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Abstract

Background: The response of the postnatal heart to growth and stress stimuli includes activation of a network of signal
transduction cascades, including the stress activated protein kinases such as p38 mitogen-activated protein kinase (MAPK),
c-Jun NH2-terminal kinase (JNK) and the extracellular signal-regulated kinase (ERK1/2) pathways. In response to increased
workload, the mitogen-activated protein kinase kinase (MAPKK) MEK1 has been shown to be active. Studies embarking on
mitogen-activated protein kinase (MAPK) signaling cascades in the heart have indicated peroxisome-proliferators activated-
receptors (PPARs) as downstream effectors that can be regulated by this signaling cascade. Despite the importance of
PPARa in controlling cardiac metabolism, little is known about the relationship between MAPK signaling and cardiac PPARa
signaling.

Methodology/Principal Finding: Using co-immunoprecipitation and immunofluorescence approaches we show a complex
formation of PPARa with MEK1 and not with ERK1/2. Binding of PPARa to MEK1 is mediated via a LXXLL motif and results in
translocation from the nucleus towards the cytoplasm, hereby disabling the transcriptional activity of PPARa. Mice
subjected to voluntary running-wheel exercise showed increased cardiac MEK1 activation and complex formation with
PPARa, subsequently resulting in reduced PPARa activity. Inhibition of MEK1, using U0126, blunted this effect.

Conclusion: Here we show that activation of the MEK1-ERK1/2 pathway leads to specific inhibition of PPARa transcriptional
activity. Furthermore we show that this inhibitory effect is mediated by MEK1, and not by its downstream effector kinase
ERK1/2, through a mechanism involving direct binding to PPARa and subsequent stimulation of PPARa export from the
nucleus.
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Introduction

Peroxisome proliferator-activated receptor a (PPARa) is a

nuclear receptor which is believed to act as a sensor of fatty acids

(FA) and FA derivatives to enable the cell to adapt to

environmental changes through regulation of a large number of

processes such as inflammation, differentiation and metabolism

[1]. PPARa is expressed in metabolically active tissues including

the liver, brown fat, kidney, skeletal muscle and heart [2].

Transgenic mice with forced overexpression of PPARa in cardiac

muscle display increased FA oxidation rates, accumulation of

triacylglycerides, decrease in glucose metabolism and eventually

develop cardiomyopathy [3,4]. In turn, mice deficient for PPARa
have elevated plasma FA levels as a consequence of inadequate FA

oxidation, rendering them hypoglycemic as a result of their

reliance on glucose [5]. The natural ligands for PPARa are long-

chain FA and several eicosanoids. Synthetic ligands for the PPARs

comprise hypolipidemic, anti-inflammatory and insulin-sensitizing

drugs. In the presence of a ligand, PPARs adopt an active

conformation by forming an obligate heterodimer with the

retinoid X receptor (RXR). Recruitment of additional co-

activators leads to binding to peroxisome proliferator response

elements (PPRE) in target genes, provoking PPAR-dependent gene

expression.

During the development of cardiac hypertrophy, myocardial

fatty acid oxidation (FAO) rates decrease and glucose utilization

increases [6]. During this transition, the reduced nuclear level of

PPARa suggests that this phenomenon may be responsible for

downregulation of cardiac FAO genes in the hypertrophied heart

[7]. Hence, understanding the mechanisms that regulate the

activity of PPARa is crucial to determine the precise contribution

of altered FAO at the genesis and progression to heart failure.

Apart from the classical ligand-dependant regulation, several

studies have reported the modulation of PPARa activity by
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phosphorylation. For example, insulin treatment induces phos-

phorylation, at the serine residues 12 and 21 in the transactivation

domain, and subsequent activation of PPARa [8]. PKA activators

have also been shown to modulate the activity of PPARa through

phosphorylation of several sub domains, including the DNA-

binding domain and the ligand binding domain [9].

The response of the postnatal heart to growth and stress stimuli

includes activation of a network of signal transduction cascades,

including the stress activated protein kinases such as p38 mitogen-

activated protein kinase (MAPK), c-Jun NH2-terminal kinase

(JNK) and the extracellular signal-regulated kinase (ERK1/2)

pathways [10]. Studies embarking on the regulation of PPARa
activity in cardiac muscle have indicated PPARa as a downstream

effector of MAPK signaling [11]. In line, the MEK1-ERK1/2

pathway was shown to inhibit PPARc transcriptional activity in

non-cardiac cells [12]. Moreover, members of the p38 kinase

family have been shown to phosphorylate PPARa in ligand-

dependent manner, resulting in enhanced transcriptional activity

[11]. Transgenic mice with cardiac-restricted expression of an

activated form of MEK1 developed a physiological concentric

hypertrophy response with preserved cardiac function [13],

indicating an important role for MEK1-ERK1/2 signaling

pathway during forms of cardiac hypertrophy. It is interesting to

note that activation of the MEK1-ERK1/2 pathway led to

inhibition of PPARc transcriptional activity in non-cardiac cells

[12,14], indicating a diverse effect of the different MAPK

pathways on PPAR activity. Despite the importance of PPARa
on FAO and cardiac metabolism, little is known about the

relationship between MEK1-ERK1/2 pathway and cardiac

PPARa signaling. Here we show that activation of the MEK1

pathway leads to inhibition of cardiac PPARa transcriptional

activity. Furthermore we show that the inhibitory effect is

mediated by MEK1 rather than MEK1-ERK1/2 phosphorylation

events, through a mechanism involving interaction of MEK1 with

PPARa and subsequent nuclear export of PPARa.

Results

MEK1 Inhibits PPARa Activity in an ERK1/2-independent
Fashion

It has been shown that phosphorylation of PPARs can attenuate

their transcriptional activity in a sub-type specific way. Given the

proven importance of PPARa [15] and the MEK1-ERK1/2

pathway [13,16,17] on cardiac muscle viability and hypertrophy,

we studied the effect of the MEK1-ERK1/2 cascade on PPARa
activity in detail by examining the transcriptional activity of

PPARa in the presence of exogenous MEK1 constructs or their

inhibitors. To this end, we resorted to the use of a previously

developed, ventricular muscle cell line, NKL-TAg. NKL-TAg cells

actively proliferate without apparent senescence, while introduc-

tion of Cre recombinase results in the elimination of TAg

expression, permanent exit from the cell cycle and expression of

cardiac markers [18]. As a functional verification of the

transcriptional activity of PPARa, we performed transient

transfection of a luciferase reporter driven by a cpt1a promoter

harboring a functional PPRE. Co-transfection of a PPARa
expression vector and stimulation with Wy-14643 as synthethic

ligand (2 hr) resulted in increased luciferase activity (Fig. 1a),

indicating enhanced transcriptional activity of PPARa. This effect

was completely abrogated when MEK1 was co-expressed (Fig. 1a).

Addition of U0126, a specific inhibitor of MEK1, re-activated Wy-

14643 mediated PPARa induction of the mCPT-luc reporter,

indicating that the inhibitory effect involved MEK1 activation.

A classical downstream effector of MEK1 is ERK1/2. Western

Blot analysis showed increased phosphorylation of ERK1/2 after

MEK1 activation. Moreover, addition of U0126 inhibited MEK1

induced phosphorylation of ERK1/2 (Fig. 1b), indicating the

efficiency of used expression vectors and efficiency of U0126.

Previous studies indicated that, in addition to the C-terminal

ligand-binding AF2 domain, the N-terminal trans-activating AF1

domain plays an important role in the regulation of the

transcriptional activity of PPARa [19]. Analysis of the AF1

domain, amino acids 1–92, of PPARa revealed three putative

phosphorylation target sites for ERK1/2 (Fig. 1c). To test whether

ERK1/2-mediated phosphorylation of one or more putative

phospho-acceptor sites on PPARa may underlie the MEK1-

ERK1/2-mediated inhibition of PPARa transcriptional activity,

we employed site-directed mutagenesis to create different PPARa
constructs harboring a single or multiple serine to alanine

conversion at the indicated amino acid residues (Fig. 1c).

Surprisingly, MEK1 induced inhibition was not hampered by

co-transfection of the single mutated PPARa constructs (Fig. 1d).

Furthermore, co-transfection of a PPARa construct harboring a

mutation at three putative phosphorylation target sites for ERK1/

2 (Triple-muta) did not change the MEK1 induced inhibition

(Fig. 1d).

As a second approach to exclude direct ERK1/2 phosphory-

lation events on PPARa, we set up an assay using the MAPK

phosphatase MKP1, which provokes ERK1/2 dephosphorylation,

to confirm that the MEK1 inhibitory effect is unrelated to

activation of ERK1/2. As indicated by Western Blot, co-

transfection of MKP1 led to dephosphorylation of ERK1/2 even

in the presence of activated MEK1 (Fig. 2a). Interestingly,

dephosphorylation of ERK1/2, by transient co-transfection of

MKP1, did not change the inhibitory effect of MEK1 on the

transcriptional activity of PPARa (Fig. 2b). In concordance,

siRNA based knockdown of ERK1/2 (Fig. 2c) did not impair the

reduction of transcriptional activity of PPARa by MEK1 (Fig. 2d).

To verify whether the MEK1 induced inhibition of PPARa
transcriptional activity is not related to the kinase activity of

MEK1, transient co-transfection of a kinase inactive MEK1

(MEK1-KD) did not change the PPARa transcriptional activity

inhibition induced by MEK1 (Fig. 2e), suggesting an unlikely role

for phosphorylation induced by MEK1. On the other hand, using

a MEK1 mutant lacking the nuclear localization signal (MEK1-

LL) significantly restored PPARa transcriptional activity (Fig. 2e).

Taken together, these findings indicate a minor role for ERK1/2

or MEK1 activity on the putative phospho-acceptor sites in the

trans-activating domain of PPARa as a mechanism responsible for

MEK1-ERK1/2 mediated inhibition of PPARa transcriptional

activity, but likely to be mediated by MEK1 subcellular

localization.

MEK1 Binding to PPARa Provokes Nuclear Export
Since the MEK1 inhibitory effect on PPARa activity could not

be explained through the classical MEK1-ERK1/2 pathway, we

examined whether the inhibitory effect of MEK1 on PPARa
activity is mediated by direct protein-protein interaction. HEK-

293 cells were co-transfected with PPARa and MEK1 expression

vectors. After 2 hr of stimulation with the synthethic ligand Wy-

14643, cells were subjected to co-immunoprecipitation using a

MEK1 antibody, resulting in efficient precipitation of PPARa
(Fig. 3a). Interestingly, co-stimulation with the specific MEK1

inhibitor, U0126, impaired immunoprecipitation of PPARa by

MEK1 (Fig. 3a). Using the same conditions, we repeated the

experiments using a PPARa antibody to co-immunoprecipitate

MEK1. Also under these conditions, MEK1 was readily immu-
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Figure 1. MEK1 expression inhibits PPARa transcriptional activity in an ERK1/2 phosphorylation independent manner. (a) Luciferase
measurements on NkL-Tag cells transiently transfected with a mCPT promoter driven reporter as a functional readout for PPARa activity after co-
transfection with PPARa-V5 and MEK1 for 24 hr, and stimulated with Wy-14643 (1 mM) or U0126 (5 mM) as indicated, for 2 hours. (b) Western blot
analysis using anti-phosphorylated ERK1/2 (p-ERK1/2) antibody on lysates of NkL-Tag cells transiently transfected with MEK1 for 24 hr, indicating
enhanced activation of ERK1/2 after MEK1 expression. (c) Schematic representation of the trans-activating domain of PPARa along with the three
putative phosphorylation target sites for ERK1/2 and the LXXLL motif. (d) Luciferase measurements of NkL-Tag cells transiently transfected with a
mCPT promoter driven reporter and co-transfected with mutants of PPARa-V5 and MEK1 for 24 hr, and stimulated 2 hours with Wy-14643 (1 mM),
indicating MEK1 induced inhibition of PPARa to be ERK1/2 phosphorylation-independent. pGL3-luc construct was transiently transfected as a
negative control (white bar).
doi:10.1371/journal.pone.0036799.g001
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Figure 2. Inhibition of PPARa by MEK1 relies on the nuclear export of MEK1 and not on MEK1 kinase activity. (a) Western blot analysis
using anti-phosphorylated ERK1/2 (p-ERK1/2) antibody on lysates of NkL-Tag cells transiently transfected with MEK1 and MKP1, indicating decreased
activation of ERK1/2 after co-expression of MKP1. (b) Luciferase measurements of NkL-Tag cells transiently transfected with a mCPT promoter driven
reporter and co-transfected with PPARa-V5, MEK1 and MKP1, and stimulated 2 hours with Wy-14643 (1 mM) as indicated. (c) Western blot analysis
using anti-ERK1/2 (ERK1/2) antibody on lysates of NkL-Tag cells transiently transfected with siRNAs against ERK1 and ERK2, or scrambled siRNA as a
negative control (scr), indicating decreased levels of ERK1/2 after co-transfection of siRNAs targeting ERK1/2. (d) Luciferase measurements of NkL-Tag
cells transiently transfected with a mCPT promoter driven reporter and co-transfected with PPARa-V5, MEK1 and siRNAs, and stimulated 2 hours with
Wy-14643 (1 mM), as indicated. (e) Luciferase measurements of NkL-Tag cells transiently transfected with a mCPT promoter driven reporter and co-
transfected with PPARa-V5, MEK1, MEK1-KD and MEK1-LL, indicating that the inhibition of PPARa by MEK1 relies on the nuclear export of MEK1 and
not on MEK1 kinase activity. pGL3-luc construct was transiently transfected as a negative control (white bar).
doi:10.1371/journal.pone.0036799.g002
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Figure 3. MEK1 interaction with PPARa induces nuclear export. (a) Western blot analysis on precipitates of HEK293 cells transiently co-
transfected with PPARa-V5, MEK1 and treated with U0126 (5 mM) or not for 2 hr and immunoprecipitated using an anti-MEK1 antibody. (b) Western
blot analysis on precipitates of HEK293 cells transiently co-transfected with PPARa-V5, MEK1 and treated with U0126 (5 mM) as indicated for 2 hr and
co-immunoprecipitated using an anti- PPARa antibody. (c) Western blot analysis on precipitates of HEK293 cells transiently transfected with a mutant
PPARa-GFPD(LxxLL)-V5 expression vector (lacking the LxxLL motif) with or without a MEK1 expression vector and stimulation with Wy-14643 (1 mM)
for 2 hr, and immunoprecipitated using an anti-PPARa antibody. (d) Fluorescence immunocytochemistry images of HEK293 cells transiently co-
transfected with a PPARa-GFP expression vector, with or without a MEK1 expression vector and stimulation with or without Wy-14643 for 2 hr (1 mM),
showing co- cytoplasmic translocation of PPARa and co-localization with MEK1 after co-transfection with MEK1. Addition of U0126 (5 mM) inhibited
the MEK1 induced translocation (lower panels). (e) Bar graph indicates mean 6 SEM of the percentage of nuclear GFP, showing decreased nuclear
PPARa-GFP after co-transfection with MEK1. Addition of U0126 inhibited the MEK1 induced translocation of PPARa-GFP.
doi:10.1371/journal.pone.0036799.g003
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noprecipitated, indicating an interaction between PPARa and

MEK1, while co-stimulation with U0126 resulted in reduced levels

of precipitated MEK1 (Fig. 3b). IgG was used as a negative control

for the specificity of the antibodies used for the coimmunopreci-

pitation of PPARa or MEK1. Importantly, when we used a

PPARb/d expression vector, no co-immunoprecipitation of

MEK1 was observed (data not shown), indicating the specificity

of the interaction between MEK1 and PPARa.

Protein-protein interactions with MEK1 are often mediated by

the CRS/CD domain, which allows interaction with other

regulatory proteins. Within the MEK1 CRS/CD domain

interaction has been shown to be mediated by an LXXLL

binding pocket in binding partners for MEK1 [20]. Character-

ization of the ligand-binding domain of PPARa revealed an

LXXLL binding pocket (Fig. 1c). We constructed a V5-tagged

PPARa expression vector harboring a truncation of the last 16

amino acids of the c-terminal AF2 domain, lacking the LXXLL

binding pocket. Using this construct, co-immunoprecipitation with

MEK1 failed (Fig. 3c), while immunoprecipitation between MEK1

and wild-type PPARa was efficient, indicating that this motif is a

crucial structural element for the protein-protein interaction

between MEK1 and PPARa.

Since MEK1 was shown not to directly phosphorylate PPARc
[12], we next considered subcellular localization as an important

factor participating in the regulation of PPAR signaling [21]. We

therefore investigated whether the direct interaction serves as a

new mechanism for regulating the subcellular localization of

PPARa. To this end, HEK293 cells were transiently co-transfected

with an expression vector containing a PPARa -GFP fusion with

or without a MEK1 expression vector and stimulation with Wy-

14643 (2 hr). Cells were then fixed and PPARa localization was

determined by GFP fluorescence while MEK1 was immuno-

stained using a MEK1 antibody. PPARa-GFP remained largely in

the cytosol and massive nuclear translocation was induced only

after stimulation with Wy-14643 (Fig. 3d). In contrast, ectopic

expression of an activated form of MEK1 colocalized with PPARa
resulting in a massive exclusion of PPARa from the nucleus

towards a predominant cytoplasmic localization (Fig. 3d). Addition

of U0126 inhibited the MEK1 induced translocation, causing

PPARa-GFP to be localized in the nucleus after stimulation with

Wy-14643 (Fig. 3d). Quantification of nuclear PPARa-GFP

indicated a significant translocation towards the cytosol after

ectopic expression of an activated form of MEK1, which was

repressed after the addition of U0126 (Fig. 3d). Taken together,

these findings reveal a novel mechanism for the regulation of

cardiac PPARa activity via interaction and subsequent inactiva-

tion by MEK1.

MEK1 Interacts with the LXXLL Binding Pocket of PPARa
and not of PPARb/d

In light of our earlier results, we reasoned that MEK1-induced

PPARa translocation was mediated through direct interaction of

MEK1 with the LXXLL binding pocket of PPARa. We therefore

designed a PPARa-GFP construct that harbored a truncation of

the last 16 amino acids of the C-terminal AF2 domain of PPARa,

lacking the necessary LXXLL binding pocket (PPARa-

GFPDLxxLL). Next, we repeated the experiment using PPARa-

GFPDLxxLL and analyzed subcellular localization in the presence

of absence of MEK1 and Wy-14643. In this case, Wy-14643

induced nuclear localization of PPARa-GFPDLxxLL was not

affected by ectopic MEK1 expression (Fig. 4a). Quantification of

nuclear PPARa-GFPDLxxLL indicated a significant translocation

towards the nucleus after stimulation with Wy-14643 that was not

altered after ectopic expression of an activated form of MEK1

(Fig. 4b). Co-transfection of MEK1 with PPARb/d-GFP did not

result in nuclear extrusion, even though this construct also

contains a LXXLL element (Fig. 4c,d).

In conclusion, the combined experiments demonstrate that the

ERK1/2 selective MAPKK MEK1 interacts with the LXXLL

binding pocket of PPARa and forces translocation out of the

nucleus to the cytosol as a novel mechanism whereby MEK1

signaling inhibits the transcriptional activity of PPARa.

MEK1 Activation Attenuates PPARa Transcriptional
Activity in vivo

In vivo, MEK1 is activated in hearts of mice subjected to exercise

training [22], indicating the association of MEK1 with cardiac

adaptation to increased workload. By Western blotting analysis,

we verified that all PPAR isoforms maintained similar expression

levels following exercise training (Fig. 5a, b). In contrast, Western

blotting analysis showed severely decreased PPARa levels in hearts

of mice subjected to pressure overload, indicating different

regulatory mechanisms of PPARa activity after increased cardiac

workload due to pressure overload (Fig. 5a, c). To determine

whether the discovered mechanism of MEK1 mediated PPARa
inhibition also occurred in vivo, we chose voluntary running-wheel

exercise as a model to stimulate physiological cardiac hypertrophy

and activate cardiac MEK1 in mice. After 4 weeks of voluntary

wheel exercise, mice demonstrated a substantial cardiac growth

response as evidenced by increased HW/BW ratios (Fig. 5d, e, f).

MEK1 activation was verified by analyzing cardiac lysates for

phospho-ERK1/2 status (Fig. 5g, h).

Cohorts of wild-type mice were treated with either vehicle or

U0126 and subjected to voluntary wheel exercise. U0126 did not

affect exercise induced physiological cardiac hypertrophy (Fig. 6a),

but U0126 efficiently prevented MEK1-ERK1/2 activation

following exercise (Fig. 6b). To confirm the previous in vitro

results, nuclear and cytosolic fractionation of these experimental

heart lysates indicated decreased nuclear and increased cytosolic

PPARa levels in exercised mice compared to sedentary animals

(Fig. 6c). In contrast, treatment with U0126 increased nuclear

localization of PPARa following exercise-induced activation of

MEK1 (Fig. 6c). Next, heart lysates were subjected to immuno-

precipitation assays using a MEK1 antibody. PPARa precipitation

was accomplished in exercised mice treated with vehicle, while

mice treated with U0126 showed significantly decreased PPARa
precipitation in exercised animals (Fig. 6d, e). Conversely,

immunoprecipitation with a PPARa antibody also efficiently

precipitated endogenous MEK1 in exercised mouse hearts, while

U0126 treatment resulted in significantly reduced levels of

precipitated MEK1 (Fig. 6f.g).

Finally, we analyzed the expression of specific PPARa target

genes [23] as a surrogate for functional PPARa activity in

sedentary and exercised mouse hearts. In line with our expecta-

tion, MEK1 activation in vivo resulted in downregulation of

transcripts for the PPARa target genes glutathione s-transferase 3

(gstt3), carboxylesterase 3 (ces3), carnitine o-palmitoyltransferase 1(cpt1a),

and acyl-coenzyme a dehydrogenase (acadvl), while exercise in the

presence of U0126 fully relieved the inhibition of these PPARa
target genes (Fig. 6h). These findings support the notion that

MEK1 signaling inhibits the transcriptional activity of PPARa and

influences cardiac metabolic gene programs in vivo.

Discussion

Mechanisms that regulate the ligand-independent activity of

nuclear receptors, such as PPARs, are poorly understood and are

often associated with kinase-dependent processes. Several consen-
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sus phosphorylation sites for PPARa have been identified

including glycogen synthase kinase 3 (GSK3), protein kinase A

(PKA), protein kinase C (PKC) and mitogen-activated protein

kinase (MAPK). MAPK signaling pathways have been reported to

be very important in the regulation of cellular differentiation,

proliferation and stress responsiveness. Consisting of three major

branches of sequentially signaling pathways, the MEK1 signaling

pathway, which culminates in ERK1/2 activation, is hypothesized

Figure 4. MEK1 interacts with PPARa via the LxxLL motif. (a) Fluorescence immunocytochemistry images of HEK293 cells transiently co-
transfected with a mutant PPARa-GFPDLxxLL (lacking the LxxLL motif) with or without a MEK1 expression vector and stimulation with or without Wy-
14643 (1 mM) for 2 hr. (b) Bar graph indicates mean 6 SEM of the percentage of nuclear GFP, showing no significant changes in nuclear PPARa-
GFPDLxxLL after co-transfection with MEK1. (c) Fluorescence immunocytochemistry images of HEK293 cells transiently co-transfected with a PPARb/
d-GFP with or without a MEK1 expression vector and stimulation with or without the PPARb/d-selective agonist GW-510516 (1 mM) for 2 hr. (d) Bar
graph indicates mean 6 SEM of the percentage of nuclear GFP, showing no significant changes in nuclear PPARb/d-GFP after co-transfection with
MEK1, indicating that MEK1 does not interact with this PPAR isoform.
doi:10.1371/journal.pone.0036799.g004
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Figure 5. Voluntary running-wheel exercise stimulates cardiac MEK1 activation. (a) Western blot analysis using anti-PPAR antibodies on
lysates of heart samples of indicated experimental procedure, showing reduced PPAR expression of mice hearts subjected to transverse aortic
constriction (TAC). (b) Quantification of PPAR protein levels of in hearts from sedentary or exercised mice (n = 6 per group). (c) Quantification of PPAR
protein levels of in hearts from sham or transverse aortic constricted mice ( = 6 per group). (d) Average daily distance that mice ran voluntarily. (e)
Representative images of hearts from mice that remained sedentary or were subjected to voluntary wheel exercise for 4 weeks. Note the increase in
size of the exercised heart. (f) Heart weight to body weight (HW/BW) ratios of mice that remained sedentary or were subjected to voluntary wheel
exercise (n = 8 per group). (g) Western blot analysis using anti-phosphorylated ERK1/2 (p-ERK1/2) antibody on lysates of indicated heart samples,
demonstrating enhanced MEK1-ERK1/2 activity following exercise-induced cardiac hypertrophy. (h) Quantification of the phosphorylation status of
ERK1/2 in hearts from sedentary or exercised mice (n = 6 per group).
doi:10.1371/journal.pone.0036799.g005
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to regulate the growth and adaptation of the heart to both

physiological and pathological stimuli [13].

Functional verification of the transcriptional activity of PPARa,

after activation of the MEK1 pathway, resulted in a dramatic

decrease of PPARa ability to activate a mCPT reporter. Although

it was previously shown that activated ERK1/2 is able to

phosphorylate PPARa [11], site-directed mutagenesis of all of

the putative serine ERK1/2 phosphorylation target sites showed

no difference to the MEK1 induced inhibition of PPARa
transcriptional activity. Furthermore, inactivating ERK1/2 using

the MAPK phosphatase MKP1 did not change the inhibitory

effect of MEK1 on the transcriptional activity of PPARa
indicating an insignificant role for ERK1/2. This also indicated

that the MEK1 induced inhibition of PPARa is unlikely to be

phosphorylation mediated since it was shown that PPARa is

phosphorylated exclusively on serine residues in vivo with no

detectable threonine or tyrosine activity [24]. In addition, MEK1

has been shown to be unable to phosphorylate PPAR [12].

An important factor that participates in the regulation of PPAR

as well as MAPK signaling is their subcellular localization [21,25].

Regarding the MAPK signaling, it has been shown that both

ERK1/2 and MEK1 resides in the cytosol of resting cells and

translocate into the nucleus upon stimulation [25]. However, while

ERK1/2 has been shown to remain in the nucleus for a

considerable time, MEK1 is quickly exported out of the nucleus

due to its nuclear export signal (NES) [13,26]. Furthermore,

overexpression of active MEK1 interacts with PPARc in the

nucleus, allowing subsequent nuclear export of PPARc [12].

Indeed, immunofluorescence experiments showed that ectopic

expression of an activated form of MEK1 results in a significant

translocation of PPARa-GFP towards the cytosol, which was

abrogated after addition of U0126.

Unfortunately, little is known about the regulation of the

intracellular distribution of PPARs, though cytosolic localization of

PPARs has been reported as well as their bindings ability to the

cytosolic/membrane proteins such as HSP90 [19,20,21,27].

Interestingly, the presence of a CRS/CD domain in PPARa,

which facilitates a protein-protein interaction with MEK1,

indicated a possible interaction with MEK1. In line, ectopic

addition of MEK1 resulted in a massive extrusion of PPARa, but

not of PPARb/d, from the nucleus towards the cytoplasm even

after stimulation with its synthetic ligand. Furthermore, truncation

studies showed that interaction of PPARa with MEK1 is mediated

via a LXXLL binding pocket, given that deletion of this motif

resulted in loss of the inhibitory effect of MEK1. Although, co-

immunoprecipitation studies showed a complex formation of

PPARa with MEK1, but not with ERK1/2 (data not shown), it

remains unknown whether this interaction is direct or indirect via

unidentified additional components.

In this context one could assume that MEK1, via the inhibition

of PPARa, has a role in the regulation of metabolic processes in

the heart. Indeed, gene profiling studies executed on cardiomy-

ocytes overexpressing a constitutively active form of MEK1

(MEK-EE) demonstrated a significant decrease of genes coding

for proteins involved in FA metabolism [28]. These included genes

that would be localized to the mitochondria and involved in FA

translocation and oxidation (cpt1a, acadv1, hadhsc), but also binding

proteins that are involved in cellular transport of FA (cd36). This

effect was less apparent for the regulation of genes involved the

glycolysis/gluconeogenesis, where glucose transporter GLUT3

was up regulated but other components of the glycolysis were

downregulated. Nonetheless, this expression profile rendered

cardiomyocytes more resistant to energy deprivation following

deoxyglucose exposure [13], indicating a preserved intrinsic

reserve. Additionally, analysis of cardiac substrate metabolism in

PPARa knockout hearts indicated a substrate switch from FA to

glucose and lactate but with an inability to respond to high energy

demand, such as high workload, resulting in energetic and

contractile failure mimicking end stage heart failure [29].

Gene expression studies performed with RNA isolated from

ventricles of mice subjected to transverse aortic banding indicated

a downregulation of PPARa expression and several of its target

genes [30,31]. Furthermore, protein levels of PPARa showed to be

decreased in mice subjected to pressure overload, elucidating the

metabolic substrate switch that characterizes end stage heart

failure. In this respect, although MEK1 has been shown to be

activated in mice hearts in response to acute pressure overload

stimulation induced by aortic banding [27], diminished PPARa
activity in these hearts is probably due to another mechanism that

is unrelated to enhanced MEK1 activity.

In contrast, mice subjected to increased workload by voluntary

running-wheel exercise showed no significant differences in

cardiac PPARa levels compared to untrained mice. Using

voluntary running-wheel exercise as a functional in vivo model

to stimulate cardiac MEK1 activation, we show that MEK1

signaling inhibits the transcriptional activity of PPARa. Interest-

ingly, MEK1 transgenic mouse lines showed a mild concentric

hypertrophy with thicker septum and left ventricular posterior

wall with very few signs of histopathology or interstitial fibrosis

[13]. Moreover, echocardiography demonstrated an enhanced

contractile performance in these mice, suggesting compensated

cardiac hypertrophy as seen in physiological hypertrophy.

Indeed, exercise induced hypertrophy resulted in activation of

the downstream effectors ERK1/2 indicating increased MEK1

activity, indicating that the preserved cardiac function, such as

seen in MEK1 transgenic mouse lines, is likely to be PPARa
independent. Thus, we present here a novel mechanism of

downregulation of PPARa activity through MEK1 induced

redistribution from the nucleus to the cytosol. This ERK1/2

independent nuclear shuttling of PPARa by MEK1 provides an

attractive explanation for the metabolic switch during cardiac

Figure 6. Activation of MEK1 during physiological cardiac hypertrophy inhibits PPARa activity. (a) Heart weight to body weight (HW/
BW) ratios of mice treated with vehicle or U0126, and subjected to voluntary wheel exercise or not (n = 8 per group). (b) Western blot analysis using
anti-phosphorylated ERK1/2 (p-ERK1/2) antibody on lysates of heart samples of indicated experimental procedure, showing reduced MEK1-ERK1/2
activity of exercised mice treated with U0126. (c) Western blot analysis using anti-PPARa antibody on nuclear and cytosolic fractions of lysates of
heart samples, indicating decreased nuclear PPARa levels and increased cytosolic PPARa levels following exercise-induced cardiac hypertrophy.
Treatment with U0126 reduced the MEK1 induced cytoplasmic translocation of PPARa. (d) Western blot analysis using anti- PPARa antibody on
precipitates of heart lysates of exercised or sedentary mice, treated with U0126 or vehicle and immunoprecipitated using an anti-MEK1 antibody. (e)
Quantification of the co-immunoprecipitated PPAR protein levels in hearts from sedentary or exercised mice (n = 6 per group), treated with U0126 or
vehicle. (f) Western blot analysis using anti-MEK1 antibody on precipitates of heart lysates of exercised or sedentary mice, treated with U0126 or
vehicle and immunoprecipitated using an anti-PPARa antibody. (g) Quantification of the co-immunoprecipitated MEK1 protein levels in hearts from
sedentary or exercised mice, treated with U0126 or vehicle (n = 6 per group). (h) RT-PCR analyses of PPARa target genes expression in sedentary and
exercised hearts, treated with vehicle or U0126, indicating decreased PPARa activity during physiological hypertrophy.
doi:10.1371/journal.pone.0036799.g006
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hypertrophy and will lead to new insights into the different

mechanisms between pathological and physiological hypertrophy.

Materials and Methods

Cage-wheel Exercise
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the University Medical Center Utrecht, Utrecht,

the Netherlands (Permit Number: 2009.II.03.024). Male C57BL6/

J mice were subjected to voluntary cage wheel exercise as

described [32,33]. Briefly, individual animals were individually

housed in a cage equipped with an 11.5-cm-diameter running

wheel with a 5.0-cm-wide running surface equipped with a digital

magnetic counter activated by wheel rotation. Twice a week, mice

received an intraperitoneal injection of U0126 (Cell Signaling),

40 mg/kg, or vehicle alone. Daily exercise values for time and

distance run were recorded for individual exercised animals

throughout the duration of the exercise period (4 weeks).

Cell Culture
Low passage HEK293 and NKL-TAg cells [18] were cultured

in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented

with 10% fetal bovine serum.

Transient Transfections and Luciferase Assays
Transfections were performed in 24-well plates (16104 cells/

well). After 24 hours, transient transfections were performed as

described [34,35] with FuGENE 6 reagent as per the manufac-

turer’s recommendations. After 8 hours, cells were refreshed with

serum-free medium with or without the respective stimuli with

Wy-14643 (1 mM) or U0126 (5 mM) for 2 hours. After 24 hours,

cells were then harvested and lysates were analyzed for firefly

luciferase expression. In brief, 20 ml aliquots of cell lysates were

mixed with 40 ml of luciferase reagent buffer (Promega Corp) and

luminescence of the samples was integrated over a period of

10 seconds in a LUMAC Biocounter M1500P (Landgraaf). To

assess transfection efficiency, a SV40 promoter driven Renilla

luciferase vector was co-transfected and measured using the Dual

Luciferase Assay (Promega Corp). For siRNA experiments, cells

were transfected with controle siRNAs or siRNAs specific for

ERK1/2 (Ambion) in a final concentration of 10 nM, using

Oligofectamine (Invitrogen). Twenty-four hours after transfection,

cells were washed in PBS and further treated as described.

Vector Construction
The reporter plasmid containing the muscle type carnitine

palmitoyltransferase 1b promoter (cpt1a or mCPT1) linked to firefly

luciferase (mCPT1-luc) was described previously [36]. Substitution

of Serine 12, 21, 76 with Alanine in pcDNA4/TO-PPARa was

engineered by PCR-mediated site-directed mutagenesis (Strata-

gene). Expression vectors encoding an N-terminal fusion between

a long-lived GFP protein and mouse PPARa or PPARd were

generated by cloning either full length cDNA into vector

pAcGFP1-N1 (Clontech) as HindIII/SacII inserts.

Immunoprecipitations, Western Blotting
Immunoprecipitation assays were performed as described

previously [34] either after transfection of pCDNA3.1-PPARa
and/or pCDNA3.1-MEK1, using FuGene6 reagent [37] followed

by purification by immunoprecipitation of polyclonal PPARa
antibody (Santa Cruz) or MEK1 antibody (Cell signaling) with the

Catch and Release kit (Upstate). Proteins were extracted using cell

lysis buffer (20 mM Tris pH 8.0, 150 mM NaCl, 1 mM EDTA,

1 mM EGTA, 1% Triton X-100) supplemented with a protease

inhibitor cocktail (Complete Mini, Roche). Western blotting was

performed as described previously [38,39]. Protein intensity was

quantified using ImageJ.

Quantitative RT-PCR. One microgram of total RNA was

used as template for Superscript reverse transcriptase II (Promega).

For real time-PCR, a BioRad iCycler (Biorad) and SYBR Green

was used in combination with specific primer sets designed to

detect transcripts (primer sequences available upon request).

Nuclear Extract Preparation
Cells were washed with ice-cold PBS, scraped into 5 ml of PBS

and pelleted by centrifugation at 1500 rpm for 10 min at 4uC. Cell

pellets were washed with buffer A (10 mM Tris-HCl, pH 7.6,

1.5 mM MgCl2, 10 mM KCl, supplemented with 2 mM DTT,

0.4 mM PMSF, 2 mg/ml leupeptin, 2 mg/ml aprotinin, 2 mg/ml

pepstatin, and 1 mM Na3VO4), resuspended in buffer A, and

incubated on ice for 10 min. Nuclei were pelleted at 3000 rpm for

10 min and resuspended in buffer C (0.42 M KCl, 20 mM Tris-

HCl, pH 7.8, 20% (v/v) glycerol, 1.5 mM MgCl2) supplemented

with 2 mM DTT, 0.4 mM PMSF, 2 mg/ml leupeptin, 2 mg/ml

aprotinin, 2 mg/ml pepstatin, and 1 mM Na3VO4. Nuclear

proteins were extracted by stirring at 4uC for 30 min. After

centrifugation at 13,500 rpm for 30 min, the supernatant was

dialyzed against buffer Z-100 (25 mM Tris-HCl, pH 7.6, 0.2 mM

EDTA, 20% (v/v) glycerol, 2 mM DTT, 0.4 mM PMSF, 1 mM

Na3VO4, 100 mM KCl) at 4uC. The dialysate was clarified by

centrifugation at 13,500 rpm for 30 min at 4uC and designated as

crude nuclear extract.

Immunofluorescence
Paraformaldehyde-fixed HEK293 cells were permealized with

0.2% Triton X-100 in PBS for 5 minutes. Primary monoclonal

MEK1 antibody (Cell signaling; 1:500) and secondary monoclonal

anti-mouse Texas-Red (Santa Cruz; 1:500) antibodies were diluted

using 1% BSA in TBS and incubations were carried out at room

temperature for 1 hour. Cells were washed 3 times with PBS for

5 minutes, mounted with coverslips in Vectashield mounting

medium H-1000 (vector Laboratories, Inc., CA USA), and

analyzed by immunofluorescence microscopy using a Zeiss LSM

510 META instrument [40] and nuclear GFP intensity was

quantified using ImageJ. Nuclei were counterstained with DAPI.

Statistical Analysis
Results are presented as means 6 SEM. Statistical analyses

were performed using INSTAT 3.0 software (GraphPad, San

Diego) and Student’s t-test or ANOVA followed by Tukey’s post-

test when appropriate. Statistical significance was accepted at a

P value ,0.05.
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