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Abstract Approximately 10 years ago, the Wnt signaling pathway effector TCF7L2 (ZTCF-4)
was recognized as a type 2 diabetes (T2D) risk gene through a genome wide association study
(GWAS). As the correlation between TCF7L2 polymorphisms and T2D susceptibility has been
reproducibly observed by numerous follow-up investigations among different ethnic groups,
great efforts have been made to explore the function of TCF7L2 in metabolic organs including
the pancreas, liver and adipose tissues. Although these explorations have enriched our general
knowledge on the Wnt signaling cascade in metabolic homeostasis, studies conducted to date
have also generated controversial suggestions. Here I will provide a brief review on the Wnt
signaling pathway as well as the milestone GWAS discovery and the follow-up studies. I will
then discuss the two different opinions on the correlation between TCF7L2 variants and T2D
risk, a gain-of-function event versus a loss-of-function event. This will be followed by summa-
rizing the relevant investigations on the metabolic function of hepatic TCF7L2 and presenting
our view on the discrepancy and perspectives.
Copyright ª 2015, Chongqing Medical University. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
The recognition of TCF7L2 as a diabetic risk
gene

Although several early investigations have indicated the
role of Wnt signaling pathway in the production and func-
tion of certain metabolic hormones,1e4the intensive global
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attention to the function of this pathway on glucose ho-
meostasis started in 2006, after a genome wide association
study (GWAS) performed by Grant and colleagues revealed
the linkage between the polymorphisms of the Wnt
signaling pathway effector TCF7L2 and the risk of type 2
diabetes (T2D).5
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Back to 1999 and 2003, investigators had revealed that a
region on chromosome 10q is linked to T2D susceptibility.6,7

Briefly, using a variance-components technique for con-
ducting multi-point linkage analyses in a Mexican American
population, Duggirala et al obtained evidence that there is
a T2D susceptibility locus on chromosome 10q.6 In 2003, a
genome wide linkage study performed by Reynisdottir et al
in an Icelandic population yielded the linkages of T2D sus-
ceptibility to regions on chromosome 5q34-q35.2, 12q, as
well as10q.7 Three years later, Grant et al defined the ge-
netic linkage on chromosomal 10q.5

Grant et al genotyped 228 microsatellite markers in a
cohort of Icelandic subjects with T2D and healthy controls
across a 10.5-Mb interval on the chromosome 10q. The
microsatellite, DG10S478, located within the intron 3 re-
gion of the TCF7L2 gene (previously known as TCF-4) was
found to be associated with the T2D susceptibility. This
correlation was then replicated in a U.S. cohort as well as a
Danish cohort. Furthermore, two single nucleotide poly-
morphisms (SNPs) known as rs12255372 and rs7903146 were
found to be in strong linkage disequilibrium with DG10S478
and also showed similar robust associations with T2D sus-
ceptibility. By comparing with the non-carriers, they
calculated that heterozygous and homozygous carriers of
the at-risk alleles have relative risks of T2D of 1.45 and
2.41, respectively.5 Importantly, this association has been
replicated by numerous investigations among different
ethnic populations.8e14 Studies have also revealed the
linkage between these T2D susceptibility SNPs with car-
diovascular and other complications of T2D.15,16
Wnt signaling pathway and its key effector b-
catenin/TCF

The Wnt signaling pathway was initially identified in cancer
research and embryologic developmental studies17,18;
while the physiological role of Wnt signaling in metabolic
homeostasis and its implications in metabolic disorders
have received broad attention since last decade,1,19,20

especially after TCF7L2 is recognized as an important T2D
risk gene.5

The key effector of Wnt pathway is b-catenin (b-cat)/
TCF (cat/TCF), formed by free b-cat and a member of the
TCF transcription factor family, including TCF7L2.21 TCFs
possess a high mobility group box (HMG) DNA binding
domain while b-cat provides the transcriptional activation
domain. In resting cells, free b-cat levels are tightly
controlled by the proteasome-mediated degradation pro-
cess (Fig. 1A, left panel). This involves the actions of the
degradation complex on b-cat. The key components of this
degradation complex are two tumor suppressors, adeno-
matous polyposis coli (APC) and axin/conduction; as well
as two protein kinases, the serine/threonine kinase
glycogen synthase kinase-3 (GSK-3) and casein kinases 1a
(CK-1a). Following binding of a canonical Wnt ligand to the
Frizzled receptor and LRP5/6 co-receptor, the degradation
complex is dissociated, with the participation of the pro-
tein namely dishevelled (Dvl). This will prevent the
degradation of free b-cat, which will accumulate and
enter the nucleus, resulting in the formation of cat/TCF
and the activation of cat/TCF (or Wnt signaling pathway)
downstream target gene expression (Fig. 1A, right panel).
Importantly, in the absence of b-cat, however, TCFs may
repress Wnt target gene expression via recruiting nuclear
co-repressors, such as histone deacetylases (HDACs), C-
terminal binding protein 1 (CtBP1) and transducin-like
enhancer of split (TLE), the mammalian homologue of
Drosophila Groucho.

Fig. 1A also shows that in addition to serving as the
effector of Wnt ligands, cat/TCF can mediate the function
of certain hormonal factors, such as the two important
metabolic hormones, insulin and glucagon-like peptide-1
(GLP-1).22,23 This can be achieved by regulating TCF7L2
expression and by stimulating the phosphorylation on b-cat
C-terminal serine residues (S675 and S552) (Fig. 1B).22,24e29

Our experimental results demonstrated that feeding
increased hepatic Tcf7l2 mRNA and protein levels in mice,
while in vitro insulin treatment in primary hepatocytes
increased both Tcf7l2 expression and b-cat S675 phos-
phorylation.22 In pancreatic b-cells, Liu and Habener, as
well as my team demonstrated the effect of GLP-1 on b-cat
S675 phosphorylation.30,31

Mouse brain was shown to express dominant negative
Tcf7l2 molecules during the early embryonic developmental
stage.32 Whether such native dominant negative molecules
are expressed during adulthood in any peripheral organ is
unknown. Scientists, however, can generate dominant
negative TCF7L2 (TCF7L2DN) for attenuating Wnt signaling
in various systems or cell lineages.2,24,31,33e38

TCF7L2 structure and the positions of T2D risk SNPs

Fig. 2 shows the intron-exon structure of TCF7L2 and the
SNPs that were found to be associated with T2D suscepti-
bility. In addition to rs12255372 and rs7903146 which are
known to be strongly associated with T2D risk in Caucasian
populations, two other SNPs, known as rs290487 and
rs11196218 were also indicated. They were recognized as
the risk SNPs for an Asian population study and a study in a
Hong Kong Chinese population.12,13 The TCF7L2 gene con-
sists of 17 exons. Among them, exon 4, 13, 14, 15 and 16
can be alternatively spliced, leading to the generation of 13
different transcripts. Such overall organization is conserved
between humans and rodents. However, the sizes of protein
products detected by Western blot for most tissues are
78 kDa and 58 kDa, respectively. A recent mouse embryonic
study revealed the existence of brain specific promoters
Ex1b-e, located within intron 5.32 Transcripts from these
promoters will lead to the generation of TCF7L2 that lack
the N-terminal b-cat interaction domain, anticipating
function as native dominant negative molecules.32 We
cannot detect such transcripts in adult mouse liver or
pancreas, although it is expressed in the mouse brain (data
not shown). Whether such transcripts exist in any of the
human tissues remains unknown.

TCF7L2 variants in T2D risk, gain-of-function
or loss-of-function?

TCF7L2 T2D risk SNPs are located within the intron regions
(Fig. 2). These SNPs may affect TCF7L2 expression,
although it is difficult to determine the underlying
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Fig. 1 A) A simplified schematic of the Wnt signaling pathway. Without Wnt ligand stimulation, b-cat is sequestered in the
cytoplasm and degraded by the proteasome. This process involves four major proteins: Axin, APC, GSK-3 and CK-1a, which form the
b-cat destruction complex. TCFs will recruit nuclear co-repressors (HDAC, CtBP1 and Groucho) and inhibit Wnt target gene
expression (left panel). Following the binding of Wnt ligand to the Frizzled receptor and LRP5/6 co-receptor, the destruction
complex is disrupted by Dvl. b-cat will enter the nucleus and forms the bipartite transcription factor with a TCF member (right
panel). In addition, b-cat can be activated by insulin or GLP-1 signaling cascade, involving its S675 or S552 phosphorylation. B)

Structure of b-cat. Four S/T residues at the N-terminus can be phosphorylated by GSK-3 and CK-1a, leading to its proteasome
degradation. The phosphorylation on the two S residues at the C-terminus leads to its activation. T, transactivation domain; Arm
Repeats, the armadillo repeat domain.
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mechanism for such transcriptional regulation. Importantly,
we are still not clear whether these risk alleles of TCF7L2
represent a gain-of-function or a loss-of-function event. A
gain-of-function event would suggest that over-expressed
TCF7L2 exerts a deleterious metabolic effect, while the
loss-of-function refers the opposite.

Observations that suggest the view of gain-of-
function

A few studies have raised the view that TCF7L2 is a dele-
terious factor for metabolic homeostasis. Lyssenko et al
found that T2D risk rs7903146 carrier showed increased
TCF7L2 expression in their pancreatic islets, associated
with reduced insulin secretion and incretin response.
Furthermore, T2D patients also showed a increase in
pancreatic TCF7L2 mRNA levels, while overexpression of
TCF7L2 in human islets reduced glucose-stimulated insulin
secretion.14 A transgenic mouse study performed by
Nobrega and colleagues showed that increased copy
numbers of Tcf7l2 rendered the mice glucose intolerant. On
the other hand, decreasing Tcf7l2 copy numbers resulted in
enhanced glucose tolerance. Finally, Boj et al reported that
Tcf7l2 deletion in pancreatic b-cells did not affect b-cell
function. Liver-specific Tcf7l2 knockout mice, however,
showed reduced hepatic glucose production. They had also



rs
11

19
62

18

rs
12

25
53

72

rs
79

03
14

6

rs
29

04
87

~7
5 

kb
 

~1
01

 k
b

1 2 3 4 5 6 7 8 9 10 11 1312 14 15 16 17

Ex1b-e Stop

Alternatively spliced exons

ATG

Common Exons

58 kDa

78 kDa

β-cat HMG
CtBP

CtBP
β-cat HMG

Short form

Long form

Fig. 2 TCF7L2 genetic structure and the positions of the T2D risk SNPs. TCF7L2, located on chromosome 10q25.3, consists of 17
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reported that liver-specific Tcf7l2 overexpression increased
hepatic glucose production.39

Observations that support the view of loss-of-
function

The above observations on the potential deleterious effect
of TCF7L2/Tcf7l2, however, were not supported by a
number of other investigations. Shu and others in Maedler’s
team made a series of observations that supported the
beneficial effect of TCF7L2 in pancreatic islet.40e44 They
found that in human or mouse pancreatic islets, siRNA-
mediated TCF7L2/Tcf7l2 knockdown resulted in a signifi-
cant elevation in b-cell apoptosis and a decrease in b-cell
proliferation, associated with the attenuation of glucose-
stimulated insulin secretion. In contrast, TCF7L2 over-
expression protected islets from glucose-and cytokine-
mediated apoptosis.44 Furthermore, they found that Tcf7l2
knockdown reduced the expression of the two incretin
hormone receptors.43 A number of other investigations also
supported the view that TCF7L2 exerts beneficial effects in
pancreatic b-cells.37,45e51 Finally, several investigations
suggested the repressive effect of TCF7L2 on hepatic
gluconeogenesis,22,33,52e54 which are also in contrast with
the observations made by Boj and colleagues.39 (see below
Session 4 for details).

Controversial observations made on the
exploration of metabolic function of hepatic
TCF7L2

The function of TCF7L2 on hepatic gluconeogenesis was
initially investigated by Lyssenko and colleagues in 2007.
They observed that the carrier of the TCF7L2 T2D risk SNP
rs7903146 had enhanced the rates of hepatic glucose pro-
duction.14 A subsequent follow-up study by Pilgaard et al in
human subjects also demonstrated that this T2D risk
TCF7L2 allele was associated with increased hepatic
glucose production, when a hyperinsulinemic clamp was
applied.55

Norton et al found that in vitro TCF7L2 silencing resulted
in a marked increase in basal hepatic glucose production,
accompanied by the increases in the expression of a battery
of gluconeogenic genes, including those genes encoded the
rate limiting enzymes fructose-1,6-bisphosphatase (Fbp1),
phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose 6-
phosphatase (G6pc).52 Overexpression of TCF7L2, however,
reversed the above phenotypes. TCF7L2 silencing did not
affect the half-maximal inhibitory concentration of insulin
or metformin on glucose production. They suggested that
this was due to the fact that basal hepatic glucose pro-
duction level remains elevated in TCF7L2-silenced cells.52

This team has recently reported their RNAseq and ChIP-
Seq studies in defining the TCF7L2 transcriptional network
in hepatocytes.56

The Wnt signaling pathway is essential for the develop-
ment and zonation of the embryonic liver. By taking the
advantage of the existence of the TOPGAL transgenic
mouse model,57 Ip et al in my team examined Wnt signaling
activity in adult mice. They detected the strong Wnt ac-
tivity in the liver, especially in pericentral hepatocytes.22

They then observed that feeding increased hepatic Tcf7l2
mRNA and protein expression levels, while in vitro insulin
treatment in mouse primary hepatocytes increased both
Tcf7l2 mRNA and protein levels, as well as b-cat S675
phosphorylation. Wnt-3a treatment was shown to reduce
gluconeogenic gene expression and glucose production in
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hepatic cells in vitro. siRNA-mediated Tcf7l2 knock-down,
however, increased glucose production and gluconeogenic
gene expression in cultured hepatocytes.22 Our observa-
tions collectively support the view that Wnt signaling
pathway negatively regulates hepatic gluconeogenesis; and
that the Wnt pathway effector cat/TCF also mediates the
function of postprandial insulin elevation in repressing
glucose production.22

Very recently, Ip et al presented us in vivo transgenic
mouse work, further supporting the notion that Wnt
signaling activity negatively regulates hepatic glucose pro-
duction.33 Briefly, we have generated a novel transgenic
mouse model namely LTCFDN. In this mouse line, TCF7L2DN
expression was driven by the liver-specific albumin pro-
moter. LTCFDN mice showed a progressive impairment in
response to pyruvate challenge, in the absence of insulin
intolerance. LTCFDN hepatocytes displayed elevated glu-
coneogenic gene expression and glucose production. These
hepatocytes also showed the loss of Wnt-3a-mediated
repression of gluconeogenesis. The above observations
were then reproduced in primary mouse hepatocytes with
adenovirus mediated TCF7L2DN expression.33

Several other lines of research also supported the sug-
gestion that Wnt signaling activation and TCF7L2 negatively
regulates hepatic gluconeogenesis.

A comprehensive in vitro and in vivo investigation on the
role of TCF7L2 in hepatic gluconeogenesis was presented by
Oh et al in 2012.53 They found that Tcf7l2 expression was
reduced in mice with insulin resistance, either due to the
generic defect (leptin receptor deficient db/db mice) or
after HFD feeding. They had then utilized the tail vein in-
jection approach to knockdown hepatic Tcf7l2 with the
adenovirus that expresses Tcf7l2 shRNA. Hepatic Tcf7l2
knockdown resulted in increased blood glucose levels and
glucose intolerance, associated with elevated gluconeo-
genic gene expression. Furthermore, overexpression of a
nuclear isoform of Tcf7l2 in HFD-fed mice improved glucose
tolerance. The authors had also assessed the binding of
Tcf7l2 to promoters of gluconeogenic genes (Pck-1 and
G6pc), as well as the effect of its binding on inhibiting the
promoter occupancies of gluconeogenic transactivators,
including cAMP response element-binding protein (CREB),
CREB regulated transcription coactivator 2 (CRTC2), and
FoxO.53

Neve et al had made a quantitative comparison of
TCF7L2 transcript expression in the liver in carries of
rs7903416 with diabetes and with normoglycemia. Five C-
terminal TCF7L2 transcripts were showed to be increased in
the risk allele carriers with diabetes, as well as in diabetes
patients regardless of their genotype.58 Similar to what we
had observed, in the human HepG2 cell line, TCF7L2
expression levels were also shown to be increased upon
high glucose or insulin incubation. More importantly, insulin
stimulated TCF7L2 expression is correlated with reduced
HNF4a levels, while selected TCF7L2 transcripts interact
with HNF4a, a transactivator of G6pc and Pck-1.58

Together, these investigations collectively support the
notion that hepatic TCF7L2 level can be postprandially
regulated. This is likely due to the elevation of the key
gluconeogenic repressive hormone insulin. Thus, in
response to the elevation of insulin secretion, Wnt signaling
negatively regulates hepatic gluconeogenesis and hence
reduces the plasma glucose level. However, a study on
liver-specific Tcf7L2 knockout mice suggested the opposite.

Tcf7l2�/� mice were generated in 1998 by Korinek and
colleagues, eight years before the recognition of its human
counterpart TCF7L2 as an important T2D risk gen-
e.59Tcf7l2�/� mice died in the immediate postnatal period,
accompanied with the lack of stem cells in their intestinal
crypts.59

Since Boj et al observed no metabolic defects in
pancreatic b-cell specific Tcf7L2 KO mice 39; they had
reassessed the new born Tcf7l2�/� mice. They found that
immediately after birth, plasma glucose levels were indis-
tinguishable between Tcf7l2þ/þ, Tcf7l2þ/�, and Tcf7l2�/�

mice. Three hours after birth, however, Tcf7l2�/� new-
borns showed hypoglycemia, which was not due to exces-
sive insulin secretion. They were able to extend the life
span of these mice to beyond 5 h with glucose injection,
and then demonstrated that new born Tcf7l2�/� mice show
reduced gluconeogenic gene expression. This team then
generated liver-specific Tcf7l2 KO mice during adulthood.
For this purpose, they mated the Tcf7l2loxP mice with the
tamoxifen-inducible liver-specific Cre recombinase strain
SACre-ERT2. They found that these liver-specific adult
Tcf7l2 knockout mice had reduced hepatic glucose pro-
duction during fasting period and exhibited improved
glucose homeostasis after HFD challenge. Finally, they also
tested the metabolic effect of transient hepatic TCF7L2
overexpression with the adenovirus tail vein injection
approach. In contrast to what was reported by Oh et al,53

Boj et al found that liver TCF7L2 over-expression
increased serum glucose level under fasting conditions.
Again, this increase was not due to a reduction in circu-
lating insulin levels.39 Together, this team presented an
opposite view with a number of other investigators, that
TCF7L2 positively regulates hepatic gluconeogenesis and
they suggested that the inhibition of Wnt signaling may
bring the beneficial effect in metabolic diseases.39
A current popular view on the discrepancy

As presented above, although enormous efforts have been
made to explore the metabolic function of TCF7L2, as
facilitated by the reproducible GWAS discovery, opposite
views have been generated regarding the role of this Wnt
signaling pathway effector on hepatic glucose production.
Here I will first of all present the view shared by my col-
leagues and I, arguing that Wnt signaling pathway is indeed
a negative regulator of hepatic gluconeogenesis. Physio-
logically, it serves as the effector of the most important
repressive hormone insulin postprandially. I will then
discuss the potential technical and other problems that
may contribute to the generation of the discrepancy.

We suggest that the activation of Wnt signaling pathway
negatively regulates hepatic gluconeogenesis. Firstly, both
TCF7L2 expression and b-cat activation (S675 phosphory-
lation) were shown to be stimulated by insulin, which is the
most important repressor of hepatic gluconeogenesis. It is
unlikely that insulin represses gluconeogenesis but at the
same time activates the Wnt signaling pathway effector to
stimulate its secretion. As shown in Fig. 3, elevated hepatic
gluconeogenesis occurs during fasting, as glucagon
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stimulates the transactivators of gluconeogenic genes Pck-1
and G6Pc (Pck-1 is utilized as an example), including CREB,
peroxisome proliferator-activated receptor-gamma coac-
tivator (PGC-1a), CRTC2 and FoxOs. It needs to be pointed
out that FoxOs also utilize b-cat as its co-factor in stimu-
lating gluconeogenic gene expression.60 Following food
intake, the rise of plasma insulin levels leads to the inac-
tivation of FoxOs. In addition, insulin stimulates both
TCF7L2 expression and b-cat stability. Thus, cat/TCF
functions as the novel effector of the insulin signaling
cascade, which contributes to the repression of gluconeo-
genesis. Wnt ligand (such as Wnt-3a) treatment did not
change TCF7L2 levels, although it is known to stabilize b-
cat (preventing its N-terminal serine/threonine residue
phosphorylation as shown in Fig. 1). It remains unknown
whether Wnt ligand has an intrinsic repressive effect on
hepatic gluconeogenic gene expression.22 Secondly, it has
been generally accepted that the competition between the
developmental Wnt signaling and the stress FoxO signaling
controls the homeostatic nature of the life, including
catabolic and metabolic homeostasis. It is unlikely that
both pathways positively regulate hepatic gluconeogenesis.
It is reasonable to suggest that FoxO pathway mediates the
function of the catabolic hormone glucagon in response to
starvation (a category of stress) while Wnt pathway medi-
ates the function of the metabolic hormone insulin after
food intake.
Fig. 3 Potential mechanisms contributing to the repression o

gluconeogenic gene Pck-1 is utilized here for the illustration purpose
PKA activation and the stimulation of gluconeogenesis, with the pa
cat. Postprandial elevation of plasma insulin level leads to repres
vation of FoxO. In addition, insulin can simultaneously stimulate TC
cat molecules will team up with TCFs instead of with FoxOs, whic
coneogenic genes.
We suggest that the controversial observations made by
different laboratories may not be simply due to the dif-
ferences in mouse strains utilized or other experimental
details. We need to be extremely careful in applying our
basic knowledge of the Wnt signaling pathway as well as
TCF7L2 into this important research field.

Human TCF7L2 gene transcription leads to the genera-
tion of 13 different sized transcripts, while Western blot-
ting can detect at least two different sized protein
products, the 78 kDa one and the 58 kDa one. Some smaller
sized proteins could also be detected in certain tissues.53,61

In addition, as discussed above, a native dominant negative
TCF7L2 was shown to be expressed in mouse brain during
embryonic development stage. Whether such dominant
negative molecule is also expressed in the liver is unknown.
The hepatic function of these different sized products
could be both redundant and different. Furthermore, the
expression of these transcripts was shown to be influenced
by not only the risk SNPs, but also the hormonal factors
during health and diseases. Thus, it may be too early to
claim, based on assessing limited liver and pancreatic islet
samples from carriers of TCF7L2 T2D risk SNPs, that this
represents the gain-of-function event.

Hepatic gluconeogenesis is precisely controlled by
complicated hormonal factors, including glucagon and in-
sulin, in response to fasting and food intake. On the other
hand, a given TCF protein, including TCF7L2 is only a “half”
f hepatic gluconeogenesis by Wnt signaling activation. The
. The elevation of plasma glucagon level during fasting leads to
rticipation of Pck-1 transactivators CREB, FoxO, CRTC2 and b-
sed hepatic gluconeogenesis, which is achieved by the inacti-
F7L2 expression and b-cat S675 phosphorylation. Thus, more b-
h finally contributes to the repression of Pck-1 and other glu-
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effector of the Wnt signaling. It needs to be teamed up with
b-cat to exert its function as Wnt pathway effector.
Furthermore, as shown in Fig. 1, the function of TCF is bi-
directional. When b-cat is not available, TCF can repress,
instead of stimulate, the expression of Wnt pathway
downstream target gene. In addition, although we have
learned that b-cat is involved in both Wnt and FoxO
signaling, mechanism that controls the switch is still
elusive.62 Thus, simply knockout or over-expressing TCF7L2
may not be a sufficient approach to determine its compli-
cated function, especially in metabolic homeostasis. In
addition, hepatocytes also express two other TCF members,
TCF7 and TCF7L1.22
Summary and perspectives

Despite the existence of dispute, our mechanistic under-
standing on the role of Wnt signaling pathway and TCF7L2 in
metabolic homeostasis has been advanced significantly. We
anticipate that in the near future, we will see the appli-
cation of inducible expression of TCF7L2DN in combining
with the manipulation of b-cat levels and phosphorylation
status in the liver, as well as the utilization of other Wnt
pathway gain-of-function and loss-of-function tools, for the
further clarification of the role of hepatic Wnt signaling in
gluconeogenesis and other features of metabolic homeo-
stasis. Advanced techniques, such as RNAseq and ChIP-seq
should be further utilized to define the hepatic TCF7L2
transcriptional network for health and diseases. Finally,
expanded functional analyses need to be conducted on
different sized TCF7L2 transcripts and protein products, in
combination with expanded quantitative assessment on
their expression in the risk SNP carriers.
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