent sound pressure level for 2020. These values are calculated using an energetic
average with the following Equation [53],

LAeqT = 10 · log

[
1
n

n

∑
i=1

10
LAeqi

10

]
, (2)

where n is the total number of 1-unit time intervals in period T and LAeqi
is the equiva-

lent sound pressure level in the interval i obtained by the sensor applying Equation (1).
For instance, to calculate LAeq1h, 60 values of LAeq1m are averaged.

The data provided by the Barcelona city council contains acquired data from January
2018 until December 2020, exported from the smart city platform in several Excel™ files
in a semicolon tabulated format with a total storage size of 488 MBytes. After the data
is prepared, see Section 3.2 for details, several acoustics indicators are calculated regard-
ing Directive 2002/49/EC [4] in order to perform a descriptive statistical analysis, also
discussed in Section 3.2, and to calculate the clustering model, presented in Section 3.3.
This Directive [4] establishes that member states must calculate the acoustic parameters
Lden and Lnight for the preparation and revision of the SNM. Lden, defined in Equation (3),
refers to the day–evening–night noise indicator obtained for an overall assessment period,
which is usually a one-year period.

Lden = 10 · log
[

1
24

(
12 · 10

Lday
10 + 4 · 10

Levening+5
10 + 8 · 10

Lnight+10
10

)]
, (3)

where Lday, Levening and Lnight, also denoted as Ld, Le and Ln, respectively, are the A-
weighted long-term average sound level. In this paper, Ld, Le and Ln are calculated
using Equation (2), determined over all the day periods (07:00–19:00), evening periods
(19:00–23:00) and night periods (23:00–07:00), respectively, over the assessment period.

3.2. Data Preparation and Exploratory Data Analysis

Previous to the application of the machine learning technique, the raw data in Excel™

files has to be prepared in a format that enables analysis and model design. This preparation
phase includes data cleaning and feature selection.
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Firstly, a data quality analysis was conducted, identifying nulls and the completeness
of the data. Due to some technical mistakes, such as connections errors, maintenance
and breaks, all the information is not usually available. Therefore, an analysis of the
completeness of the data must be carried out to identify the amount of available and missing
data. This analysis resulted in a total data-set with 97,181,718 records, i.e., 97,181,718 min,
equivalent to 1,619,695 h, 67,487 days or 184 years. A total of 1,735,999 of the records
were nulls (1.76%). Some values of this completeness analysis for several nodes are shown
in Table 1 as an example. This table includes information regarding the first day with
available data, the amount of days with records and the amount of minutes with valid or
null records.

Table 1. Example of data completeness analysis for several acoustic nodes.

Node ID First Day Days with Records Total Records Valid Null % Null

BCN1 9 July 2018 853 1,228,320 1,208,463 19,857 1.62%
BCN2 1 January 2018 1031 1,484,640 1,449,202 35,438 2.39%
BCN3 1 January 2018 1037 1,493,280 1,468,077 25,203 1.69%
BCN4 1 January 2018 1047 1,507,680 1,485,358 22,322 1.48%
BCN5 10 October 2018 762 1,097,280 1,074,836 22,444 2.05%
BCN6 1 January 2018 1043 1,501,920 1,477,480 24,440 1.63%
BCN7 1 January 2018 1044 1,503,360 1,477,990 25,370 1.69%
BCN8 1 January 2018 980 1,411,200 1,384,799 26,401 1.87%
BCN9 1 January 2018 1042 1,500,480 1,476,821 23,659 1.58%
BCN10 3 September 2018 813 1,170,720 1,162,474 8246 0.70%

As Table 1 shows, different amount of records are available for each node. The
main reason is that the nodes were deployed on different dates. In fact, there are nodes
that were deployed in early 2019.

Secondly, using this prepared data some statistics were calculated to perform the
analysis. These statistics are usually called Key Performance Indicators (KPIs) when they
are applied in data-driven decision making. The statistics obtained in this research were
processed in a daily and yearly assessment period. To calculate the daily statistics, only the
non-null values were considered. Regarding the yearly statistics, the days without data
were removed.

Together with Ld, Le, Ln and Lden, percentile values were also estimated. PN denotes
percentile values below which N% of the observations may be found. The reader should
note that in acoustics, the literature defines LN as the level exceeded for N% of the time [53],
thus for instance P90 corresponds with L10. In Table 2, calculated daily statistics for node
BCN1 in a 15 days period are shown as an example.

Once the KPIs are obtained, some basic exploratory analysis can be performed to
look for some important features of the data. Although this is not the main objective of
this paper, some results are shown to illustrate the experiment. For instance, the sound
pressure level time series can be analyzed for each node independently. Figure 2 shows
the Lden1d statistics along the available dates. The red vertical lines delimit the period of
national state of alarm decreed by the country, with a lockdown from 15 March 2020 to
21 June 2020. Through these graphs, a discussion could arise regarding the effects of the
COVID-19 disease in noise pollution. Although this analysis is out of the scope of the
current work, readers should note that the impact of the COVID-19 lockdown period in
noise levels and soundscapes has been analyzed in different cities, such as Barcelona [55]
and Milan [56].
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Table 2. Example of summary statistics for node BCN1.

Node ID Date Ld1d Le1d Ln1d Lden1d L011d L101d L501d L901d L991d

BCN1 1 August 2018 64.48 64.64 59.09 67.51 69.36 66.10 62.60 52.49 41.44
BCN1 2 August 2018 64.74 64.89 59.10 67.65 70.20 66.30 62.70 53.79 40.94
BCN1 3 August 2018 64.66 64.72 59.35 67.70 70.06 66.10 62.70 54.09 44.56
BCN1 4 August 2018 62.09 62.95 58.15 66.05 67.20 63.70 60.20 53.08 42.34
BCN1 5 August 2018 61.56 62.09 58.21 65.77 66.36 62.90 59.10 51.90 41.30
BCN1 6 August 2018 63.60 64.28 59.22 67.28 68.56 65.40 62.10 52.00 42.94
BCN1 7 August 2018 63.84 63.72 59.18 67.17 69.62 65.40 62.10 51.80 41.24
BCN1 8 August 2018 64.91 64.00 59.26 67.55 69.70 65.91 62.30 52.19 43.38
BCN1 9 August 2018 65.21 63.82 59.50 67.71 70.30 66.90 62.70 53.70 42.20
BCN1 10 August 2018 64.05 65.19 60.21 68.14 69.68 66.00 62.50 53.90 41.56
BCN1 11 August 2018 63.17 63.42 58.97 66.84 70.56 64.60 60.70 52.80 43.54
BCN1 12 August 2018 60.48 62.86 57.70 65.49 68.00 62.80 58.80 50.79 39.64
BCN1 13August 2018 64.72 64.19 59.32 67.57 71.94 65.90 61.90 51.70 41.16
BCN1 14 August 2018 64.28 64.38 58.92 67.31 70.46 65.90 62.20 52.09 41.34
BCN1 15 August 2018 60.83 62.34 59.40 66.45 67.10 63.50 59.70 52.29 41.34

Figure 2. Lden1d time series for node BCN1. Note that Spanish lockdown corresponds with the period between red lines.

Moreover, a graphical analysis about the probability distribution of the statistics can
be derived from these data. In the following Figures 3 and 4, examples of distribution plots
for BCN1 and BCN27, respectively, are shown finding different behaviors. Node BCN1
has a mean sound pressure level during the night period lower than daily and evening,
see Figure 3, but BCN27 has a probability function for the night period with two modes
with one peak with higher sound pressure level than the peak of the daily function, see
Figure 4.

Additionally, the variability of the BCN27 node’s statistics is higher than BCN1 node’s
ones. These statistics and the variability are going to be used in this work to model the
node’s behavior.
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(a) Violin plot (b) Histogram plot

Figure 3. Statistics probability distribution analysis for Node BCN1.

(a) Violin plot (b) Histogram plot

Figure 4. Statistics probability distribution analysis for Node BCN27.

3.3. Unsupervised Learning Modeling: K-Means

The goal of the modelling stage is to identify different behaviors in the acoustic
nodes that can be correlated with the environmental impact and public health. As it was
introduced in Section 2, clustering techniques learn patterns from data and group the
elements in some clusters with the same behavior.

In this research, several clustering algorithms were trained, including k-means cluster-
ing [57], hierarchical agglomeration [58], partitioning around medoids [59] and expectation
maximization algorithm [60] using the following yearly acoustic indexes, Lday, Levening,
Lnight and standard deviation of Lden. A comparison of the results using Dunn Index [61],
Connectivity [62] and Silhouette Width [63] concludes that k-means has the best perfor-
mance for these data. Figure 5 shows that k-means maximizes Dunn Index and Silhouette
Width and minimizes Connectivity.
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(a) Dunn Index

(b) Connectivity

(c) Silhouette Width

Figure 5. Validation measures for a given set of clustering algorithms and number of clusters.

The method considered in the following, called k-means clustering [57], is an unsu-
pervised learning algorithm which groups the unlabeled data-set into different clusters,
where k defines the number of predefined clusters that need to be created in the process.

This algorithm is iterative with two steps in each iteration t = 1, 2, . . .. In the first step,
called the assignment step, each node is assigned to the nearest centroid using a distance.
Thus, each node Ni is assigned to the cluster centroid C(t−1)

j if j = arg mink
l=1(d(Ni, C(t−1)

l ))

where d(Ni, C(t−1)
l ) represents the distance between node Ni and cluster centroid C(t−1)

l . In



Int. J. Environ. Res. Public Health 2021, 18, 8271 10 of 21

the second step, called the update step, the new centroids are calculated as the element-wise
mean of the nodes assigned to each centroid using the following equation:

C(t)
j =

∑i∈A(t)
j

Ni

|Aj|
, (4)

where A(t)
j = {i|Ni is assigned to C(t−1)

j } is the set that includes the nodes assigned to the

cluster centroid C(t−1)
j in the previous step.

The algorithm iterates this two steps until the centroids have stabilized, i.e., there is
no change or it is residual in their values because the clustering has been successful or
the defined number of iterations has been achieved. To initialise the algorithm, k random
centroids C(0)

j are calculated for a chosen integer k. The euclidean distance was considered
in this research, so for a node Ni represented by their m components Ni = (ni1, ni2, . . . , nim)

and k cluster centroids C(t)
j represented by their m components C(t)

j = (c(t)j1 , c(t)j2 , . . . , c(t)jm )

the distance is defined by the following equation:

d(Ni, C(t)
j ) =

√
m

∑
h=1

(nih − c(t)jh )2. (5)

To avoid any variable to be dominant due to different measurement scales rather
than relevance, the variables should be scaled to bring them down to a similar scale.
Normalization, dividing the centered variables by their standard deviation ( X−X̄

σX
for every

variable X), has been applied to data previous to the training of the k-means algorithm.
In this work, Ld1y, Le1y and Ln1y indicators will be used as inputs to model the behavior

of the nodes in different periods of the day, so the temporal variability during a day is
taken into account. Moreover, yearly standard deviation of Lden1d to identify the variability
of the nodes during a year, denoted as sd1y(Lden1d). As a comparison will be performed
with the SNM of the city, the selection of these variables as inputs is also based on Directive
2002/49/EC [4]. In particular, this Directive recommends as noise indicators Lden1y and
Ln1y for the preparation and revision of SNM, and where appropriate, Ld1y, and Le1y,
for road-traffic noise, rail-traffic noise, aircraft noise around airports and noise on industrial
activity sites. Directive 2002/49/EC [4] also proposes that every five years, SNM showing
the situation in the preceding calendar year should be carried out. However, this year
should be a relevant year, as regards the emission of sound, and an average year, as regards
the meteorological circumstances. In these terms, 2020 can not be considered as a relevant
year due to COVID-19 pandemic lockdown. Therefore, 2019 is the most recent year with
stable data.

In order to show the relevance and the relation between these indicators, Ld2019, Le2019,
Ln2019 and sd2019(Lden1d), a smoothed color density scatterplot representing all the nodes
can be seen in Figure 6. The smoothed color density helps to identify dense zones that
groups nodes with similar behavior. The first row of plots compares the sound pressure
level statistics pairwise. The black line is the so-called identity line meaning that both
statistics are equal. The nodes in the upper right part of each plot show high sound pressure
level values that affects citizen well being. Moreover, it can be observed that there are
nodes that Ln2019 is higher than Ld2019 or Le2019, causing noise annoyance in the citizens.
The second row of plots compares each sound pressure level statistic with the standard
deviation of Lden1d. In these plots, it can be identified different types of nodes: nodes with
low sound pressure level and low standard deviation related with quite zones, nodes with
high sound pressure level and low standard deviation related with a constant high noise
pollution and nodes with high standard deviation that have some days with low sound
pressure level and other days with high sound pressure level. A dense zone around the
point Ld2019 = 70 dBA, Le2019 = 70 dBA, Ln2019 = 65 dBA and sd2019(Lden1d) = 1.2 dBA groups
nodes with a constant noise pollution along both the day and the year.
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Figure 6. Scatter plot of the Ld2019 , Le2019, Ln2019, and sd2019(Lden1d) metrics representing all the nodes. Black line represents
identity line, i.e., equal value for both KPIs.

An important fact of k-means algorithm is that the amount of clusters has to be fixed
before the model is trained. To determinate the appropriate amount of clusters, k-means
algorithm has been trained for k = 1, . . . , 12 and two amount of cluster selection techniques
called Elbow Method [64] and Silhouette [63] have been considered. The selection of these
techniques is based on the objective of the research, to find groups of nodes with the
same behavior, so the focus is to evaluate the similarity of the nodes within the same
cluster, independently of the rest of the clusters. Elbow and Silhouette are calculated on
the relationship within the clusters. Figure 7a shows the within cluster sum of squares
error for k clusters, with k from 1 to 12. The optimal k is the one related with the knee of
the curve, i.e., the one that the increase in the number of clusters is not related with a high
relative reduction in sum of squares error. In this case according to the Elbow Method,
it is k = 4 where the slope changes from −0.39 to −0.12. Figure 7b shows the average
Silhouette width for k clusters, with k from 1 to 12 and the optimal k is the first maximum.
In this case is k = 4, matching with the Elbow method estimation too.
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(a) Within cluster sum of squares errors using Elbow
method

(b) Silhouette width index average per k

Figure 7. Amount of Cluster Selection Techniques.

As the k-means algorithm is randomly initialized, 100 experiments with random seeds
were run to verify if a local or optimal solution is reached. In 96 of them, the solution
presented in Table 3 in Section 4 was reached, obtaining the lowest sum of squares error for
the same amount of clusters.

Table 3. Size and centroids of clusters for k=3, 4 and 9 using data collected during 2019.

Cluster Ld2019 Le2019 Ln2019 sd2019(Lden1d) Size

k-means with 3 clusters

1 69.85 69.50 65.12 1.64 35
2 63.36 63.27 59.54 2.36 26
3 66.05 68.25 66.71 3.78 9

k-means with 4 clusters

1 70.74 70.79 66.39 1.50 23
2 66.40 66.04 62.28 2.06 27
3 66.05 68.25 66.71 3.78 9
4 61.11 60.57 56.24 2.61 11

k-means with 9 clusters

1 68.92 69.72 67.00 2.27 4
2 68.69 66.75 62.37 2.44 7
3 65.89 68.25 66.65 3.92 8
4 60.78 60.33 56.09 2.67 10
5 73.30 74.11 71.11 2.50 2
6 70.16 70.00 65.23 1.32 14
7 64.19 64.89 62.33 2.40 10
8 66.78 66.37 61.76 1.50 11
9 72.46 72.34 67.69 1.16 4

3.4. Software and Technology

The preparation, transformation, analysis and modelling of the data have been per-
formed using the Statistical Programming Language R [65], combining a local environment
using R version 3.5.1 with a cloud environment provided by RStudio Cloud using R ver-
sion 4.0.3. The cloud environment has been used to parallelize some tasks. The following
libraries have been involved in the tasks: stringr (Version 1.4.0), dplyr (Version 1.0.5), tidyr
(Version 1.1.3), cluster (Version 2.1.1), ggplot2 (Version 3.3.3), hrbrthemes (Version 0.8.0),
imputeTS (Version 3.2) and zoo (Version 1.8-9).

To ensure the reproducibility of the research, in every task that includes a random
step, the seed using the R function set.seed() has been fixed. Due to changes in random
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numbers generation in R version 4.0.0, the way to generate them to be sure that the analysis
will be reproducible in every R version has also been defined.

4. Results and Discussion

In this section, results obtained from applying the clustering technique, see Section 3.3
for details, to the collected data, see Section 3.2 for details, are analyzed and discussed.
Firstly, the selection of the optimum amount of cluster k is reviewed, and a description of
the selected clusters is detailed. Secondly, a spatial and a temporal analysis of the results
are presented. Finally, a discussion about the results regarding the report from the SNM of
Barcelona is presented.

4.1. Clustering Analysis

Although both selection methods agreed with k = 4 clusters, considering Silhou-
ette metric k = 3, k = 4 and k = 9 clustering results have been analysed to compare the
knowledge that can be extracted from them. For a given value of k, k-means algorithm
groups the nodes in k-clusters. Then, the centroid is calculated for each cluster following
Equation (4). These centroids help to identify the different behavioral patterns from an
acoustic perspective. Centroids and features calculated for k = 3, 4 and 9 are shown in
Table 3.

If k = 4 is chosen, the algorithm divides the nodes in four clusters related with high
(cluster 1 or black), medium (cluster 2 or magenta) and low (cluster 4 or brown) ranges of
sound pressure level values and another particular group (cluster 3 or cyan) with a singular
behavior. On one hand, clusters 1, 2 and 4 have similar behavior, i.e., a comparable daily
and evening sound pressure level values and a significantly lower night sound pressure
level values. Moreover, the higher values, the lower variability that are shown in these
three clusters. On the other hand, cluster 3 has almost the same daily and nightly sound
pressure level values but higher evening sound pressure level values. Moreover, the nodes
included in this cluster 3 show the highest variability during the year 2019. Regarding
k = 3 case, the algorithm divide the nodes in three clusters, two of them related with high
(cluster 1) and low (cluster 2) ranges of sound pressure level values and another particular
group (cluster 3) with a similar behavior to the third one in k = 4 clustering. Finally, for a
k = 9 value, the algorithm divides the nodes in nine clusters related with very high (cluster
5 and 9 with medium and low variance, respectively), high (cluster 1 and 2 with medium
variance and cluster 6 with low variance), medium (cluster 7 and 8 with medium and low
variance, respectively) and low (cluster 4) ranges of sound pressure level values. Although
clustering with k = 9 identifies more behaviors than the others, some of the clusters have a
small number of nodes ceasing to be statistically significant, for instance, cluster 5 has only
two nodes. Moreover, proposing action plans for such a large number of clusters can be a
complex and inefficient task from a practical point of view.

In conclusion, the three models identify the same particular group with different
behavior (cluster 3 in all options) from the rest of nodes that are classify depending on their
ranges of sound pressure level values. These results reinforce the selection of the optimal
k = 4 value.

4.2. Description of k = 4 Clustering

Once the quantity of clusters is fixed to k = 4, every node is assigned to a cluster
depending on its distance to the centroids, as it is graphed in Figure 8.
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Figure 8. Nodes assignment to each cluster based on centroids for k = 4. Color legend: cluster 1 (black), cluster 2 (magenta),
cluster 3 (cyan) and cluster 4 (brown).

Regarding the different range of values, cluster 4 belongs to the range with the lowest
sound pressure level values and cluster 2 is in the intermediate values range, as can be seen
in the top row graphs of Figure 8. Furthermore, clusters 1 and 3 contain the nodes with the
highest sound pressure level values. Bottom row graphs of Figure 8 show the relation of
the clusters with the variability. In one hand, cluster 3 presents high variability in the three
periods of the day that can represents an acoustic environment with discontinuous and
impulsive sound sources. In the other hand, cluster 1 presents low variability so the citizen
are exposed to an acoustic environment where constant and stationary sound sources
are predominant.

4.3. Geographical Analysis of the Clusters

A SNM is a set of maps that serve to globally assess the population’s exposure to
noise produced by different noise sources in a given area, and to serve as the basis for the
development of action plans in a city. Moreover, they have to be updated periodically,
at least every 5 years. Therefore, it can be helpful to figure out the geographic relationship
between the acoustics nodes, to identify areas of the city that are related with the clusters.
Taking advantage of the performed k = 4 clustering, it is possible to combine the results with
the spatial information to perform a geographical analysis of the city’s sound environments.
Figure 9 shows three maps where the location icons represents the node’s location. If the
location icon is colored, the color represents the assigned cluster. Inside the icon, there is a
plot symbol that shows, if colored, the equivalent sound pressure level Lden2019 according
to ISO 1999 [53].
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(a) Nodes’ location and cluster
membership information

(b) Nodes’ location, Lden2019
range and cluster membership in-
formation

(c) Nodes’ location and Lden2019
range information

Figure 9. Maps developed for the geographical analysis with combined spatial, sound level and cluster information.

Looking at the maps, geographic patterns appear with concentrations of nodes of the
same cluster in areas of the city. Nodes of the cluster 1, those with the highest sound pres-
sure level values, are located in the southwestern section of the city, while the northeastern
section is related with lower sound pressure level values. More details can be obtained
if the location of nodes belonging to cluster 1 is consulted. These nodes are related with
locations near wide streets with high volume of vehicular traffic in south and west of the
city such as Avinguda Paralell (nodes BCN2, BCN3, BCN4 and BCN32), Avinguda Diagonal
(nodes BCN8, BCN14, BCN16 and BCN39) Travessera de Dalt (nodes BCN20, BCN21, BCN64,
BCN65 and BCN66) which are the natural entrances to Barcelona city. Regarding cluster 3,
it has been found that the location of its nodes is related with evening and nightly leisure,
zones with some pubs such as La Ribera (node BCN26), Carrers del Escudellers (node BCN23),
entertainment zones such as Gracia District (nodes BCN43, BCN44, BCN45 and BCN47) or
shopping streets such as Passeig de Gracia (node BCN37).

The maps included in Figures 1 and 9 are available in an interactive discovery version,
developed in python [66], accessible by this github repository link [67] clicking on Open in
Colab button (accessed on 16 May 2021).

4.4. Temporal Analysis of the Clusters

In a big city like Barcelona, acoustic environments may change over time due to sound
sources mobility in space and variability in time and amplitude. There may be several
reasons for these changes, among them the following are worth mentioning: modifications
in the mobility of the citizens, effects derived by the SNM’s action plans to improve the
acoustic quality of the city, tourism and leisure places reallocation or special situations
such as a lockdown derived by a pandemic situation. So, it is important to monitor the
evolution of the statistics and the implications in the clusters composition.

As presented in Section 3.3, the k-means method was trained with a one year data,
also called window, in particular 2019, allowing to identify the node’s statistics and the
cluster to which belongs. Once the clusters have been identified, it is possible to investigate
behavioral changes of nodes over time using a sliding window. This monitoring technique
can be related with a long-term noise pollution strategy, if a one-year sliding window is
considered to have enough previous information. The data-set includes data from January
2018 until December 2020, thus the node’s cluster to which it belongs is calculated from
31 December 2018 until 31 December 2020.

Firstly, a study of the monthly evolution with a yearly sliding window of the amount
of nodes per cluster is represented in Figure 10. Sound sources may have seasonality due
to external effects, such as tourism or work-periods, that change during seasons of the year.
Therefore, a one-year window is appropriate to identify trend, cycle patterns or special
events because it is not affected by seasonality.

https://github.com/AntonioPL/BCN_Noise/blob/main/Unsupervised_Learning_Noise_Pollution_Gegraphic_Analysis.ipynb
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Figure 10. k = 4 clusters assignment (yearly sliding window).Note that Spanish lockdown corresponds
with the period between red lines.

The graphs in Figure 10 show that, before lockdown was established in March 2020,
the cluster distribution is stable. Note a small reduction in clusters 1 and 2, those in
the ranges with higher sound pressure level values, indicating that noise pollution was
decreasing in Barcelona. During the lockdown period, a noticeable increase in the amount
of nodes belonging to the cluster 3 appears as expected, as this cluster is linked with higher
variability. As the size of the sliding window is one year, this monitoring analysis helps
smart cities to identify the tendency of the acoustic environments and the long-term effects
of action plans.

Reducing the size of the sliding window to one month previous to the date, short-term
changes and seasonality can be observed. Then, a study of the monthly evolution with a
monthly sliding window of the amount of nodes per cluster is represented in Figure 11.

Figure 11. k = 4 clusters assignment (monthly sliding window). Note that Spanish lockdown
corresponds with the period between red lines.

It can be observed in Figure 11 that there was a seasonal variation in July of every year,
causing an increase in the amount of nodes belonging to cluster 3. When lockdown was
established in March 2020, there was a significant change in the noise pollution, increasing
the nodes belonging to cluster 4 that is related with quiet areas. After the state of alarm was
over by the end of June, the clusters’ distribution became similar to the previous pandemic
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situation except for a small reduction in clusters 1 and 3, which is related with a lower
noise pollution.

As a conclusion, once the unsupervised algorithm is trained, this temporal analysis
with different sliding window sizes can help city managers to properly monitor acoustic
areas and their noise pollution according to their objectives. Moreover, new nodes could
be included in this monitoring model allowing to estimate the area to which they would be
assigned and also to compare with nodes in other zones or cities.

4.5. Discussion Regarding the Machine Learning Model Results and the City SNM Report

The SNM of Barcelona city [14,68], which last release is from 2017, is divided into three
different maps and related reports that graphically describe the exposure of the citizens
to the sound sources in different areas following the recommendations of the Directive
2002/49/EC [4]. The noise map, Mapa de Soroll in Catalan, shows the sound pressure
levels using isophonic curves coming from different sources and in different time periods.
The capacity map, Mapa de Capacitat in Catalan, classifies the city in zones of different
acoustic sensitivity, determining the maximum limits of noise permitted by regulations.
Finally, the sites that exceed the permitted levels are included in the overcoming map,
Mapa de Superació in Catalan.

Examining the places that were identified in the overcoming map, a comparison has
been performed with the results obtained with the proposed machine learning method.
Table 4 contains an overview of this comparison. In the first two columns, a list of the
zones that are highlighted in SNM report for the overcoming map and their classification
in different periods of the day are shown. In the rest of the columns, a count of the nodes
per cluster corresponding to each zone has been performed including the total amount of
nodes per zone in the last column. In general, Table 4 shows that cluster 1 is mainly related
with day and evening periods in the overcoming map, while cluster 3 is mainly related
with night period.

The first four rows of Table 4 present information regarding places where day and
evening periods have a high level of noise exposure. The following are included in the
overcoming map: Sarrià - Sant Gervasi, corresponding with node BCN18 from cluster 2 and
nodes BCN22, BCN50 from cluster 1, Avinguda Diagonal corresponding with nodes BCN14,
BCN16 and BCN39 from cluster 1 and BCN17 and BCN36 from cluster 2, Ronda General
Mitre corresponding with nodes BCN20, BCN21, BCN64, BCN65 and BCN66 from cluster
1 and Carrer Balmes corresponding with nodes BCN6, BCN7 and BCN8 from cluster 1.
In summary, cluster 1 has 13 of its 23 nodes located in zones that are included in the
overcoming map. The other five nodes, except node BCN51 that is far from these zones,
are near to the previous places. It is important to mention that the remaining four nodes
of cluster 1 are related with Avinguda Parallel which was not included in the SNM report,
but the machine learning method has identified them. Therefore, it is recommended to
include them in the next release of this overcoming map.

Table 4. Overcoming map zones and clusters summary. Note that percentage (X%) is calculate over each zone. Note that d, e and n in
brackets correspond to day, evening and night period, respectively.

Zone SNM Class Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total Zone

Sarrià-Sant Gervasi Overcoming Map (d, e and n) 2 (67%) 1 (33%) 0 (0%) 0 (0%) 3
Avinguda Diagonal Overcoming Map (d and e) 3 (60%) 2 (40%) 0 (0%) 0 (0%) 5

Ronda General Mitre Overcoming Map (d and e) 5 (100%) 0 (0%) 0 (0%) 0 (0%) 5
Carrer Balmes Overcoming Map (d and e) 3 (100%) 0 (0%) 0 (0%) 0 (0%) 3

Avinguda Parallel No included in SNM 4 (80%) 1 (20%) 0 (0%) 0 (0%) 5
Gràcia Overcoming Map (n) 0 (0%) 0 (0%) 4 (100%) 0 (0%) 4

Ciutat Vella Overcoming Map (n) 0 (0%) 4 (67%) 2 (33%) 0 (0%) 6

Others —– 6 (15%) 19 (49%) 3 (8%) 11 (28%) 39

Total —– 23 27 9 11 N = 70
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The last two rows of Table 4 present information regarding places where the night
period has a high level of noise exposure, and the following are included in the overcoming
map: Sarrià-Sant Gervasi, corresponding with node BCN18 from cluster 2 and nodes BCN22
and BCN50 from cluster 1, Gràcia, corresponding with nodes BCN43, BCN44, BCN45 and
BCN47 from cluster 3 and Ciutat Vella, corresponding with nodes BCN10, BCN24, BCN27
and BCN53 from cluster 2 and nodes BCN23 and BCN26 from cluster 3.

Barcelona city council has also defined in the SNM report two Special Regimen
Acoustic Zones (SRAZ), which are subzones of the previously commented, related with
nightly entertainment activities. These two zones are Vila de Gràcia, corresponding with
nodes BCN43, BCN44, BCN46 and BCN47 from cluster 3 and Barri Gótic i Rambla del Raval,
corresponding with node BCN24 and BCN27 from cluster 2 and nodes BCN23 from cluster 3.
In summary, cluster 3 has 9 elements, 5 of them are included in the SRAZ and can be
observed in Figure 9. Other nodes from cluster 3 but not included in the SRAZ are near
them, except node BCN42 which is isolated from the rest. As a result, the proposed
unsupervised learning technique can help to identify new locations with certain acoustic
conditions.

5. Conclusions

Urban acoustic environments should be continuously monitored in large cities,
because of the fact that sound sources affect the well-being and quality of life of citi-
zens. In recent years, wireless acoustic sensor networks have been deployed in cities to
capture information about the sound environment over long periods of time and at many
locations. This network of sensors generates huge amount of data that can not be simply
processed but a machine learning algorithm can be applied in order to obtain data insights,
predictions and relevant information from the data.

This paper has presented the analysis of urban acoustic environments applying unsu-
pervised machine learning techniques, specifically k-means method, to identify and classify
different acoustic profiles of the city using yearly averaged sound pressure level indicators
as input of the clustering approach. It has been shown that the k-means method can find
out relationships between input variables and group the node locations according to their
similarity. This technique does not need labeled input and output data to train the model
and automatically create clusters of nodes that share an acoustic behavior. To explore the
suitability of this technique, sound pressure level values acquired by 70 acoustic nodes
during a three year campaign in the city of Barcelona have been used. After the data-set
was prepared, different acoustic indicators, Lden, Lday, Levening, Lnight and some statistics
have been calculated to train several algorithms with clean and adequate feature inputs.

The modelling phase has been carried out using yearly average indicators from data
of 2019, because it has shown to be a reference year regarding Directive 2002/49/EC.
The optimum amount of clusters has been chosen using Elbow and Silhouette methods,
resulting in k = 4. However, clustering with k = 3 and k = 9 have been also analyzed to
compare the knowledge that can be extracted from them. In general, two different behaviors
have been detected. One type where clusters have higher sound pressure level values
during day and evening periods than during night period, and other type where sound
pressure level values are higher during evening period than during day and night periods.
Moreover, as the average sound pressure level of the cluster increases the variability of the
values decreases.

After the model is developed, acoustic nodes have been assigned to created clusters to
perform both spatial and temporal analysis of the results. The geographical analysis allows
to identify areas of the city that are related with the different clusters and detect relationship
between the acoustics nodes. Applying different sliding window sizes, behavioral changes
over time have been investigated. With a size of one year, the tendency of the acoustic
environments and the long-term effects of action plans have been analyzed. Reducing the
size of the sliding window to one month, short-term changes and seasonality effects have
been studied. Finally, a comparison between the results obtained by the machine learning
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model and the last strategy noise mapping report from the city has been performed. Most
of the locations appearing on the overcoming map have been found with the developed
k-means model. In addition, an area has been discovered that should be considered within
the overcoming map in the next revision of the map. Moreover, the developed model can
be applied regularly to detect nodes with similar behavior to previously identified clusters
and to follow the temporal evolution of the clusters.
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