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INTRODUCTION 
 
Among the tasks of modern radiobiology [1], searching 
for the agents with radioprotective action is one of the 
most important. Such activity can be achieved by using 
gene therapy for increasing radioresistance by exoge-  

 

nous engineered DNA repair and radioprotective 
constructs, replacing organic molecules with 
strengthened isoforms, slowing down metabolic activity 
while maintaining cognitive function or strengthening 
the regulation of endogenous repair and radioprotective 
machinery by means of chemical compounds. Only two 
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ABSTRACT 
 
The search for radioprotectors is an ambitious goal with many practical applications. Particularly, the 
improvement of human radioresistance for space is an important task, which comes into view with the 
recent successes in the space industry. Currently, all radioprotective drugs can be divided into two large 
groups differing in their effectiveness depending on the type of exposure. The first of these is 
radioprotectors, highly effective for pulsed, and some types of relatively short exposure to irradiation. The 
second group consists of long-acting radioprotectors. These drugs are effective for prolonged and 
fractionated irradiation. They also protect against impulse exposure to ionizing radiation, but to a lesser 
extent than short-acting radioprotectors. Creating a database on radioprotectors is a necessity dictated by 
the modern development of science and technology. We have created an open database, 
Radioprotectors.org, containing an up-to-date list of substances with proven radioprotective properties. All 
radioprotectors are annotated with relevant chemical and biological information, including transcriptomic 
data, and can be filtered according to their properties. Additionally, the performed transcriptomics analysis 
has revealed specific transcriptomic profiles of radioprotectors, which should facilitate the search for potent 
radioprotectors. 
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radioprotective compounds, amifostine, and palifermin, 
currently have the US FDA approval for use in radiation 
therapy. However, several agents have been reported 
that show therapeutic promise [2]. Creating a database 
on radioprotectors is a necessity dictated by the modern 
development of science and technology.  
 
The success in the development of radioprotective 
agents depends on an understanding of the molecular 
biology of radiation damage [3]. Increasing the radio-
resistance of the different tissues can be achieved with 
procedures that affect the primary radiochemical 
reactions, the protective mechanisms of the organism 
itself, or both.  
 
All radiation modificator agents [4] can be divided into 
two groups: radiation mitigators (or simply mitigators) 
and radioprotectors (radioprotective agents). Radiation 
mitigators are substances which are used after irradiation 
that can reduce the negative effect of radiation. Radiation 
mitigators include, for example, substances such as TGF-
β receptor inhibitors, protease inhibitors, COX2 inhibitors, 
and others [5]. Thus, radiation mitigators neutralize the 
negative consequences of mitotic cell death and DNA 
damage, reduce the activity of cytokine cascades, reduc-
ing the level of vascular damage, tissue hypoxia, and 
fibrosis [6].  
 
In contrast, radioprotectors are drugs or compositions of 
drugs that are injected into the body before it is 
irradiated in order to provide a high protective effect. 
Radioprotectors are chemical compounds obtained 
synthetically or extracted from natural products. Their 
protective effect is manifested by a smaller lesion 
during the irradiation of radiosensitive tissues and their 
more rapid post-radiation recovery, which generally 
leads to a decrease in the severity of radiation injury. 
The use of radioprotectors after irradiation is usually 
ineffective [7, 8]. 
 
In this paper, we describe a manually curated database 
Radioprotectors.org containing an up-to-date list of 
substances with proven radioprotective properties at 
different levels of structural organization of the 
organisms. 
 
RESULTS AND DISCUSSION 
 
The motivation behind the creation of the 
Radioprotectors database was to provide a one-stop 
resource for researchers interested in quick access to the 
results of experiments and approved drugs. As a result, 
a platform for cross-species, cross-study comparison of 
the effects of these compounds was created. The 
interface was developed to make it visually appealing 
and intuitive for rapid, effortless overviews of radio-

protective compounds, with links to original studies and 
other databases for users seeking further detail. The site 
was not designed as a mere list of radioprotectors; 
instead, a comprehensive intervention profile was 
created for each compound, including its biochemistry 
and bioactivity, possible or known mechanisms of 
action, MESH indication, and its current drug status. 
Figure 1 represents a visual overview of the content, 
data sources, and user-directed exploration of these 
within Radioprotectors.  
 
Analysis of experiments related to radioprotective 
compounds 
 
The database contains summaries of more than 150 
radioprotective compounds. Each compound was 
manually selected from the existing biomedical 
literature by searching the PubMed database 
(http://www.ncbi.nlm.nih.gov/pubmed), DrugBank 
database (https://www.drugbank.ca/), and PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/) using key-
words relevant to pharmacological interventions in 
radioprotection.  
 
All entries in Radioprotectors have links to original 
publications, making access to raw data fast and 
convenient. For any given compound, links to relevant 
study can be accessed directly from the search results or 
within each compound profile.  
 
Comparison with existing databases of 
radioprotectors and radiation mitigators 
 
To date, there is only one database on radioprotectors 
[9], similar to that presented by the Bioinformatics 
Database of Radiosensitizers and Radioprotectors by the 
University of Mumbai. (http://bioph.mu.ac.in/ 
Welcome/). DB includes about 100 compounds, a 
significant part of which is an extract of various plants, 
in which, as a rule, it is impossible to identify in its pure 
form a substance that can have a radioprotective effect. 
Radioprotectors.org includes more than 150 substances 
of both synthetic and natural origin and contains 
detailed information on the mechanism of action and 
pharmacological properties of the substance. 
Information on experimentation and efficiency is taken 
from peer-reviewed scientific journals. All substances 
have a unique identifier that allows one to quickly find 
the desired compound in leading chemical databases, 
including PubChem, ZINC, etc. 
 
Analysis of compounds with radioprotective activity 
 
To date, all radioprotective drugs can be divided into 
two large groups, differing in their effectiveness 
depending on the type of exposure. The first of these is 

http://bioph.mu.ac.in/Welcome/
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radioprotectors, highly effective for pulsed, and some 
types of relatively short exposure. These are radio-
protectors mainly of short duration. Their protective 
activity, depending on the properties and methods of 
application, manifests itself within a few minutes or a 
maximum by the end of the first hour after 
administration, but is limited to 30 min-5 hours. In 
radioprotectors of this group, the highest level of the 
protective effect is usually observed when they are 
administered in maximum tolerated doses, which cause 
changes in the metabolism of radiosensitive cells. The 
second group consists of long-acting radioprotectors. 
These drugs are effective for prolonged (prolonged) and 
fractionated (fractional) irradiation. They also protect 
against impulse exposure to ionizing radiation, but to a 
lesser extent than short-acting radioprotectors. The 
duration of the protective action of radioprotectors of 
prolonged action can be from one up to several days. 
The radioprotective effect of these drugs is mainly 
associated with the mechanisms of increasing the 
general nonspecific resistance of the organism [10]. 
 
Short-acting radioprotectors, depending on the initial 
protective action mechanisms and chemical structure, are 
divided into the following groups [11, 12]: reducing 
agents, which include sulfur-containing compounds 
(cysteine, cystamine, cystaphos, etc.), antioxidants 

(ascorbic acid, vitamin E, tocopherols, etc.); and drugs 
that cause hypoxia of cells and tissues (indo-
lealkylamines, methemoglobin formers, cyanides, azides, 
nitrites, etc.). 
 
Sustained-release radioprotectors include drugs with 
anabolic properties (primarily with estrogenic activity), 
polyanionic polymers (heparin, chondroitin sulfate, and 
other polysaccharides, nucleic acids, polynucleotides 
and their derivatives, some vaccines, synthetic 
polymers). 
 
The following mechanisms of radioprotectors action are 
possible [13, 14]: 
 
- competition for strong oxidizing agents and free 

active radicals formed during irradiation of tissues 
and especially during radiolysis of water (peroxide 
or hydroperoxide radicals); 

- increase in the content of endogenous thiol 
compounds in tissues; 

- the formation of mixed disulfides and their 
temporary reversible bond; 

- formation of temporary reversible bonds with 
radiosensitive groups of vital enzymes or other 
protein molecules, which ensures their protection at 
the time of irradiation; 

 

 
 

Figure 1. Illustration depicting the content, data sources, and user-directed flow of Radioprotectors.org. 
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- formation of strong compounds with heavy metals, 
providing accelerated course of chain oxidation 
reactions; 

- migration of excess energy from the macromolecule 
to the radioprotector; 

- inhibition of oxidation chain reactions; 
- absorption of secondary ultraviolet radiation, 

exciting macromolecules such as nucleic acids; 
- increase the stability and mobility of the protective 

mechanisms of the body, including compounds with 
the hormetic effect [15–18]; 

- inhibition of metabolism; 
- detoxification or accelerated elimination of toxic 

products from the irradiated organism. 
 
However, there is no such chemical substance, which 
would have all the above properties. That is why 
radioprotectors belong to the most diverse classes of 
chemical compounds. 
 
Many of these agents are free radical scavengers/ 
antioxidants. Superoxide dismutase and superoxide 
dismutase mimetics, nitroxides, and dietary antioxidants 
are all being investigated. Recently, alternative 
strategies of drug development have been evolving [19], 
which focus on targeting the series of cellular insult 
recognition/repair responses initiated after radiation. 
These agents, which include cytokines/ growth factors, 
angiotensin-converting enzyme inhibitors, and apoptotic 
modulators, show promise of having a significant 
impact on the mitigation of radiation injury [2].  
 
Antioxidants and free radical scavengers 
Ionizing radiation induces damage of cellular structures 
in two primary ways: direct damage to DNA and 
generation of free radical-containing reactive molecules. 
Free radicals are generated through the interactions 
between ionizing radiation and small oxygen-containing 
molecules (including water). Reactive oxygen species 
(ROS) and reactive nitrogen species (RNS) are the main 
sources of damage to cell macromolecules. Ionizing 
radiation leads to the generation of ROS and RNS in the 
presence of oxygen and nitrogen. ROS include 
superoxide anion (O2•-), hydrogen peroxide (H2O2) 
and hydroxyl radical (OH•). Reactive forms of nitrogen 
are nitric oxide (NO•) and peroxynitrite (ONOO-) [20]. 
Free radicals that are generated by ionizing radiation 
can react with DNA, lipid membranes, and proteins 
causing damage and/or dysfunction to various cellular 
structures. The cell has mechanisms to mitigate and 
manage damage from free radicals. Hydroxide ions are 
reduced by the enzyme glutathione peroxidase and 
superoxide ions are reduced to hydrogen peroxide by 
superoxide dismutase. Hydrogen peroxide generated by 
superoxide dismutase is used by catalase to generate 
water. Significant damage to cellular structures occurs 

when the ionizing radiation-induced generation of 
radicals out-paces the cell’s ability to clear these 
reactive molecules [13, 21, 22].  
 
Several approaches have been followed in recent 
decades to scavenge radicals [13, 21]. Sulfhydryl 
compounds, particularly the aminothiols and phospho-
rothioates contain an SH group, make them suitable for 
free radical scavenging because of their propensity to 
donate a hydrogen atom for the reduction of radical 
species [23]. We have included several substances 
including cysteine, cysteamine, glutathione, AET, 
amifostine [24]. Currently, amifostine is the only 
cytoprotective agent that is approved by the US FDA 
specifically for use as a radioprophylactic. The 
mechanism underlying amifostine’s protective action 
appears to be multifaceted, involving free radical 
scavenging, enhanced DNA protection and repair, and 
induction of hypoxia [25].  
 
Redox homeostasis within a cell is maintained in part 
by a series of antioxidant enzymes that include 
glutathione peroxidase, catalase, and superoxide 
dismutase (SOD). All the SOD isoforms have been 
reported to have radioprotective potential, reducing 
acute radiation toxicity through neutralization of 
radiation-induced ROS and delaying radiation injury 
through suppression of chronic oxidative stress [26]. 
SOD mimetics have a metal ion (Cu, Fe, Mn, and Zn) 
at their active centers, which behave like the metal 
center of the SOD molecule. Advantages of the SOD-
mimetics class of compounds include prolonged  
half-lives and widened time windows of action 
compared to native SOD. For example, M40403, 
manganese (Mn)-containing biscyclohexylpyridine, 
that has demonstrated equivalent or superior catalytic 
activity to that of native SOD, has been given FDA 
approval [27]. Also, this group includes AEOL 10150 
[28] and Mn complexes EUK-189 and EUK-207 [29], 
tempol (4-hydroxy2,2,6,6-tetramethylpiperidine-1-
oxyl) [29, 30].  
 
A number of naturally occurring vitamins and dietary 
antioxidants have been tested for their efficacy as 
radioprotectors [31]. Both vitamin E and selenium, as 
well as their combination, have been reported to reduce 
radiation-induced transformations in vitro [32]. 
Vitamins C and E have been shown to decrease 
chromosomal damage, mutations and apoptosis in 
mammalian cells, and vitamin A and N-acetylcysteine 
have been suggested to be effective against radiation-
induced carcinogenesis [33]. In vivo studies also report 
the use of antioxidants as effective radiation protectors. 
α-Lipoic acid significantly increased the survival rate 
following lethal total body irradiation in mice, while 
vitamins A, C, E and β-carotene have been shown to 
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increase resistance to high doses of radiation, and in 
vivo protection against radiation-induced oxidative 
stress has been reported for L-selenomethionine and 
such antioxidants such as vitamins C and E, glutathione, 
α-lipoic acid, N-acetylcysteine and co-enzyme Q10 
[34]. Another naturally occurring antioxidant receiving 
considerable interest is the hormone melatonin and its 
analogs, which have been documented to have a 
radioprotective effect in normal tissues in a number of 
animal models while, at the same time, exert direct 
antitumor effects [35].  
 
Cell cycle modulators  
Upon the DNA damage induced by ionizing radiation, 
all eukaryotic cells activate protecting mechanisms 
associated with cell cycle arrest until the DNA damage 
is repaired and – in the case of too extensive damage – 
necrosis or apoptosis [36]. Radioprotectors may affect 
cell fate acting through both mechanisms: either 
promoting cell cycle arrest or inhibiting necrosis/ 
apoptosis. 
 
The apoptosis is largely a p53-dependent process and 
inhibition of p53-mediated apoptosis by chemicals 
results in increased radioresistance [37]. This can be 
achieved by direct inhibitors of p53 activity such as 
pifithrins [38] or by modulation of other important pro-
apoptotic proteins. For instance, kukoamine increases 
the level of anti-apoptotic mediators (BCL2) and 
decreases the level of pro-apoptotic mediators (BAX 
and caspase-3) in a dose-dependent way [39]. Acteoside 
has been shown to inhibit expression of caspase 3, and 
thus to decrease apoptosis [40] in human skin 
fibroblasts. Similarly, atorvastatin down-regulates 
expression of caspase 3 [41].  Carvacrol is another 
compound with anti-apoptotic action shown in cultured 
human peripheral blood lymphocytes but the molecular 
mechanism of it is not clear [42]. Isofraxidin inhibits 
apoptosis in a p53-independent way via cytochrome C 
in addition to caspase 3 [43]. 
 
Apart from the down-regulating apoptotic answers, 
some radioprotective substances lead to cell cycle 
arrest. Resveratrol is one of the most well-studied 
examples of this group of compounds. It has effects on 
cyclin expression and induces S-phase arrest [44]. 
 
DNA protectors  
The radioprotectors can elicit their action by various 
mechanisms and DNA protection via decreasing DNA 
damage is among them. Moreover, the late effects of 
ionizing radiation are associated with DNA damage that 
can be visualized by persistent DNA Damage Response 
(DDR) foci and might be prevented by radioprotectors 
[45, 46]. Reduction of DNA damage might be reached 
by suppressing the formation of reactive species, 

detoxification of radiation-induced species, target 
stabilization, and enhancing the repair and recovery 
processes [22]. The chemical or biochemical 
consumption of oxygen can lead to hypoxia in cells and 
tissues. This may be one of the mechanisms by which 
sulphydryl compounds (RSH), which can undergo an 
oxidation reaction with molecular oxygen, result in 
radioprotection. Also, some interest has been drawn to 
the thiol-induced hypoxia caused by amifostine and 
cystaphos, which offer selectivity in protecting normal 
cells vs. tumor cells [47, 48].  
 
Radioprotectors can also interact with cellular targets, 
like DNA, by forming mixed disulfides and prevent 
radiation damage by stabilizing the target. Several 
amino thiol radioprotectors, such as cysteamine and WR 
1065, bind to DNA and their DNA binding is coupled 
with their radioprotective potency [47–50]. Since one of 
the most important molecular targets damaged by 
radiation is the genomic DNA of a cell, cells must 
repair these lessons. Thiols, such as glutathione and 
adeturon, may be involved in the repair of DNA single-
strand breaks. Cells genetically deficient in GSH 
synthesis or cells in which GSH deficiency is produced 
by dl- Buthionine-sulfoximine or by hypoxia or 
misonidazole show a lack of DNA single-strand break 
repair [51–53].  
 
The cellular defense mechanisms against radiation and 
chemical stresses elicit an early SOS response to 
damage and subsequent adaptation. The SOS response 
is required for eliminating lesions in DNA while the 
adaptation response is needed for restoring cellular 
metabolism and return to normal functioning. SOS 
repair plays a very important role in protecting the key 
molecular targets, which comprise the activation or 
synthesis of several proteins, DNA precursor 
synthesizing enzymes, and DNA precursors [54]. Drugs 
and chemicals, which stimulate or increase the activity 
of DNA precursor-synthesizing enzymes, such as 
ribonucleotide reductase, could function as radio-
protectors. The administration of the drug indomethacin 
prior to radiation exposure to animals (mice and dogs) 
resulted in higher survival of animals from lethal doses 
of gamma-radiation [54]. All of these radioprotectors 
are listed in https://radioprotectors.org/home. 
 
Sunscreening agents 
UV radiation has a broad spectrum, ranging from 40 to 
400 nm, which is divided into Vacuum UV (40–190 
nm), Far UV (190–220 nm), UVC (220–290 nm), 
UVB (290–320 nm), and UVA (320–400 nm), of 
which the latter two are medically important. UVA 
radiation is divided into two distinct subtypes: short-
wave UVA (320–340 nm) and long-wave UVA (340–
400 nm) [55].  

https://radioprotectors.org/home
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Both UVA and UVB radiation can cause sunburn, 
photoaging reactions, erythema, and inflammation. 
Mechanisms that modulate UV-induced damage involve 
nuclear and mitochondrial DNA damage, generation of 
reactive oxygen species (ROS), immune suppression, 
lipid peroxidation (membrane damage), activation of 
matrix metalloproteinases [56]. 
 
Radioprotectors.org includes a set of compounds that 
exert protective effects against UV-spectrum irradiation 
and thus form a group termed “sunscreening agents”. 
This group can further be divided into two subgroups 
with different mechanisms: physical (inorganic) and 
chemical (organic) sunscreens. For organic compounds, 
the mechanism of action is based on their chemical 
structure involving an aromatic compound conjugated 
with a carbonyl group. This structure allows the 
absorption of high energy UV rays and the molecule 
switches to an excited state. As the molecule returns to 
the ground state, it releases the lower energy of longer 
wavelengths. [57] Such compounds as Avobenzone, 
Oxybenzone, Ecamsule, Octinoxate are FDA-approved 
components of topical sunscreens with different 
spectrums of absorption and various photostability. 
Octinoxate is identified as one of the potent UVB-
absorbers [58], but is not photostable and degrades in 
the presence of sunlight after a short period of time, 
while Ecamsule, a very photostable product, acts as 
UVA-blocker. In animal studies, it prevented UVA-
induced photoaging [59].  
 
The mechanism of action of physical sunscreens, such 
as Zinc oxide, Titanium dioxide is based on the 
reflection and scattering of UV light. The reflective 
properties - reflective index, the size of the particles, the 
film thickness, and the dispersion of base determine the 
effectiveness of inorganic sunscreens [57].  Microfine 
zinc oxide has shown to be efficient against a wide 
range of UVA including UVA 1 (340 to 400 nm), but 
less efficient in blocking UVB, compared to Titanium 
oxide. Microfine titanium dioxide protects against UVA 
2 (315-340 nm) and UVB but does not protect against 
UVA 1 [59]. Notably, both of these compounds have 
shown remarkable shielding properties against ionizing 
radiation and can also be classified as potential 
radioprotectors [60].  
 
Inductors of autophagy 
Autophagy is the essential, regulated cellular 
mechanism that disassembles and degrades unnecessary 
or dysfunctional components. Further recycling of those 
components serves as an additional energy source under 
various stress conditions [61]. In recent years, 
autophagy became one of the crucial cellular events in 
the context of aging research. Pharmacological or 
genetic inhibition of autophagy promotes degenerative 

tissue changes, resembling those that occur during aging 
and also reduces the longevity-promoting effects of 
caloric restriction. Contrariwise, interventions that 
stimulate autophagy, increase lifespan in model 
organisms - notably, among all pharmacological 
manipulations MTORC1 inhibition is known to have 
the most dramatic effect [62, 63]. Activation of AMPK, 
another key autophagy regulator, triggers a number of 
cellular-protective mechanisms and prevents the 
hydrogen peroxide-induced dysregulation of the 
autophagic flux in senescent cells [64].  
 
Autophagy is a generally cytoprotective (rather than a 
self-destructive) process. However, under certain 
conditions autophagy machinery is likely to be required 
for essential cell death [65]. In some cases, autophagy 
shares rather pro-senescent than anti-senescent features 
- once the cell comes into a senescent state, autophagy 
is likely to sustain its viability by reducing the level of 
overall metabolic stress. Under normal conditions, 
autophagy exerts anti-senescence effects. [66] Such 
dual nature of the autophagic process opens a 
perspective to use destructive autophagy properties to 
combat cancer and it’s a progression in some cases, by 
triggering autophagic cell death or senescence of 
malignant cells [67].  
 
A number of compounds that share both gero- and 
radioprotective properties have an ability to promote 
autophagy - understanding of how this feature 
contributes to radioresistance is important for further 
radioprotectors research and development. In a short-
term period after irradiation, autophagy plays a positive 
role due to its cytoprotective properties. Autophagy 
protects the hematopoietic system from nuclear injury 
through modulation of DDR (DNA damage response) 
[68]. However, in the long-term perspective, the role of 
autophagy remains controversial. Malignant trans-
formation of irradiated cells remains one of the most 
serious long-term consequences of radiation-induced 
damage. A number of studies have revealed that 
cancer cells rely on autophagy to gain radioresistance 
[69, 70]. On the other hand, irradiation has an ability 
to trigger autophagic cell death that involves Becklin, 
LC3, ATG1, ATG5, and ATG7 proteins (Figure 2) 
[71]. 
 
Remarkably, some radioprotective compounds such as 
Buthionine sulfoximine, Hoechst 33342, exert dual 
activity - enhance radioresistance in normal and 
radiosensitized transformed cells. 
 
Due to the ability of some autophagy inductors to 
promote cancer cell apoptosis and display negative 
effects on cancer cell metabolism, natural compounds 
that can synergically work with chemotherapy agents 
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have received certain attention in the field of cancer 
research. [72]. Such plant-derived components as 
Luteolin [73], Naringin [74], Caffeine [75] showed an 
inhibitory effect on tumor cell growth and enhanced 
apoptosis. 
 
We have performed an analysis to identify how various 
natural compounds, including those with gero- and 
radioprotective activities, modify the activity of the 
common autophagy-associated pathways (Figure 3). In 
a vast majority, the upregulation of AMPK signaling 
pathway and downregulation of mTOR signaling 
pathway was observed. Notable upregulation of path-
ways that are involved in lysosome vesicle biogenesis 
was also shown for most of the compounds. MAPK 
signaling pathway activation may be related to the 
mTORC1-MAPK feedback loop, which was observed 
both in cancer and normal cells [76]. In common, 

signaling pathway landscape induced by most of the 
compounds, identifies them as potent autophagy 
inductors. 
 
Using the open database LINCS1000, we have collected 
gene expression profiles for each compound on the 
heatmap. In order to obtain the list of differentially 
expressed genes, data were processed using the R 
'limma' package [77] Benjamini-Hochberg FDR 
adjustment was applied to the p-values [78]. The 
pathway-level analysis was performed using the 
iPANDA software suite [79]. Positive and negative 
iPANDA scores indicated up- and down-regulation of 
the pathway, respectively. The pathway database used 
for the analysis included 1856 annotated and manually 
curated signalling pathway maps from KEGG, 
Reactome, and NCI-PID and SA Biosciences 
collections [80–82]. 

 
 

 
 

Figure 2. Autophagy and cell death by α-radiation. 
 

 
 

Figure 3. Effect of compounds on autophagy-related pathways. 
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Table 1. Chemical compounds with combined gero- (according to Geroprotectors.org) and radio-protective activity. 

Compound name  
Amifostine, Lithium chloride, Vitamin D3, Kanamycin, 2,4-dinitrophenol, Ellagic acid, Catechin, Carbonyl, Cyanide M-
Chlorophenyl Hydrazone (CCCP), Glycerol, Deprenyl, Trichostatin A, Cysteamine, Quercetin, Fisetin, 4'-o-methyl 
epicatechin, Cyclosporin A, Valproic acid, Metformin, Rosmarinic acid, Rapamycin, Ibuprofen, Resveratrol, Simvastatin, 
Caffeine, Nitrendipine, Euk-134, Caffeic acid, Indirubin, 1,2,3,4,6-Penta-O-Galloyl-B-D-Glucose (PGG), Carnosine, Dimethyl 
Sulfoxide (DMSO), Ly294002, 4- phenylbutyrate, Beta- estradiol, Epigallocatechin Gallate, Minocycline, 10-Hydroxy-2-
decenoic acid, Baicalein, Gallic acid, N-acetyl-L-cysteine, Genistein, Aspirin (Acetylsalicylic acid, ASA), Quercetin-3-O-
Glucoside, Enalapril, Α-Lipoic Acid, Celecoxib, Ursolic acid, Curcumin, Kaempferol, Melatonin, Ascorbic acid, Polydatin, 
Sodium Butyrate, Spermidine, 2-mercaptoethanol, Maltose, Trehalose, Cyproterone acetate, Fenofibrate 

Glutatione The effect is ambiguous [107] 
Pioglitazone Effect was shown for a derivative [108] 

Butylated hydroxytoluene (BHT) The effect was shown for S. cerevisiae but not for cell cultures [109] 
Fullerene C60 Effect was shown for a derivative [110] 
Doxycycline In combination with valproic acid [111] 

Fumarate Effect was shown for a derivative [112] 
Nitroflurbiprofen Effect was shown for a derivative [113] 

 

Comparison of radio- and geroprotectors databases  
 
There is a substantial intersection between aging and 
radiation-induced damage [83]. Multiple radiation-induced 
conditions are classified as diseases [84], and aging and 
radiation-accelerated aging may be classified as diseases 
[85]. Significant crosstalk between the mechanisms 
underlying the radiation protection and geroprotection is 
also notable [19, 86]. Many of the compounds that can be 
found in https://radioprotectors.org/home can be also 
found in the known databases of geroprotectors [87, 88]. In 
total, 66 substances included in the present database of 
radio-protectors also show geroprotective activity being 
listed in the Geroprotectors.org database [88]. These 
compounds are shown in Table 1. The functional similarity 
between geroprotectors and radioprotectors is partially due 
to the similar nature of negative effects on DNA imposed 
by radiation and developed during aging. Damages of the 
genetic material gradually accumulate throughout life, as 
the effectiveness of the repair systems and the ability of 
cells to neutralize genotoxic factors decrease. The death 
and senescence of cells, leading to fibrosis and chronic 
inflammatory processes, as well as a decrease of the stem 
cell pool and their malignant transformation under 
conditions of genotoxic stress, are key events in the aging 
process [89–91]. 
 
Ultraviolet radiation is considered one of the key factors 
in skin aging as well as an inducer of the above-
mentioned processes. At the same time, ionizing 
radiation rapidly causes numerous and often un-
repairable lesions (i.e., double-strand DNA breaks), 
leading to a vast cell death, primarily of the cells with a 
high proliferative index. A critical event is the almost 
complete inhibition of hematopoiesis and depletion of 
the bone marrow stem cells. Radiation causes the 

development of a senescent phenotype as a protective 
mechanism against a possible malignant transformation. 
Thus, the processes of aging and irradiation-induced 
changes are closely related at molecular and cellular 
levels [19]. Substances possessing gero- and radio-
protective properties can exhibit similar protective 
effects (for example, act as antioxidants and reduce the 
number of free radicals formed both naturally in the 
processes of cell metabolism and those resulting from 
radiolysis), as well as affect the same signaling 
pathways leading to positive effects [92, 93]. 
 
Development of new effective drugs against aging and 
radiation-induced aging is an ambitious but at the same 
time pleading task. Several approaches can be applied 
to solve the problem including pathway analysis and 
searching for new targets [19, 93–95], searching for 
possible biomarkers for both aging and radiation 
exposure [96–104] and even generation of new 
chemical compounds [105, 106]. However, all of them 
rely on the availability of profoundly annotated data 
about chemical compounds with radioprotective effects 
and their molecular modes of action. The present 
curated database of radioprotectors will become a 
convenient onset for the development of medicines 
against radiation-induced damage and aging following 
both the structure-based and ligand-based approaches. 
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