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ABSTRACT

Acute kidney injury (AKI) is a common complication in critically ill and perioperative patients and is associated with
mortality, morbidity, medical costs, and progression to chronic kidney function. Unfortunately, despite numerous
research efforts, until recently, there was no AKI preventive therapy supported by level 1 evidence. Among the several
factors that contribute to renal damage, two of the major triggers of AKI development are renal hypoperfusion and renal
medullary hypoxia. The intravenous administration of a mixture of amino acids promotes the prevention of AKI through
multiple mechanisms: the recruitment of renal functional reserve, increased renal blood flow, and improvements in
renal oxygenation. Such mechanisms of action led to increased glomerular filtration rate and urine output in preclinical
and pilot clinical studies. To test if these benefits on physiological parameters could be translated into clinically
meaningful outcomes, a multicenter, randomized, placebo-controlled, trial was conducted in the cardiac surgery setting.
Among 3511 adult patients undergoing elective cardiac surgery with cardiopulmonary bypass, intravenous amino acid
administration, compared to placebo, significantly reduced the occurrence of AKI, providing the first level 1 evidence of
an effective treatment for AKI prevention. In this review, we provide the epidemiology and pathophysiology of cardiac
surgery-associated AKI and the concept of renal functional reserve. Then, we summarize the underlying mechanisms of
intravenous amino acid infusion as a renoprotective strategy and its preclinical and clinical evidence. Finally, we discuss
the existing evidence gaps and future directions of this promising intervention.
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INTRODUCTION

Acute kidney injury (AKI) is a common and serious complica-
tion in patients suffering from critical illness and undergoing
major cardiac or non-cardiac surgery. Traditionally, its incidence
ranges widely depending on the population investigated and
definition used. However, after the initial international consen-
sus criteria [Risk, Injury, Failure, Loss of kidney function, and
End-stage kidney disease (RIFLE)] [1], followed by Acute Kid-
ney Injury Network (AKIN) [2], the current definition and diag-
nostic criteria were established by the Kidney Disease: Improv-
ing Global Outcomes (KDIGO) criteria, where AKI is defined as
an abrupt decrease in kidney function and diagnosed with two
functional markers, that is serum creatinine and urine output
[3] (Table 1).

The global burden of AKI is substantial [4]. The annual num-
ber of deaths from AKI is approximately 300000, exceeding
that from common pathologies like prostate cancer, breast can-
cer, heart failure, and diabetes. More than 1 million people
experience AKI during hospital stay per year, which corre-
sponds to 3.5% of overall hospital admissions. The develop-
ment of AKI results in excess hospital costs of US$7500 per
admission, which accounts for US$9 billion worldwide every
year.

In high-income countries, AKI occurs mostly in the intensive
care unit (ICU). According to an international AKI epidemiolog-
ical study (AKI-EPI study) in 2015, 57.3% (1032/1802) of critically
ill patients admitted to the ICU had AKI. Moreover, increasing
AKI severity was associated with increased hospital mortality,
and the occurrence of AKI resulted in worsening renal function
at hospital discharge [5]. These findings were confirmed by re-
cent large cohort studies in patients with sepsis [6] and those
undergoing major surgery [7]. Such negative effects of AKI trans-
late into long-term outcomes, including mortality, development
of chronic kidney disease (CKD), and health-related quality of
life (HRQoL) [8]. Moreover, patients with severe AKI are often
prescribed renal replacement therapy (RRT) [5]. Although RRT
can correct life-threatening metabolic, electrolyte, and fluid de-
rangements attributable to AKI, its use consumes considerable
resources and increases the financial burden of care [9]. Patients
who undergo RRT are at high risk of progression to dialysis de-
pendence, which further reduces HRQoL and increases health-
care costs [10, 11].

Due to the complexity and inaccessibility of the kid-
neys, the pathophysiology of AKI remains incompletely un-

Table 1: Acute kidney injury staging according to the Kidney Disease
Improving Global Outcomes criteria [3].

Stage Serum creatinine criteria Urine output criteria

1 1.50-1.9 times baseline <0.5 ml/kg/h for 6-12 h
0.3 mg/dl increase

2 2.0-2.9 times baseline <0.5 ml/kg/h for =12 h

3 3.0 times baseline <0.3 ml/kg/h for =24 h

Increase in serum creatinine to Anuria for >12 h
>4.0 mg/dl

Initiation of renal replacement

therapy

Decrease to eGFR to

<35 ml/min/1.73 m? (in

patients <18 years)

eGFR, estimated glomerular filtration rate.

derstood. Nonetheless, several mechanisms are considered
to play a key role, including renal hypoperfusion, ischemia
reperfusion syndrome, tubular cell injury, and renal tissue
hypoxia [12-14]. Thus, optimization of renal perfusion and
oxygenation can is a logical therapeutic target for renal
protection.

To reduce the occurrence of AKI or reverse progressive renal
dysfunction after AKI, various interventions have been tested
over several decades, without identifying an effective interven-
tion supported by high-quality randomized evidence (i.e. mul-
ticenter, large-scale, randomized placebo-controlled trial). Re-
cently, however, such a trial was finally published. The Intra-
venous Amino Acid Therapy for Kidney Protection in Cardiac
Surgery (PROTECTION) trial, a multicenter, double-blind ran-
domized controlled trial (RCT), showed that infusion of amino
acids reduces the occurrence of AKI compared to placebo among
adult patients undergoing elective cardiac surgery with car-
diopulmonary bypass [15]. This narrative review aims to describe
the concept of renal functional reserve and the possible mecha-
nisms of action by which intravenous amino acid therapy exerts
its renoprotective effects. Then, we summarize the available evi-
dence of amino acid infusion for renal protection and its clinical
implications in critically ill and perioperative settings. Finally,
we discuss the current knowledge gaps and future perspectives
of this novel therapeutic strategy.

RENAL FUNCTIONAL RESERVE

To clarify how intravenous amino acid infusion works for kid-
ney protection, it is of paramount importance to understand the
concept of renal functional reserve (RFR).

Several vital organs have some additional capacity to cope
with increased demand. For example, the heart can increase
stroke volume and heart rate during exercise to meet the in-
creased oxygen demand. A similar mechanism applies to the
lungs, which can increase carbon dioxide excretion by increas-
ing respiratory rate and recruiting inspiratory reserve volume.
In the case of the kidneys, such reserve capacity is called RFR. In
subjects with normal baseline glomerular filtration rate (GFR),
an increased GFR is observed after some triggers (for example,
acute protein load, intravenous amino acid administration, or
unilateral nephrectomy) [16-21]. Such a GFR response represents
the RFR, which is the kidneys’ capacity to increase GFR by new
nephron recruitment, renal blood flow (RBF) increases, and hy-
perfiltration [22]. Thanks to the mechanisms of RFR, estimated
GFR (eGFR) is fairly maintained after some insults. Notably, the
kidneys are capable of maintaining their estimated GFR within
a normal range until half of the nephrotic mass is lost, such
as in the case of nephrectomy [23-25]. However, RFR is gradu-
ally lost due to its progressive utilization (for example, aging,
chronic pathological states). A decline in eGFR is first detected
after RFR is exhausted and cannot fully compensate for reduced
renal filtration capacity as the kidney function declines accord-
ing to multiple factors, including aging, CKD, and diabetes mel-
litus [26, 27]. The RFR is calculated as the difference between the
maximal GFR achieved in response to stimulation and the base-
line estimated GFR [28].

Given these properties, RFR may serve as a physiological
biomarker in AKI [29]. Potential clinical applications may include
preoperative AKI risk assessment in high-risk surgery (for in-
stance, cardiac surgery) [30], renal recovery assessment after AKI
[26, 31-33], and risk stratification in living-donor kidney trans-
plantation [25].
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Figure 1: Mechanism of action of intravenous amino acids for kidney protection. TGF, tubuloglomerular feedback.

MECHANISMS OF ACTION OF INTRAVENOUS
AMINO ACID

Proposed mechanisms of action of how amino acid therapy ex-
erts its renoprotective effects involve metabolic, endocrine, and
paracrine factors, tubuloglomerular feedback (TGF), and renal
oxygenation [34-37] (Figure 1).

Metabolic mechanisms

One of the initial theories proposed regarding the potential
mechanisms of amino acids on renal function suggested that
the kidney might enhance its activity directly via renal amino
acid metabolism [38]. This theory posited that increased amino
acid metabolism in the kidneys could result in vasodilation, sim-
ilar to the physiological responses observed in other parts of the
body. However, a comparable vasodilatory effect was also noted
in the afferent renal arterioles after the infusion of certain amino
acids, such as alpha-amino-isobutyric acid, even though these
amino acids cannot be metabolized by the kidney due to the ab-
sence of the necessary enzymes [39]. Moreover, direct infusion
of metabolizable amino acids into the renal artery did not lead
to comparable increases in renal vasodilatation as observed af-
ter intravenous infusion of the same amino acids [40]. Thus, the
intrarenal metabolism mechanisms of amino acids do not seem
central to renal vasodilatory effects of amino acids.

Endocrine and paracrine mechanisms

Endocrine and paracrine factors may play a crucial role in this
process. Nitric oxide (NO) seems to play an important role in
increased RBF and GFR after amino acid administration [41-
43]. Indeed, NO synthase inhibitors diminish renal vasodilata-
tion and hyperfiltration in response to amino acid infusion [44].

Moreover, the observation that NO can dilate renal afferent ar-
teriole directly further supports the relevance of this mecha-
nism [44]. As a substrate for NO synthase, L-arginine is con-
sidered a key component; however, other amino acids can also
induce renal vasodilatation [39]. Thus, the exact key effector
molecule remains uncertain. Prostaglandins are another im-
portant class of paracrine molecules in the context of amino
acid infusion. Prostaglandin synthesis inhibitors blunt the GRF
response after amino acid infusions [45, 46], which can be
reversed when arginine infusion is applied [47]. Moreover,
evidence suggests that the expression of renal cortical NO
synthase [48] and cyclooxygenase-2 [49] correlates with dietary
protein intake. These enzymes increase the production of NO
and prostaglandins, which contribute to renal afferent arterial
vasodilation.

Glucagon is released from alpha cells in the pancreas in re-
sponse to sympathetic nervous stimulation, hypoglycemia, and
ingestion of specific amino acids [50]. Pancreatectomized hu-
mans and dogs lose RFR [51-53]. Glucagon stimulates the pro-
duction of prostaglandins [45], inducing renal afferent arterio-
lar vasodilatation. Branched chain amino acid infusion, which
does not trigger glucagon release, does not increase RBF and GFR,
while alpha-amino-isobutyric acid [40], which triggers glucagon
release, increases them [39].

Tubuloglomerular feedback

As a delicate renal autoregulatory system, the TGF is a re-
nal autoregulatory system that controls glomerular filtration at
nephron level [54]. Specifically, TGF regulates renal afferent ar-
teriolar tone, and glomerular capillary pressure according to the
delivery rate of fluid and salt to the macula densa. Activation
of TGF leads to afferent arteriolar vasoconstriction, which in
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turn results in reduced glomerular capillary pressure and GFR
to maintain distal delivery of sodium chloride [55].

Recent advances have deepened our understanding of the
proximal tubule, where amino acids and sodium are co-
transported. This process is enhanced by amino acid adminis-
tration, leading to increased reabsorption of sodium and chlo-
ride. As a result, the tubular fluid that reaches the macula densa
has a lower sodium chloride concentration, which in turn re-
duces the signal required for activating TGF and decreases af-
ferent arteriolar resistance [56]. Additionally, glycine appears
to have vasodilatory effects, functioning as a co-agonist to N-
methyl-D-aspartate receptors located on the proximal tubule
membranes [57]. These mechanisms collectively improve renal
perfusion and elevate GFR.

Renal oxygenation

Amino acids can improve oxygenation in the renal cortex and
medulla. This mechanism was illustrated in a recent study on
non-anesthetized sheep [58]. After implementing continuous
measurements of renal cortical and medullary oxygenation un-
der general anesthesia, the sheep received intravenous amino
acids. Amino acid infusion not only increased renal oxygen de-
livery and GFR but also improved renal cortical and medullary
tissue oxygenation. Given the crucial role of renal medullary
hypoxia in AKI development [59-61], this mechanisms appears
to be central to the renoprotective effects of the amino acids-
induced recruitment of RFR.

CLINICAL EVIDENCE OF INTRAVENOUS
AMINO ACIDS FOR KIDNEY PROTECTION

We performed a comprehensive literature review based on the
following PICOS (patient, intervention, control, outcome, and
study design) framework: critically ill and perioperative adult pa-
tients (P), intravenous amino acid infusion (I), any comparator
(C), AKI (0), and randomized controlled trial (RCT). We identified
six RCTs testing intravenous amino acid infusion for renal pro-
tection in critically ill and perioperative patients (the complete
search strategy and study selection flowchart are found in the
supplementary material and Figure S1) [15, 62-66]. Table 2 sum-
marizes the characteristics of these six trials.

The first RCT of amino acid infusion for renal protection was
published in 1973 [62]. This single-center, double-blind RCT en-
rolled 53 patients with acute renal failure and assigned them
either to receive an intravenous fluid therapy consisting of 1.3%
amino acid plus hypertonic glucose or hypertonic glucose alone.
Survival from acute renal failure was 75% in the amino acid
group versus 44% in the control group (P = 0.02). Such survival
benefits were confirmed in different subgroups including pa-
tients receiving RRT. However, the medical community somehow
neglected this promising intervention until recently.

A subsequent single-center RCT in 2007 aimed to evaluate
the dose-response relationship between amino acid therapy and
renal protection [63]. In this trial, 14 critically ill patients with
non-oliguric acute renal failure were randomly allocated to 150
or 75 g/day intravenous amino acid therapy. A higher amino acid
infusion resulted in less positive fluid balance (-2407 + 1336 ml
versus +2003 =+ 1336 ml) and less furosemide dose (649 + 293 mg
versus 1003 + 288 mg). In addition, creatinine clearance was im-
proved in the higher amino acid loading group.

Based on these preliminary trial data, a multicenter, phase 2
RCT was conducted to test the renoprotective effects of 100 g/day

amino acid therapy compared to usual care in 474 critically ill
patients [64]. Although the primary outcome, duration of re-
nal dysfunction [serum creatinine > 168 mmol/l (approximately
1.9 mg/d)], was not different [mean difference, 0.21 AKI days per
10 patient ICU days; 95% confidence interval (CI), -0.27 to 1.04],
intravenous amino acid therapy increased eGFR and daily urine
output (mean difference, 300 ml/day; 95% CI, 145 to 455 ml/day).
In addition, RRT prescription was numerically reduced (5.5% ver-
sus 10.5%; P = 0.06). No serious adverse event was considered
related to the study intervention. Furthermore, a post-hoc anal-
ysis of this trial found that 90-day mortality was lower in the
amino acid group, among patients with normal renal function
at randomization (14% versus 21%; P = 0.034) [67].

Amino acid therapy was also investigated in cardiac surgery
settings. A single-center pilot RCT was performed in 69 adult
patients undergoing cardiac surgery with cardiopulmonary by-
pass [65]. Although the duration of renal dysfunction was not
different, amino acid therapy reduced the duration of AKI (0.08
versus 0.45 days of AKI per 10 hospital days), improved eGFR
(+10.8%; 95% CI, +1.0 to +20.8%), and increased daily urine out-
put (1.7 &£ 0.9 1 versus 1.4 £ 0.5 1). Again, no serious adverse
events were reported. Similar findings were obtained in another
single-center RCT on patients undergoing surgery with car-
diopulmonary bypass [66]. Amino acid administration resulted
in a lower rate of AKI (30% versus 56%; P = 0.04), and higher eGFR
(64.8 versus 56.4 ml/min/1.73 m?; P = 0.049) and urine output
(2420 versus 1865 ml; P = 0.049) than standard care.

These small to moderate-sized RCTs consistently showed
that intravenous amino acid therapy improved eGFR and urine
output without any safety issues, which formed the evidence-
based foundation for conducting a large-scale multicenter RCT
to confirm its renoprotective effects.

The PROTECTION trial was designed to test the efficacy and
safety of intravenous amino acid therapy (2 g/kg of ideal body
weight per day, up to 100 g per day) in 3511 adult patients under-
going scheduled cardiac surgery using cardiopulmonary bypass
in 22 centers from three countries. The enrolled patients were
randomly assigned to receive intravenous infusion of amino
acids or an equivalent amount of placebo (Ringer’s solution) [15].
The study drug administration lasted until ICU discharge, RRT
initiation, or 72 hours of study treatment, whichever occurred
first. Overall, the median study drug infusion duration was
approximately 30 hours with a median infusion rate of 40 ml/h.
Intravenous amino acid infusion reduced AKI occurrence [26.9%
versus 31.7%,; relative risk (RR), 0.85; 95% CI, 0.77 to 0.94]. Most
patients suffered from stage 1 AKI stage according to the KDIGO
criteria (24.4 versus 28.1%; RR, 0.87; 95% CI, 0.78 to 0.97), and
stage 3 AKI was also reduced in the amino acid group (1.6%
versus 3.0%; RR, 0.56; 95% CI, 0.35 to 0.87). These findings were
confirmed by prespecified subgroup analyses. Of note, the AKI-
reducing effect was maintained in a subgroup of CKD patients
(RR,0.86;95% CI,0.74 to 0.99) [68]. The use of RRT was 1.4% versus
1.9% (RR, 0.73; 95% CI, 0.43 to 1.22). Other clinical outcomes and
adverse events were not different between the two groups. Blood
urea levels were higher in the amino acid group (median highest
value during the ICU stay, 53 versus 41 mg/dl); however, such an
increase was expected and did not reach the threshold to initiate
RRT.

Following the publication of the PROTECTION trial, a
systematic review and meta-analysis was conducted to com-
prehensively understand the role of amino acid therapy in
perioperative settings [69]. Data synthesis from 15 eligible stud-
ies totaling 8628 patients yielded that amino acid infusion was
associated with reduced AKI risks compared to any comparator
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(RR, 0.66; 95% CI, 0.47 to 0.94; I = 50%). A Bayesian meta-analysis
estimated a 99.1% probability of AKI reduction with amino acid
therapy. Beneficial effects of amino acid therapy were also
found in reduced serum creatinine levels, increased eGFR, and
shortened duration of hospital stay. Therefore, the currently
available evidence shows that intravenous amino acid therapy
reduces AKI in perioperative settings and exerts renoprotective
effects on surrogate outcomes (for example, eGFR and urine
output) in critically ill settings.

CLINICAL IMPLICATIONS OF THE AVAILABLE
EVIDENCE

The findings of the PROTECTION trial have substantial clinical
implications in cardiac surgical settings. Thanks to its internal
(for example, placebo-controlled double-blind design and high
protocol compliance) and external validity (for example, multi-
center design involving three countries, a wide range of the eli-
gibility criteria), the findings are robust and thus should prompt
clinicians to apply the intervention into their routine cardiac
surgery practice to reduce the risk of AKI. Not only the over-
all AKI (especially stage 1 AKI) but also stage 3 AKI was sig-
nificantly reduced, which suggests the potential mitigation of
AKI severity. Hence, intravenous amino acid therapy has become
the first effective prevention for AKI proven by high-quality ran-
domized evidence. Given the widespread conduct of on-pump
cardiac surgery (approximately 2 million procedures every year)
and its associated AKI occurrence worldwide (30% of patients
undergoing cardiac surgery), amino acid therapy might pre-
vent AKI in hundreds of thousands of patients when this inter-
vention is applied as routine care globally. Such AKI reduction
could be translated into considerable improvements in long-
term relevant outcomes (for example, development and worsen-
ing of CKD), as well as in savings for the healthcare system and
society.

Interestingly, the consistent AKI reduction effects were pre-
served in patients with CKD. Amino acid therapy likely depends
on RFR recruitment to exert its renal protective properties, to-
gether with a possible mitigation of renal damage toward im-
proved RBF and renal tissue oxygenation. A previous trial sug-
gested its beneficial effects are most likely exerted in patients
with normal baseline renal function [67]. Thus, it would be rea-
sonable to assume a declined treatment effect in patients with
CKD. Contrary to this expectation, AKI was prevented similarly
in patients with and without CKD. The occurrence of AKI on
CKD is common, frequently requires RRT, and results in a wors-
ened CKD stage [70]. Despite a hypothesis-generating subgroup
analysis, the PROTECTION trial suggests the potential of amino
acid therapy to delay renal function deterioration in CKD popu-
lations.

As the PROTECTION trial was not originally designed to
detect a difference in RRT use and the actual incidence was
quite low, the difference did not reach a statistical significance.
Nonetheless, the direction of treatment effects was in favor of
amino acid therapy. Consistent with previous trials, the PRO-
TECTION trial did not observe any safety issues with amino acid
therapy, which is reassuring for clinicians who consider intro-
ducing it into clinical practice.

In critically ill patients, amino acid therapy seems to con-
vey some renal protective effects with improved eGFR, serum
creatinine levels, and urine output. However, none of the avail-
able RCTs is large enough to draw a definitive conclusion when
applying it to routine clinical practice. Thus, outside of cardiac

surgery, the use of this intervention should be limited to re-
search purposes.

FUTURE PERSPECTIVES

The PROTECTION trial showed AKI reduction with intravenous
amino acid administration with favorable trends in RRT use. De-
spite these encouraging results, one may wonder if such an AKI
decrease represents just a functional change in serum creati-
nine levels or a true renal protection from tubular injury [71].
As a pragmatic trial design, the PROTECTION trial did not report
data on damage/stress biomarkers like kidney injury molecule-1
and neutrophil gelatinase-associated lipocalin [72]. Future stud-
ies collecting these AKI biomarkers will help elucidate the phar-
macological mechanisms of action of amino acid therapy and
the renal responses to this intervention.

Previous trials, including the PROTECTION trial, used a so-
lution of a mixture of amino acids as the study intervention
[15, 62, 64, 65]. Among the included compounds, arginine and
glycine seem to play a key role through renal vasodilatation [73,
74]. However, the mechanisms of renoprotection by intravenous
amino acid therapy remains incompletely understood, requiring
further investigation.

The PROTECTION trial reported clinical outcomes up to 6
months. As AKI may affect renal function even years later [70],
further follow-up data would be necessary to determine the
long-term impacts of amino acid therapy. Moreover, quality of
life is one of the core outcomes set for cardiac surgery [75] and
critically ill trials [76]. Although the health-related quality of life
at 6 months was not different in the PROTECTION trial, further
investigation is warranted to evaluate this patient-reported out-
come.

One of the concerns raised when introducing intravenous
amino acid therapy into clinical practice is economic costs.
For example, a 500 ml solution of 10% of a mixture of amino
acids available in the United States (TrophAmine 10%®) costs
approximately US$70, whereas 500 ml of lactated Ringer’s
solution costs US$7. The PROTECTION trial showed a significant
reduction of AKI occurrence without a clear effect on RRT use.
As available agents with similar amino acid compositions may
cost differently in different countries, healthcare costs vary con-
siderably. Thus, a cost-effective analysis is needed to determine
whether such AKI reduction deserves an increased economic
cost for the drug considering local costs in each country. Despite
these uncertainties, the prevention of AKI observed with intra-
venous amino acid therapy remains clinically relevant, given
its large sample size, double-blind design, and broad clinical
applicability. These findings should encourage clinicians to
consider its routine use, particularly for patients who meet the
eligibility criteria outlined in the PROTECTION trial.

The promising data from the PROTECTION trial should also
urge further investigations in other patient populations. For
example, sepsis-associated AKI is the most common form of
AKI and carries a significant burden on patient outcomes and
healthcare system [5]. Non-cardiac major surgery is another
candidate population with its high AKI incidence [7]. Patients
with myocardial infarction-related cardiogenic shock suffer
from multiple AKI risks, including inadequate renal perfusion
due to shock itself, use of contrast media during coronary an-
giography, and hemolysis when mechanical circulatory support
is applied [77]. When designing trials in emergent settings (for
example, sepsis and cardiogenic shock), it seems plausible to
consider a possible urea increase with amino acid infusion to
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Table 3: Future research directions regarding intravenous amino acid infusion for renal protection.

Ul s W N

Assessment of tubular injury using damage/stress kidney biomarkers

Identification of key amino acid components with beneficial effects on renal protection

Long-term assessment including patient-reported outcomes (for example, quality of life)

Cost-effectiveness analysis considering local drug and healthcare costs

Investigation in different patient populations (for example, sepsis, non-cardiac major surgery, cardiogenic shock)

avoid unnecessary RRT initiation attributable to the study inter-
vention. Table 3 summarizes these future perspectives (Table 3).

CONCLUSION

Intravenous amino acid therapy can protect renal function
through recruitment of RFR and direct improvement in re-
nal perfusion and oxygenation. Small to moderate-sized RCTs
consistently showed improvements in eGFR and urine output.
The recently published PROTECTION trial, a large, multicenter,
double-blind RCT reported significant AKI prevention with
amino acid therapy. This trial result not only provides robust ev-
idence to support its use in cardiac surgical settings but should
also stimulate further investigations in other patient popula-
tions. Moreover, cost-effectiveness analysis, long-term evalua-
tion, and assessment of tubular injury using damage/stress AKI
biomarkers are warranted to address uncertainties regarding
this promising intervention.
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