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ABSTRACT
We enrolled consecutive IBS-M patients (n = 25) according to Rome IV criteria. Fecal samples were 
obtained from all patients twice (pre-and post-intervention) and high-throughput 16S rRNA sequen-
cing was performed. Six weeks of personalized nutrition diet (n = 14) for group 1 and a standard IBS 
diet (n = 11) for group 2 were followed. AI-based diet was designed based on optimizing a persona-
lized nutritional strategy by an algorithm regarding individual gut microbiome features. The IBS-SSS 
evaluation for pre- and post-intervention exhibited significant improvement (p < .02 and p < .001 for 
the standard IBS diet and personalized nutrition groups, respectively). While the IBS-SSS evaluation 
changed to moderate from severe in 78% (11 out of 14) of the personalized nutrition group, no such 
change was observed in the standard IBS diet group. A statistically significant increase in the 
Faecalibacterium genus was observed in the personalized nutrition group (p = .04). Bacteroides and 
putatively probiotic genus Propionibacterium were increased in the personalized nutrition group. The 
change (delta) values in IBS-SSS scores (before-after) in personalized nutrition and standard IBS diet 
groups are significantly higher in the personalized nutrition group. AI-based personalized microbiome 
modulation through diet significantly improves IBS-related symptoms in patients with IBS-M. Further 
large-scale, randomized placebo-controlled trials with long-term follow-up (durability) are needed.
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Introduction

Irritable bowel syndrome (IBS) is a chronic func-
tional gastrointestinal disorder that negatively 
impacts the quality of life and healthcare sources.1 

With a prevalence of around 4.1% around the 
world, this common gastrointestinal disorder, 
along with the associated comorbidities, poses an 
important problem for both patients and societies.2 

The symptoms most associated with bowel discom-
forts and pain are a serious threat to public health, 
affecting quality of life significantly, as well as creat-
ing a serious economic loss both in health expenses 
and productivity loss due to absenteeism. The exact 
causes of IBS remain largely unknown. These fac-
tors are multifactorial and varied among patients. 
The pathophysiology of IBS is complex, but recent 
evidence suggests that the gut microbiome may 
play an essential role in the development, progres-
sion, and severity of these symptoms.3 The advent 
of next-generation sequencing has increased inves-
tigations to identify changes in the gut microbiome 
related to IBS. The alteration of gut microbiota 
composition in the IBS context has been repeatedly 
reported by observational studies.4 Some investiga-
tors reported increased fecal Streptococcus5 and 
Proteobacteria levels in the gut mucosa.6 IBS sever-
ity was also associated with lower alpha diversity.7 

A recent systematic review of 24 studies performed 

before 2018 has found that while there was some 
overlap, none of the studies reported the same 
differences in gut microbiota.8,9 This inconsistency 
can be the result of a unique microbiome composi-
tion for each patient and each disease state. In other 
words, discovering disease biomarkers of IBS might 
be challenging due to diverse and heterogeneous 
microbiome compositions across populations. 
The second reason for this inconsistency might be 
that the dynamic alterations of the microbiome 
complicate the interpretation of data in gut micro-
biome studies over time. For this reason, a snapshot 
of observations from cross-sectional studies lacks 
temporal resolution and does not reflect clinical 
features of IBS. Diet is increasingly gaining popu-
larity as an interventional approach to IBS treat-
ment. There are specific evidence-based diets used 
for IBS-symptom relief. Recently, low fermentable 
oligosaccharides, disaccharides, monosaccharides, 
and polyols (FODMAP) diet has emerged as an 
efficacious dietary intervention for IBS.10 

However, adherence to a low FODMAP diet is 
relatively difficult and a significant proportion of 
IBS patients don’t respond to a low-FODMAP diet 
which results in reduced efficacy for this diet.11 In 
addition, FODMAP diet is still not validated to be 
included in guidelines like National Institute for 
Health and Care Excellence (NICE) and there are 
several reports showing that the FODMAP diet is 

Figure 1. Genus level abundance profiles.
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not superior to the diet recommended by NICE 
guidelines.12,13 Precision nutritional interventions 
guided by microbiome profiles also have been gain-
ing attention with promising outcomes. Meydan 
et al. reported that precision nutrition including 
prebiotics and probiotics interventions guided by 
metagenomic analysis resulted in symptomatic 
improvement as well as associated modulation of 
microbiota composition.14

To overcome these microbiome-related inconsis-
tencies in clinical studies, we need to personalize 
microbiota-modifying therapies. This can be done 
through specific personalized diets created by 
machine-learning algorithms, which can handle com-
plex gut microbiome data harboring intrinsic 
correlations.

In this pilot study, we aimed to modulate the gut 
microbiota of IBS patients with an individualized diet. 
The secondary outcome is to measure the therapeutic 
effect of this diet on disease-specific parameters.

Results

Gut microbiota communities difference between IBS 
patients and Healthy Controls

The gut microbiome genus-level abundance profile is 
shown in Figure 1. The gut microbiome profile of the 
recruited patients and the healthy controls showed 
significant differences in beta diversity. Based on the 
unweighted UniFrac dissimilarity measurement of 
microbiota sample pairs, the patient and the healthy 
control groups showed different community profiles 
(p< 10−6, PERMANOVA test with 1,000,000 random 
permutations). The stratified profiles can be observed 
in the tmap visualization (Supplementary material). 
Clear subgroupings between the IBS cases and the 
healthy controls can be observed from these topologi-
cal maps. When bacterial taxa are considered indivi-
dually, the most significant differences between the 
IBS and healthy control groups are observed in 
Ruminococcaceae (p= .014, Mann-Whitney U-test) 
and Clostridiaceae (p= .022, Mann-Whitney U-test) 
families and Ruminococcus (p= .023, Mann-Whitney 
U-test) and Faecalibacterium (p= .0005, Mann- 
Whitney U-test) genera (Supplementary Material).

Disease classification and microbiome-derived 
IBS index scores

A machine learning (ML) based classifier trained 
and tested on pre-interventional microbiota pro-
files exhibited a strong classification performance. 
Using 5-fold cross-validation on the held-out 
XGBoost classifier models, an average ROC-AUC 
of 0.964 and average classification accuracy of 0.91 
were determined. The microbiome-derived IBS 
index scores, which are the inferred disease prob-
ability measurements obtained from XGBoost clas-
sification models were significantly different 
(p< 10,−5 Mann-Whitney U-test) (Figure 2).

Figure 2. The microbiota scores were evaluated for the healthy 
controls and the IBS patients.

Table 1. Change in IBS-SSS scores before and after AI-based microbiome diet vs standard diet.

AI-based microbiome diet Standard diet
P-value 

(paired t-test)

Total IBS-SSS score −124.6 ± 28.5 −31.3 ± 4.2 0.001
● Pain severity −23.2 ± 2.4 −4.6 ± 1.3 0.024
● Days of pain −24.2 ± 5.5 −9.1 ± 2.8 0.032
● Distension severity −32.5 ± 6.7 −12.3 ± 4.1 0.041
● Dissatisfaction with bowel habits −21.4 ± 7.4 −6.8 ± 2.7 0.016
● Quality of life −23.2 ± 8.5 −1.4 ± 0.6 0.001
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Clinical Evaluation of Personalized nutrition vs. 
standard IBS diet groups

The IBS-SSS evaluation for both pre-intervention and 
post-intervention conducted for both groups exhib-
ited significant improvement (p < .02 and p < .001 for 
the standard IBS diet and the personalized nutrition 
interventions, respectively). It was observed that the 
score improvement for the personalized nutrition 

group was significantly greater than the standard IBS 
diet group (Table 1, Figure 3).

The personalized nutrition approach was effec-
tive on all, considering each of the five IBS-SSS 
items. In contrast, abdominal pain frequency, dis-
satisfaction with bowel habits, and IBS-related 
quality of life did not differ significantly in the 
standard IBS diet group (Table 2). No adverse 

Figure 3. a) IBS-SSS scores for personalized nutrition intervention and IBS-SSS scores for the standard IBS diet intervention. b) IBS-SSS 
score categories for personalized nutrition pre-and post-intervention. c) IBS-SSS score categories for the standard IBS diet treatment 
pre-and post-intervention.
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events related to the dietary interventions were 
observed by the respective clinicians.

Post-interventional changes in microbiota 
profiles

After 6-weeks of intervention, a significant shift in 
microbiota profiles in terms of alfa- or beta-diversity 
was not observed in both groups. A trend of decrease 
in the Ruminococcaceae family for the personalized 
nutrition intervention group was observed; however, 
this change was not observed to be statistically sig-
nificant (p= .17, paired t-test). A statistically signifi-
cant increase in the Faecalibacterium genus was 
observed in the personalized nutrition group 
(p= .04), whereas no meaningful change was 
reported for the standard IBS diet group (p= .63) 
(Supplementary material).

Both Bacteroides rich and Preveotella rich 
enterotypes were represented in both personalized 
nutrition and standard IBS diet intervention 
groups without significantly different Bacteroides 
and Prevotella abundances (p= .34 for Bacteroides 
and p= .36 for Prevotella, Mann-Whitney u-test). 
However, we have observed an increase in 
Bacteroides for the personalized nutrition group 
(p> .05), while an increasing trend in Prevotella 
(p= .057) was noticeable in the standard IBS diet 
group. Along with that, a significant increase in 
the putatively probiotic genus Propionibacterium 
(p= .027) was apparent in the personalized nutri-
tion group, whereas no such increase was observed 
in the standard IBS diet group.

The evaluation of microbiota-derived IBS index 
scores

The microbiota-derived IBS index scores both 
improved toward lower scores in both intervention 
groups. The improvement in the personalized nutri-
tion group was observed to be greater (Table 3, 
Figure 4). To observe the correlation between micro-
biota-derived IBS scores with the clinical evaluations 

Table 2. IBS-SSS score categories (mean ± standard deviation) before and after the interventions.
Pre-intervention Post-intervention P-value (paired t-test)

Personalized nutrition
Abdominal pain 76.4 ± 6.4 53.2 ± 15.0 < 0.001
Abdominal pain frequency 62.1 ± 12.0 37.9 ± 18.2 < 0.001
Distension 75.4 ± 7.2 42.9 ± 19.9 < 0.001
Dissatisfaction with bowel habits 75.0 ± 9.3 53.6 ± 18.3 < 0.01
IBS-related quality of life 68.2 ± 10.3 45.0 ± 21.7 < 0.001

Control
Abdominal pain 77.3 ± 6.7 72.7 ± 6.2 0.043
Abdominal pain frequency 66.4 ± 12.3 57.3 ± 17.1 0.074
Distension 71.4 ± 9.6 59.1 ± 17.7 0.041
Dissatisfaction with bowel habits 74.1 ± 6.0 67.3 ± 18.6 0.246
IBS-related quality of life 74.1 ± 7.6 75.5 ± 7.5 0.391

Table 3. Microbiome scores (mean ± standard deviation) before 
and after the interventions.

Pre- 
intervention

Post- 
intervention

P-value (paired 
t-test)

Personalized 
nutrition

0.89 ± 0.04 0.62 ± 0.18 < 0.001

Control 0.87 ± 0.05 0.79 ± 0.11 0.030

Figure 4. a) Microbiota scores for personalized nutrition intervention, b) Microbiota scores for the standard IBS diet intervention.
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(i.e. IBS-SSS), we have measured the explained var-
iance, omega-squared statistics (ω,2,15 and Cohen’s 
f2 statistics16 of IBS-SSS concerning microbiota 
scores. We observed that the progress in clinical 
evaluations was significantly accompanied by the 
microbiota-derived IBS scores in the personalized 
nutrition group (Table 4, Figure 5a), indicating that 
the microbiota scores contribute significantly to the 
explanation of the clinical scores. The predictive 
model, which was trained on the set of IBS cases as 
well as healthy controls, employs regression trees 
evaluated on the microbiota composition, providing 
a logistic regression score ranging between 0 and 1.0. 
This predictive score is an indicator showing the 
association of the microbiota composition with IBS 
cases, that is, it is expected to be closer to 1 in case of 
the syndrome and closer to 0 in healthier cases. 
Indeed, when we compared the microbiota-derived 
IBS index scores to the clinical evaluations (i.e. IBS- 
SSS), we observed that the derived scores are highly 
correlated with the clinical scores, implying 

symptomatic expressivity. However, the microbiota- 
derived scores were not sufficient to explain the 
variance in the control group (Table 4, Figure 5b). 
This might be attributed to the fact that standard 
therapy might conduct interventions involving other 
factors. However, it should be considered that due to 
the small sample size, this conclusion should be 
interpreted carefully. A relatively small variable 
interval (i.e. the clinical scores remained in a high- 
score range for the control group) might be another 
factor complicating the analysis.

Discussion

Evaluating the IBS-index scores on the held-out 
validation cohorts, we observed that the score 
distributions of the IBS patients and the healthy 
controls differ significantly (p= .001, Mann- 
Whitney U-test), implying that the machine- 
learned IBS index is a strong indicator of the 
disease. Dietary habits constitute a strong driver 
of interpersonal variance in the gut microbiome 
composition, and its influence prevails over that 
of genetics by most estimates.17 Our study 
investigated the therapeutic effect of the perso-
nalized diet on the individual gut microbiota 
and the disease-specific symptoms. Most IBS 
patients regard diet as an essential trigger for 

Table 4. The effect-size relation of microbiome-derived IBS 
scores and IBS-SSS scores for both groups.

Both groups 
combined

Personalized nutrition 
group

Control 
group

R2 0.652 0.768 −0.267
ω2 0.645 0.758 −0.33
Cohen’s 

f2
1.816 3.14 3.09

Figure 5. The plot shows the scatter and the marginal histograms of IBS-SSS and microbiota derived IBS scores for the personalized 
nutrition group (a) and for the control group (b). The positive correlation is represented by the linear regression line.
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their gastrointestinal symptoms. Based on the 
subjective correlation between diet and IBS 
symptoms, there have been many attempts to 
design specific diets for the relief of IBS-related 
complaints.

Another important but neglected issue about these 
IBS treatments is the diet-related gut microbial 
changes. In the last decade, there have been many 
studies on the gut microbiome in IBS patients.18–22 

A recent systematic review analyzed 24 studies, 
mainly from Europe and North America. They have 
found that Bifidobacterium and Faecalibacterium 
genera are decreased, and Lactobacillaceae, 
Bacteroides, and Enterobacteriaceae families are 
increased in IBS.23 To overcome the reduced levels 
of Bifidobacteria, prebiotic or sometimes probiotic 
supplements might be advised for the IBS patients 
on a restricted diet. While this increases the abun-
dance of Bifidobacteria, it has some detrimental effects 
on gut health in animal studies by disruption of the 
mucosal barrier, increased mucosal inflammation, 
and visceral hypersensitivity.24 Rapid colonic fermen-
tation is central to the identified mechanisms that 
include injury from high luminal concentrations of 
short-chain fatty acids and low pH and inflammatory 
effects of increased endotoxin load and glycation of 
macromolecules.24

Currently, the optimal diet for the treatment of 
IBS patients is lacking. The ideal diet should be 
effective on (at least) most of the symptoms of IBS 
and maintain a healthy state of the gut microbiome. 
It should be sustainable and personalized. Our 
study is the first attempt to reach these therapeutic 
goals in IBS. We used machine learning for deter-
mining a personalized diet to modulate the IBS 
microbiota to an individually similar “healthy” 
state. In other words, we tried to formulate 
a personalized microbiota-modulating diet for 
patients with IBS-M. The gut microbiota of IBS 

patients and the healthy controls showed significant 
differences in beta diversity calculated at the genus 
level. When we look at the bacterial taxa, the most 
significant differences between the IBS and healthy 
control groups were observed in Ruminococcaceae 
and Clostridiaceae families. Ruminococcaceae was 
increased and Clostridiaceae was decreased in the 
IBS group. At the genus level, Ruminococcus was 
increased and Faecalibacterium was decreased in 
the IBS group. In a recent systematic review, the 
Ruminococcaceae family and Faecalibacterium 
genus were not different in IBS vs healthy 
groups.23 Although there are inconsistencies 
between the literature and our results, these differ-
ences might stem from patients’ geographic, cul-
tural, and dietary habits.

The IBS-index scores on the held-out validation 
cohorts were different between IBS patients and the 
healthy controls. This implies that the machine- 
learned IBS index is a strong indicator of the pre-
sence of disease. We detected a significant improve-
ment in IBS-SSS values between the pre- and post- 
intervention periods. The score improvement for 
the personalized diet group of IBS patients was 
greater than the standard IBS diet group 
(Table 5). For each of the five items of IBS-SSS 
evaluated, the personalized diet group showed sig-
nificant improvement on all parameters. However, 
the standard IBS diet group showed no improve-
ment in abdominal pain frequency, dissatisfaction 
with bowel habits, and IBS-related quality of life 
parameters. Böhn et al. reported that low FODMAP 
and standard IBS diets were similar in relieving IBS 
symptoms. In their study, abdominal pain fre-
quency and IBS-related quality of life parameters 
were improved with a low FODMAP diet, but the 
dissatisfaction with bowel habits did not improve.13 

They have noticed a nearly 50% response rate to 
both diets. This study concluded that a low 

Table 5. IBS-SSS scores (mean ± standard deviation) before and after the interventions.
IBS-M (n = 25) Healthy Controls (n = 34) p

Gender (F/M (n/%)) 19(76%)/6(24%) 23(68%)/11(32%) 0.57
Age (Years) 46.1 ± 9.7 45.6 ± 9.0 0.34
BMI 24.0 ± 4.7 23.9 ± 4.6 0.48

Intervention Arm
Personalized nutrition (n = 14) Standart IBS diet (n = 11) p

Gender (F/M (n/%)) 11 (79%)/3 (21%) 8 (73%)/3 (27%) 1
Age (Years) 47.0 ± 10.0 44.9 ± 9.7 0.37
BMI 23.0 ± 2.7 25.2 ± 6.1 0.23
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FODMAP diet shows similar clinical benefits to 
standard IBS diets.

The post-intervention gut microbiota changes 
were also different between groups. After six 
weeks of intervention, a major shift in microbiota 
profiles in terms of alfa- or beta-diversity was not 
observed in both groups. A statistically significant 
increase in the Faecalibacterium genus was 
observed in the personalized nutrition group 
(p= .04), whereas no meaningful change was 
reported for the standard IBS diet group (p= .63). 
Peter J et al. investigated the role of the microbiome 
in IBS-related psychological distress and found that 
depression was negatively associated with 
Lachnospiraceae abundance; the distress, anxiety, 
depression, and stress perception were associated 
with higher abundances of Proteobacteria. The feel-
ing of anxiety was characterized by elevated 
Bacteroidaceae.25 In our study, we have observed 
an increase in Bacteroides for the personalized 
nutrition group (p> .05) while an increasing trend 
in Prevotella (p= .057) was noted in the standard 
IBS diet group. The increase in the Bacteroides 
group might have affected our IBS patients’ anxiety 
status in the intervention group and improved the 
quality-of-life scores in IBS-SSS evaluation.

The microbiota-derived IBS index scores 
improved toward lower scores in both intervention 
groups. The improvement in the personalized 
nutrition group was observed to be more signifi-
cant. IBS severity is also correlated with gut micro-
biome features. Tap J et al. investigated the 
correlation between gut microbiota signatures and 
IBS severity. They found that IBS symptom severity 
to be associated negatively with microbial richness, 
exhaled CH4, presence of methanogens, and enter-
otypes enriched with Clostridiales or Prevotella spe-
cies. This microbiota signature could not be 
explained by differences in diet or the use of 
medications.26,27 In our study, the post- 
interventional analysis showed an increasing trend 
of Prevotella species (although statistically insignif-
icant) in the standard IBS diet group.

We have some limitations in our study. The trial 
was not a double-blind study (due to difficulties in 
hiding the diet composition), the sample size was 
small, and the follow-up period was short.

As a result, our study is the first trial in the 
literature comparing the therapeutic effect of an AI- 
based personalized diet for patients with IBS-M. 
We had limited clinical and gut microbiota- 
related benefits after 6-weeks of intervention. 
Further, more extensive randomized controlled 
trials are needed to determine this treatment’s 
safety, effectiveness, and durability.

Materials and methods

Study cohort

This study was designed as a pilot, open-labeled 
study. We enrolled 34 consecutive IBS-M patients 
according to Rome IV criteria and a healthy control 
group (n = 34) was used to model IBS classification 
models. IBS-M and IBS-C are the most prevalent 
forms of IBS,2 therefore IBS-M patients have been 
selected for our study. The healthy group consisted 
of subjects without chronic diseases affecting the 
microbiome and antibiotic/probiotic consumption 
in the previous six week-period. IBS-M patients 
were excluded if they had severe cardiac, liver, 
neurological, psychiatric diseases, or gastrointest-
inal diseases other than IBS (e.g., celiac disease or 
inflammatory bowel disease). The patients were not 
enrolled in the study if they were following 
a restricted diet for any purpose. Certain medica-
tions involving spasmolytics, antidepressants, etc., 
were allowed if administered at stable doses for the 
previous four weeks. Probiotics and antibiotics 
(including rifaximin) were not allowed for the pre-
vious six weeks.

Paired fecal samples were obtained (pre-and 
post-intervention), and high-throughput, 16S 
rRNA sequencing was performed to reveal the 
microbiota compositions at the baseline and post- 
intervention. Patients were divided into two groups 

Table 6. The demographics of the study group.
Pre-intervention Post-intervention P-value (paired t-test)

Personalized nutrition 357.1 ± 18.2 232.5 ± 61.5 <0.001
Control 363.1 ± 16.7 331.8 ± 42.9 <0.02
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based on age and gender. Moreover, baseline 
microbiota compositions were clustered to form 
subpopulations, and each treatment group was 
populated to represent similar subpopulation 
diversity. During the intervention period, nine 
patients (three from the personalized nutrition 
arm, six from the standard IBS diet arm) were 
withdrawn from the study because of inappropriate 
diet adherence (final intervention cohort: n = 25, 19 
females, 46.06 ± 13.11 years). Six weeks of perso-
nalized microbiome diet (n = 14) for Group 1 and 
a standard IBS diet (n = 11) for Group 2 were 
followed. Diets based on personalized nutrition 
were determined individually for each patient 
according to the algorithm provided in the next 
sections. The standard IBS diet was determined 
based on traditional dietary advice (TDA) based 
on modified National Institute for Clinical 
Excellence guidelines for Irritable Bowel 
Syndrome 2712. The demographics of the study 
groups can be seen in Table 6.

Fecal sampling and 16S ribosomal RNA gene 
sequencing

Fecal samples were collected using BBL culture swabs 
(Becton, Dickinson and Company, Sparks, MD) and 
transported to the laboratory in a DNA/RNA shield 
buffer medium. DNA was extracted directly from the 
stool samples using a Qiagen Power Soil DNA 
Extraction Kit (Qiagen, Hilden, Germany). The 
final concentrations of extracted DNA were mea-
sured using a NanoDrop (Shimazu). dsDNA quanti-
fication was done using the Qubit dsDNA HS Assay 
Kit and a Qubit 2.0 Fluorimeter (Thermo Fisher 
Scientific, Waltham, MA USA), and then they were 
stored at 20°C for further analysis.

The sequencing of 16S rRNA was performed 
using Illumina MiSeq (Illumina, San Diego, CA 
USA) device according to the protocol of the 
manufacturer. In brief, 2-step PCR amplification 
was used to construct the sequencing library. 
The first step of PCR is to amplify the V4 
hypervariable region. The entire length of the 
primers was: 515 F, forward 5’ 
GTGCCAGCMGCCGCGGTAA3’ and 806 R, 
reverse ’GGACTACHVGGGTWTCTAAT3’.28 

PCR amplification was performed using a 25 L 
reaction volume that contained 12.5 L of 2X 

KAPA HiFi HotStartReadyMix (KAPA 
Biosystems, Wilmington, MA USA), 0.2 M each 
of forward and reverse primer, and 100 ng of the 
DNA template. The reaction process was exe-
cuted by raising the solution temperature to 
95°C for 3 min, then performing 25 cycles of 
98°C for 20 sec, 55°C for 30 sec, and 72°C for 
30 sec, ending with the temperature held at 72°C 
for 5 min. Amplicons were purified using the 
AMPure XP PCR Purification Kit (Beckman 
Coulter Life Sciences, Indianapolis, IN, USA). 
The second step of PCR is to add the index 
adaptors using a 10-cycle PCR program. The 
PCR step adds to index 1 (i7), index 2 (i5), 
sequencing, and common adapters (P5 and P7). 
PCR amplification was performed on a 25 L 
reaction volume containing 12.5 L of 2X KAPA 
HiFi HotStartReadyMix (KAPA Biosystems, 
Wilmington, MA USA), 0.2 M of each index 
adaptor (i5 and i7), and 2.5 L of the first-PCR 
final product. The reaction process was executed 
by raising the solution temperature to 95°C for 
3 min, then performing 10 cycles of 98°C for 
20 sec, 55°C for 30 sec, and 72°C for 30 sec, 
ending with a 72°C hold for 5 min. Amplicons 
were purified using the AMPure XP PCR 
Purification Kit (Beckman Coulter Life 
Sciences, Indianapolis, IN, USA).

All amplified products were then checked with 2% 
agarose gel electrophoresis. Amplicons were purified 
using the AMPure XP PCR Purification Kit 
(Beckman Coulter Genomics, Danvers, MA, USA) 
and quantified using the Qubit dsDNA HS Assay 
Kit and a Qubit 2.0 Fluorimeter (Thermo Fisher 
Scientific, Waltham, MA, USA). Approximately 15% 
PhiX Control library (v3) (Illumina, San Diego, CA, 
USA) was combined with the final sequencing library. 
The libraries were processed for cluster generation. 
Sequencing on 250PE MiSeq runs was performed, 
generating at least 50.000 reads per sample.

Sequencing data were analyzed using the QIIME 
(version 1.9.1) pipeline29 after filtering and trim-
ming the reads for PHRED quality score 30 via the 
Trimmomatic (version 0.36) tool.30 Operational 
taxonomic units were determined using the Uclust 
(version 1.5.3) method, and the units were assigned 
to taxonomic clades via PyNAST (version 1.2.2) 
using the Green Genes database (Release 13_5)31 

with an open reference procedure. Alpha- and beta- 
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diversity statistics were assessed accordingly by 
QIIME pipeline scripts. The graph-based visualiza-
tion of the microbiota profiles was performed using 
the tmap (version 1.0.6) topological data analysis 
framework with the Bray-Curtis distance metric.

To evaluate the beta diversity differences 
between the groups, Permutational Multivariate 
Analysis of Variance (PERMANOVA) tests were 
employed using scikit-bio (version 0.5.6) biological 
data analysis library.

IBS-index Scoring

The baseline group of IBS-M patients (n = 25) 
and the healthy controls (n = 34) were com-
pared in terms of their microbiota composi-
tions. The detected microbiota profiles were 
used to characterize the disease in 
a classification setting. Based on Gradient 
Boosted Trees (GBT)32 classification algorithm, 
a stochastic gradient boosting classification 
model (XGBoost, version 0.9033 was used in 
dropouts to meet multiple additive regression 
trees (DART) booster with binary logistic 
regressor. Five-fold cross-validation, with 10 
random seeding trials, was used to observe the 
disease classification performance. The logistic 
regression scores of XGBoost models were used 

as IBS-index scores. The dataset was utilized to 
train the final IBS-index model. The hyperpara-
meters of the XGBoost model were optimized 
using the Bayesian optimization tool Optuna34 

in a five-fold-cross validation setting.

The AI-based personalized nutrition model

The Enbiosis personalized nutrition model esti-
mates the optimal micronutrient compositions 
for a required microbiome modulation. The pre-
sent study computed the microbiome modula-
tion needed for an IBS case based on the IBS 
indices generated by the machine learning mod-
els. The baseline microbiome compositions are 
perturbed randomly with a small probability of 
p. Perturbed profiles are accepted with 
a probability proportional to the decrease in 
the IBS index as suggested by Metropolis 
sampling.35 This Monte-Carlo random walk in 
the microbiome composition space is expected 
to meet a low IBS-index microbiome composi-
tion nearby the baseline microbiome composi-
tion of the patient with minimal modulation. 
Then, the personalized nutrition model estimates 
the optimized nutritional composition needed 
for this individual, expecting to drive the IBS 
index to lower values (Figure 6). The daily 

Figure 6. The AI-based personalized nutrition model. The IBS index scores are calculated using the XGBoost machine learning model. 
Using Monte-Carlo simulation, a perturbation of gut microbiota composition resulting in a decrease in IBS index score is determined. 
Then, the micronutrient composition supporting such modulation is calculated from the micronutrient database.
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diets were administered following the nutritional 
compositions suggested by the algorithm.

Therefore, an algorithm assessing an IBS index 
score using microbiome composition attempted to 
design the optimized diets based on modulating the 
microbiome toward healthy scores.

Statistical analyses:

The numerical data subject to univariate hypoth-
esis tests for independent samples were evaluated 
using non-parametric Mann-Whitney U-test, con-
sidering a two-sided alternative hypothesis. In case 
of multiple testing, post-hoc false discovery rate 
correction was performed using Benjamini- 
Hochberg Procedure. The dependent samples 
(e.g. pre- and post-intervention scores) were eval-
uated using two-sided paired sample t-test. The 
univariate tests were performed using SciPy (ver-
sion 1.4.1) scientific computing library running 
under Python (version 3.7.6) interpreter. For mul-
tidimensional statistics, PERMANOVA tests with 
1 million random permutations were performed 
using scikit-bio (version 0.5.6) scientific comput-
ing library. A p-value cutoff of 0.5 was considered 
for statistical significance. Microbiome-derived 
and clinical scores were associated using metrics 
of coefficient of determination (R2), adjusted 
explained variance (ω2), and Cohen’s effect size 
measure (Cohen’s f2 statistics). While R2 is calcu-
lated canonically, ω2 and Cohen’s f2 statistics were 
computed as previously explained by Olejnik et al. 
and Cohen, respectively.15,16 All three computa-
tions were performed in SciPy (version 1.4.1, 
Python v 3.7.6).

Dietary protocol:

The AI-based diet was designed based on optimizing 
a personalized nutritional strategy with an algorithm 
on individual gut microbiome characteristics. An 
algorithm evaluating an IBS index score using 
microbiome composition sought to design opti-
mized diets based on modulating the microbiome 
toward healthy scores.

While designing an individual’s diet list, the 
parameters in the Microbiome Analysis Report 
provide the micronutrient needs of the individual. 
In our study, micronutrient profiles provided by 

the AI-based algorithm were integrated into the 
diet list by an experienced dietitian to suit the 
individual’s lifestyle.

The diet design consisted of the number of 
meals, meal times, and meal compositions and 
was delivered to the patients via e-mail and tele-
phone calls on a weekly basis. The participants were 
blinded to the dietary intervention that they were 
assigned and they were informed about the general 
concepts of the diets prior to the initiation of the 
6-week diet via phone call by a dietitian experi-
enced in the field of gastroenterology.

Diet compliance was monitored by the respon-
sible dietitians on a weekly basis. 3 days after the 
delivery of each diet list, the dietitian made 
a separate phone call with the individuals to deter-
mine their adherence to the diet. With these phone 
calls, which lasted about 10 minutes, the dietitians 
were able to follow the diet compliance. While 
designing the diet lists, care was taken not to give 
calories below the basal metabolic rate and no food 
was recommended after 9 pm.
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