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ABSTRACT

Objective. Circulating endothelial progenitor cells (EPCs) correlate negatively with

obesity. Previous studies have shown that exercise significantly restores circulating EPC
levels in obese people; however, the underlying mechanisms have not been elucidated.
Recently, irisin has been reported to have a critical role in the regulation of EPCs. This
exercise-induced myokine has been demonstrated to play a therapeutic role in obesity.
In this study, we hypothesized that the increase in circulating irisin may form a link
with increasing EPC levels in obese people after exercise.

Methods. Seventeen obese adults completed an 8-week program of combined exercise
and dietary intervention. Clinical characteristics, blood biochemistry, and circulating
irisin levels of subjects were measured before and after eight weeks of training. EPC

levels were evaluated via flow cytometry, and EPC migratory and adhesive functions
were also determined.
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Results. Circulating irisin levels significantly increased following the 8-week training
program (P < 0.05). We furthermore observed an improvement in EPC numbers
(P < 0.05), and EPC migratory and adhesive functions (P < 0.001 and P < 0.05,
respectively) after the intervention. Additionally, we detected a positive correlation
between changes in irisin and changes in EPC number (r =0.52, P < 0.05).
Discussion. For the first time, a positive correlation between increasing irisin levels and
increasing EPC levels has been reported after an 8-week program, consisting of exercise
and dietary intervention. This result suggests a novel effect of irisin on the regulation
of EPC mobilization, which might contribute to improvement of endothelial function
in obese people.
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INTRODUCTION

Vascular endothelial function is essential for the appropriate maintenance of cardiovascular
health in humans (Ribeiro et al., 2010; Yang et al., 2007). An increasing body of evidence
indicates that circulating bone marrow-derived endothelial progenitor cells (EPCs) play
an important role in the regulation of endothelial function (Hill et al., 2003; Koutroumpi
et al., 2012; Steiner et al., 2005; Tao et al., 2006). It has been demonstrated that circulating
EPCs can increase neovascularization, repair endothelial injuries, and improve endothelial
function (Koutroumpi et al., 2012; Steiner et al., 2005). A decrease in circulating EPCs
indicates impaired endothelial function, and consequently, the number of serum EPCs can
be used as a surrogate index of cumulative cardiovascular risk (Koutroumpi et al., 2012). In
fact, Muller-Ehmsen et al. (2008) reported that obesity is associated with a reduction of the
number of circulating progenitor cells. Further studies revealed evidence in support for a
decrease in both number and function of EPCs in obese participants (Heida et al., 2010;
MacEneaney et al., 2009; Tobler et al., 2010).

Both exercise and relevant dietary changes have independently been recognized as
effective approaches to improve endothelial function (Brook, 2006; Sasaki et al., 2002;
Sawyer et al., 2016; Woo et al., 2004). Moreover, research has been conducted on the effect
of physical exercise or dietary restrictions on EPC mobilization, which resulted in interesting
findings. For example, endurance exercise had a positive effect on EPC mobilization by
enhancing both number of EPCs as well as their functions (Cesari et al., 2012; Schlager
et al., 2011; Van Craenenbroeck et al., 2010). In addition, a 10-month treatment regimen
consisting of supervised diet and physical training was effectively increasing EPC levels in
obese adolescents (Bruyndonckx et al., 2015). Importantly, a combination of exercise and
diet may enlarge the effect on EPC levels compared to each single intervention alone. For
example, in subjects with the metabolic syndrome, a 12-week moderate-to-high-intensity
endurance training combined with a hypocaloric Mediterranean diet produced a more
pronounced increase in EPC levels than a diet-only program (Fernandez et al., 2012).
This indicates that it would be an advantageous strategy to improve EPC mobilization by
combining exercise and dietary intervention. However, the mechanisms underlying effects
of lifestyle interventions on EPCs that include exercise and diet have not been elucidated
to date.

Irisin, a recently discovered exercise-induced myokine, is a cleavage product of
fibronectin type III domain containing 5 (FNDC5) produced in response to the activation
of peroxisome proliferator-activated receptor- y coactivator-1 alpha (PGC-1a). Previous
studies have shown that irisin converts white adipocytes into brown adipocytes (Bostrom et
al., 2012). Thus, irisin is considered to play a therapeutic role in type 2 diabetes and obesity
due to the thermogenic changes in white adipose tissue (Bostrom et al., 2012; Kelly, 2012;
Villarroya, 2012).

Although the effects of exercise on circulating irisin in humans are still controversial,
several studies reported that exercise promotes irisin secretion (Bluher et al., 2014; Bostrom
et al., 2012; Huh et al., 2014; Kim et al., 2016; Norheim et al., 2014). However, it seems
that dietary modification has a small effect on serum irisin levels in healthy humans
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(Park et al., 2014). In addition, increasing evidence indicates that irisin might be involved in
the regulation of endothelium-dependent vasorelaxation in diabetes and obesity (Hou, Han
& Sun, 20155 Xiang et al., 2014). Additionally, a recent study reported that irisin restored
both the number and function of EPCs via the PI3K/Akt/eNOS pathway in diabetic mice
(Zhu et al., 2016). However, currently, no reports are available on the relationship between
irisin and EPCs under the lifestyle modifications of exercise and dietary intervention.

Thus, in the present study, we investigated the effect of an 8-week intervention program
of a combination of exercise and dietary restriction on circulating irisin concentrations, and
their relationship with the change in EPC levels in an obese population. We hypothesized
that the increase in circulating irisin was correlated with a corresponding increase in EPC
levels in obese subjects after eight weeks of exercise and dietary intervention.

MATERIALS AND METHODS

Participants

Participants aged between 18 and 40 years were recruited from the Shenzhen Sunstarasia
Weight Loss Camp. Participants were included that met the following initial eligibility
requirements: (a) obesity status, as assessed by body mass index (BMI) >30 kg/m?; (b)
absence of unstable angina pectoris, cardiomyopathy, severe lung diseases, or renal failure.
Informed consent was obtained from each individual prior to measurements. This study
was conducted according to the Declaration of Helsinki and was approved by the Ethics
Committee of Guangzhou Sport University (approval No. GSU20160012). Participant
recruitment and follow-up were conducted between March 2016 and September 2016. The
trial was registered in ISRCTN registry (ISRCTN83594346). The protocol for this trial and
supporting TREND checklist are available as supporting information (see S1 Protocol and
S1 Checklist).

Eligible participants from a traditional weight loss camp (located at a remote district
of Huizhou city, Guangdong, China) self-selected to join this program. The closed camp
provided uniformly controlled accommodation, diet, and physical training during an
8-week intervention period. The camp participants were housed in the same building and
could not come and go freely during their stay. The location, residential setting, and level
of obesity (BMI = 37.8 & 5.0 kg/m?) prevented identification of an appropriate control

group.

Diet restriction

Participants were provided with calorie-restricted diets that contained 1,300-2,200 kcal/day
based on their weight. During the study, the menu was changed weekly, and the diet was
adjusted each week according to an individual’s updated weight. The energy percentages
provided by protein, fat, and carbohydrate were 20%, 20%, and 60%, respectively. Energy
distributions at breakfast, lunch, and dinner were 30%, 40%, and 30%, respectively. All
meals were prepared and supervised by registered professional dietitians during the diet
intervention.
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Exercise training

Subjects performed a training program six days/week for eight weeks. The program was
primarily comprised of endurance exercise such as bicycling, walking, running, dancing,
and ball games for five hours/day. It was also supplemented by strength training. The
endurance exercises involved an equivalent combination of moderate (i.e., four metabolic
equivalents of tasks (METs)) and high intensity (eight METSs) physical training. We used
the following equation to calculate the exergy expenditure during activity (Pinheiro Volp
et al., 2011): energy expenditure (kcal/min) = 0.0175 x METs x weight (kg). The exercise
program was specifically designed to induce an energy expenditure of 1,500-2,500 kcal/day.
The intensity of moderate-intensity exercise was set at 70-85% of the subject’s maximum
heart rate (HRpax), which was calculated via the formula of 208 — (0.7x age). Heart rate
was continuously monitored by Polar heart rate monitors and recorded by researchers.
The high-intensity training (~90% of HR,,x) was alternated with low-intensity exercise
(~60% of HRy,ax) during training. Strength training was implemented at 40—50% maximal
strength for 2-3 sets of 12—15 RM with 2-3 min of rest between sets. Qualified trainers
supervised the subjects during the program. All measurements were obtained before and
after the 8-week training program.

The primary outcome measure for this study was endothelial function, which was
assessed via flow-mediated dilation (FMD). Secondary outcomes were anthropometry,
resting heart rate, blood pressure, body composition, aerobic fitness, maximal strength, EPC
number and function, as well as multiple biochemical markers (lipid profiles, insulin, tumor
necrosis factor-alpha, high-sensitivity C-reactive protein, superoxide dismutase, vascular
endothelial growth factor, endothelial nitric oxide synthase, adiponectin, and irisin).

Anthropometry and body composition
Height and weight were measured to calculate the BMI (kg/m?). Body composition was
determined using a body composition analyzer (Inbody 370; Biospace, Seoul, Korea).

Resting heart rate and blood pressure

After subjects rested for at least 10 min, resting heart rate and peripheral brachial
systolic/diastolic blood pressure were measured in triplicate. The average of three readings
was recorded.

Aerobic fithess

Aerobic fitness was assessed using the Physical Working Capacity test on a cycle ergometer
(Ergoselect 100; Ergoline, Bitz, Germany) at a heart rate of 150 or 170 beats/min (PWC150
or PWC170). Seat height was adjusted to individual satisfaction of each subject, and toe clips
with straps were used to prevent feet from slipping off the pedals. Prior to the tests, subjects
were instructed that they should pedal with a steady cadence of 60 revolutions/min. The
start power was 50 watts (W) and was followed by a gradual increase of 25 W for PWC150
or 50 W for PWC170 every 2 min until the targeted heart rate (150 or 170 beats/min,
respectively) was achieved and maintained at a steady state. PWC150 or PWC170 were
calculated as the power corresponding to heart rate of 150 or 170 beats/min and expressed
as W per kg of body mass (W/kg).

Huang et al. (2017), PeerJ, DOI 10.7717/peerj.3669 418


https://peerj.com
http://dx.doi.org/10.7717/peerj.3669

Peer

Maximum strength test

The maximum strength was determined by a one-repetition maximum (1RM) bench press
test, which was administered after each subject performed two warm-up sets. After all
warm-up sets were completed, the subject then attempted the 1RM.

Endothelial function

Subjects were requested to fast, abstain from exercise and the consumption of alcohol and
caffeine, and withhold all medications and supplements known to affect vascular function
for at least 12 h prior to testing. They were asked to rest in a quiet and air-conditioned
room (22-25 °C) in a supine position for 30 min right before examination. Ultrasound
equipment and a high-resolution linear array transducer coupled to computer-assisted
analysis software provided one longitudinal and two short-axis images using a 10 MHz H-
type probe (UNEXEF38G; UNEX, Nagoya, Japan). This was used to scan the brachial artery
in B-mode 5 to 10 cm above the right elbow. This location was marked on the skin of each
participant and all subsequent measurements were performed at the same location. When
the clearest B-mode image of the intima-media complex had been obtained, a stereotactic
probe holder held the transducer at the same point throughout the scan. FMD was measured
via A-mode waves as a signal of the intima-media complex that was synchronized with the
electrocardiographic R-waves and automatically tracked. After measuring baseline brachial
artery diameter, we compressed the brachial artery (at least 50 mm Hg above systolic
blood pressure) for 5 min, using a blood pressure cuff placed around the forearm. After
compression, the maximum brachial artery diameter was measured after cuff release for
2 min (Miyagi et al., 2014; Stoner ¢ Sabatier, 2012; Tomiyama et al., 2008). The brachial
artery peak hyperemic shear rate was calculated as eight times the peak velocity divided by
the diameter at the time of peak velocity.

FMD was calculated as the maximum percentage increase in arterial diameter during
continuous measurement of arterial diameter following cuff deflation. Subsequently,
endothelium-independent dilation was measured by sublingually administering 500 pg of
nitroglycerine. The menstrual cycle of female subjects was recorded and they were asked
to test on day 1-7 of the menstrual cycle. The same operator collected all measurements.

In our laboratory, we performed repeated FMD measurements on seven healthy adults
(20-35 years old, 57% male). The intraclass correlation coefficient for repeated readings
was r = 0.88 with a coefficient of variation of 11.4%.

Blood markers

A fasting blood sample was collected into evacuated plastic tubes containing
ethylenediaminetetraacetic acid (EDTA). Whole venous blood was also collected in tubes
without anticoagulant for serum preparation. Total cholesterol, triglycerides, high-density
lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), fasting
glucose, and fasting insulin were measured. Insulin resistance was evaluated using the
Homeostasis Model of Assessment of Insulin Resistance (HOMA-IR) and was calculated
as (fasting insulin (nU/ml) x fasting glucose (mmol/L)) / 22.5. Serum concentrations
of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS),
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adiponectin, tumor necrosis factor-alpha (TNF-a), high-sensitivity C-reactive protein
(hsCRP), and superoxide dismutase (SOD) were analyzed using ELISA Kits (Cusabio,
Biotech. Co., Ltd., Wuhan, China), following the manufacturer’s instructions for each kit.
Serum irisin concentrations were measured using an irisin ELISA kit (Cat. EK-067-29;
Phoenix Pharmaceuticals, Burlingame, CA, USA), which had previously been validated via
MS spectrometry analysis (Huh et al., 2015; Polyzos & Mantzoros, 2015; Zhang et al., 2014).
Cross reactivity was validated via western blot. The minimum detectable concentration
was 1.43 ng/ml. Intra- and interassay variations were below 10% and 15%, respectively
(Benedini et al., 2017).

Flow cytometric quantification of EPCs

EPCs are defined as CD347/KDR™ cells. EDTA-anticoagulated whole blood samples
(100 pl) were stained for 10 min at room temperature with APC-labeled anti-human
CD34 (eBioscience, San Diego, CA, USA) and AlexaFlour488-labeled anti-human KDR
(BioLegend, San Diego, CA, USA) monoclonal antibodies. Fluorescent isotype-matched
antibodies were used as controls. EPCs were measured using a Cytomics FC500 flow
cytometer (Beckman Coulter, Brea, CA, USA), and acquisition was stopped after 40,000
events. Data were analyzed using CXP software 2.0 (Fernandes et al., 2012).

EPC culture

EPCs were isolated and cultured, following previously described protocols (Fernandes

et al., 2012; Junhui et al., 2008; Tobler et al., 2010). Briefly, peripheral blood (10 ml) was
obtained from obese subjects, and total mononuclear cells were isolated via density
gradient centrifugation (400 g for 30 min) with Histopaque-1077 (Sigma, St. Louis, MO,
USA). Then, cells were cultured on fibronectin-coated 6-well plates in M199 medium
supplemented with 20% FBS, 100 U/ml penicillin, 100 pg/ml streptomycin, and 10 ng/ml
VEGEF. After four days in culture, nonadherent cells were removed. Adherent cells were
maintained until day seven and then used for EPC functional assays.

EPC migration assay

EPC migration was determined with a modified Boyden chamber (Costar Transwell assay,
8 wm pore size; Corning, NY, USA) (Junhui et al., 2008; Xia et al., 2012). Briefly, a total of
2 x 10* isolated EPCs were resuspended in 250 ul serum-free M199 medium and placed in
the upper chamber. The chamber was placed in a 24-well culture dish containing 500 1
M199 medium supplemented with 10 ng/ml VEGEF. After a 24-hour incubation at 37 °C,
the membrane was briefly washed with phosphate-buffered saline (PBS) and fixed with
4% paraformaldehyde. The membrane was then stained using 0.1% crystal violet solution
and carefully removed. The transmigrated cells were manually counted in three random
microscopic fields (x200) by independent, blinded investigators.

EPC adhesion assay

The EPC adhesion assay was conducted according to previously described techniques
(Junhui et al., 2008; Xia et al., 2012). Briefly, EPCs were isolated and resuspended in M199
medium with 5% FBS. An equivalent amount of cells were placed on a fibronectin-coated
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% Assessed for eligibility (n=29)

£

g Excluded (n=7)

= - Not meeting inclusion criteria (n = 7)
- Declined to participate (n=0)
. Other reasons (n =0)

g

E Allocated to intervention (n =22)

£ - Received allocated intervention (n = 22)

% - Did not receive allocated intervention (n = 0)

=%

-

E Lost to follow up (n=0)

E Discontinued intervention (n = 0)

% | Analyzed (n=17)

—: Excluded from analysis (n=5)

& | Reason:

- No valid blood sample available at follow up (n=5)

Figure 1 Flow diagram of participants through the study.

96-well plate and incubated at 37 °C in 5% CO, for 6 h. After two gentle washes with PBS,
adherent cells were counted.

Statistical analysis

Analyses were performed using SPSS 16.0 (SPSS Inc., Chicago, IL, USA). Paired-sample
t-tests were used to compare the effects of an 8-week intervention of exercise and diet
on different variables. Pearson’s correlation was calculated to determine associations.
Values are reported as mean + SD. Sample size was calculated based on a previous
study that reported a 1.11% change in FMD after each 10 kg weight loss (Joris, Zeegers ¢
Mensink, 2015), with an expected within-subject SD of 1.3% in FMD from our laboratory.
The sample size required for the study (with an a of 0.05 and f§ of 0.20 at 5% level of
significance (two-sided) and estimating a refusal rate of 20%) was 20 subjects. Cohen’s
d was used to calculated effect sizes on pairwise comparisons, with 0.2, 0.5, and 0.8,
representing small, medium, and large effects, respectively (Mullineaux, Bartlett ¢ Bennett,
2001). A P-value <0.05 was used to indicate statistical significance.

RESULTS

Participants

The flow of participants through each stage of the intervention is shown in Fig. 1 according
to the TREND statements. Of the 29 initially enrolled subjects, 22 met the criteria for
inclusion determined in the study and were selected for the research program. We only
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Table 1 Subject characteristics and parameters of anthropometry, body composition, resting heart
rate, blood pressure, peak brachial artery shear rate, aerobic fitness and maximal strength before and
after 8-week combined exercise and diet intervention.

Parameters Before After

Age (yr) 22.1+£2.8 -

Height (cm) 174.8 + 7.64 -

Gender (n) (M/F) 17(11/6) -

Body weight (kg) 116.6 & 24.6 103.4 £22.4
BMI (kg/m?) 37.8 £ 5.0 335+4.4"
Body fat (kg) 47.4 +12.7 3824122
Body fat (%) 409 £ 4.6 36.6£59 "
Resting heart rate (bpm) 74 £9 61+9 "

SBP (mmHg) 127.8 £ 11.8 1153474
DBP (mmHg) 85.2+9.4 79.9 £+ 10.8
Peak shear rate (s7!) 141.0 + 84.1 177.3 £+ 128.3
PWC150 (W/kg, n=9) 1.38 4+ 0.41 1.74 £0.32"
PWC170 (W/kg, n=28) 1.99 +£ 0.50 2.65 + 1.03
1RM bench press (Ibs) 133 £ 61 140 =+ 60

Notes.

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; PWC150, Physical Working Capacity
at a heart rate of 150 bpm; PWC170, Physical Working Capacity at a heart rate of 170 bpm; 1RM, one repetition maximum.

Values are presented as mean =+ SD.
P <0.001 vs. Before.

analyzed data from subjects that completed the program and provided valid measurements
at both baseline and follow-up.

Anthropometry and body composition

To determine how the exercise and diet intervention affected overall health, we measured
body composition. As shown in Table 1, body weight significantly decreased from
116.6 + 24.6 kg to 103.4 &+ 22.4 kg (P < 0.001, d = —0.56). BMI decreased from
37.8 & 5.0 kg/m? to 33.5 £ 4.4 kg/m? (P < 0.001, d = —0.91) following the 8-weeks
of exercise and dietary intervention. We also observed a decrease in body fat mass from
47.4 £ 12.7 kg to 38.2 £ 12.2 kg (P < 0.001, d = —0.74) following the intervention
(Table 1). Furthermore, body fat percentage decreased from 40.9 £ 4.6% to 36.6 +5.9%
(P <0.001, d = —0.81) after the intervention (Table 1). These results suggest that the
intervention was effective in reducing body fat and improving BMI in obese subjects.

Resting heart rate and blood pressure

The intervention of exercise and diet significantly decreased the resting heart rate from
74 &+ 9 bpm to 61 = 9 bpm (P < 0.001, d = —1.44) and significantly decreased systolic
blood pressure from 127.8 & 11.8 mmHg to 115.3 £ 7.4 mmHg (P < 0.001, d = —1.27)
(Table 1). However, no significant change was detected in diastolic blood pressure (before:
85.2 £ 9.4 mmHg vs. after: 79.9 £ 10.8 mmHg, P > 0.05) (Table 1).
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Table 2 Parameters of blood markers before and after 8-week combined exercise and diet
intervention.

Parameters Before After
Cholesterol (mmol/l) 5.35 4+ 0.92 474 £1.34
Triglycerides (mmol/l) 2.15 £ 1.08 1.32+0.88"
HDL-c (mmol/I) 0.99 + 0.14 0.99 £+ 0.22
LDL-c (mmol/l) 344 +£0.75 2.99 +0.95
Fasting blood glucose (mg/dl) 5.61 £ 0.56 5.39 £+ 0.57
Fasting insulin (pmol/l) 200.8 £ 115.8 116.7 £ 81.2"
HOMA-IR 7.34+4.9 4.08+2.9"
Irisin (ng/ml) 439+ 11.0 53.94+13.4
VEGE (pg/ml) 27.6 & 16.11 43.0 +27.36
eNOS (IU/ml) 150.0 £ 138.73 530.8 4+ 259.88
Adiponectin (ng/ml) 16.8 £ 14.98 32.5 £23.25
TNE-a. (pg/ml) 453.3 + 274.65 201.6 4 70.04"
hsCRP (jLg/ml) 2.49 £ 1.71 136+ 1.61°
SOD (IU/ml) 0.63 + 0.34 1.40 + 0.66
Notes.

HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; HOMA-IR, Homeostasis Model
of Assessment of Insulin Resistance; VEGF, vascular endothelial growth factor; eNOS, endothelial nitric oxide synthase;
TNF-a, tumor necrosis factor-alpha; hsCRP, high-sensitivity C-reactive protein; SOD, superoxide dismutase.
Values are presented as mean + SD.
*P <0.05.
P <0.01.
P <0.001 vs. Before.

Aerobic fithess and maximal strength

We observed an increase in PWC150 from 1.38 +0.41 W/kg to 1.74 £ 0.32 W/kg (P < 0.001,
d =0.98) following the intervention. Interestingly, although PWC170 had an increasing
trend from 1.99 £ 0.50 W/kg to 2.65 & 1.03 W/kg after intervention, but this trend did
not reach significance (P = 0.06) (Table 1). There was also no significant change in 1RM
bench press resulting from the intervention (before: 133 & 61 Ibs vs. after: 140 % 60 lbs,
P > 0.05) (Table 1).

Blood chemistry

Blood lipid levels can indicate a risk of pathological diseases, such as atherosclerosis
and diabetes. Thus, we measured the changes in circulating lipids following the
intervention. We observed a significant decrease in the serum levels of cholesterol (before:
5.35 £ 0.92 mmol/l vs. after: 4.74 £+ 1.34 mmol/], P < 0.05, d = —0.53), triglycerides
(before: 2.15 &+ 1.08 mmol/l vs. after: 1.32 & 0.88 mmol/l, P < 0.01, d = —0.84), LDL-c
(before: 3.44 4 0.75 mmol/l vs. after: 2.99 & 0.95 mmol/l, P < 0.05, d = —0.53), and fasting
insulin (before: 200.8 £ 115.8 pmol/l vs. after: 116.7 £ 81.2 pmol/l, P < 0.01, d = —0.84)
(Table 2). Analysis of insulin resistance was measured via HOMA-IR. Our results revealed
that insulin resistance significantly decreased after the intervention (P < 0.01, d = —0.81)
(Table 2). Although we observed a decreasing trend in fasting blood glucose from

5.61 £ 0.56 mg/dl to 5.39 & 0.57 mg/dl after the intervention, this change did not
reach significance (P > 0.05). There was no significant change in HDL-c levels resulting

Huang et al. (2017), PeerJ, DOI 10.7717/peerj.3669 9/18


https://peerj.com
http://dx.doi.org/10.7717/peerj.3669

Peer

151 25-
* —_ 201 S
< 10- —_1— =
e So— 15'
o I (m]
= = 10-
(TR Z
5-
0 T T 0 T T
Before After Before After

Figure2 FMD (A) and NMD (B) in obese subjects before and after 8-week combined exercise and diet
intervention. FMD, flow-mediated dilation; NMD, nitroglycerine-mediated dilation. Values are presented
as mean = SD. "P < 0.05 vs. Before.

from the intervention (before: 0.99 4 0.14 mmol/l vs. after: 0.99 + 0.22 mmol/l, P > 0.05)
(Table 2). We also measured circulating adiponectin because it is an adipocyte-secreted
hormone associated with improved insulin sensitivity and the amelioration of the metabolic
syndrome. We found that diet and exercise significantly increased adiponectin levels in
obese subjects (P < 0.05, d =0.80). Two important markers for endothelial function
are VEGF and eNOS, and both VEGF and eNOS were significantly improved after the
intervention. As shown in Table 2, we also observed a significant increase in circulating
levels of irisin after the intervention (before: 43.9 & 11.0 ng/ml vs. after: 53.9 £ 13.4 ng/ml,
P <0.05, d =0.82). Moreover, the intervention of diet and exercise markedly improved
inflammation and oxidative stress, which was reflected in a reduction of TNF-a and hsCRP
levels and an increase in SOD levels (Table 2).

Endothelial function

Figure 2A shows that FMD significantly improved from 7.28 £ 1.89% to 8.33 £ 1.71%
(P <0.05, d =0.58) after the intervention. The brachial artery peak hyperemic shear
rate did not differ in response to the intervention (before: 141.0 & 84.1 s™! vs. after:
177.34128.3571, P > 0.05) (Table 1). Moreover, the intervention had no significant impact
on endothelium-independent dilation induced by nitroglycerine (before: 14.16 £+ 4.96%
vs. after: 13.18 & 4.87%, P > 0.05) (Fig. 2B).

Circulating EPC levels
As shown in Fig. 3, we detected a significant increase in circulating EPCs after the
intervention (before: 0.028 =+ 0.018% vs. after: 0.065 & 0.048%, P < 0.05, d =1.02).

EPC functions

To assess the functional activity of EPCs, we determined the migration of isolated EPCs
in response to VEGF using a modified Boyden chamber. As illustrated in Fig. 4A, there
was a significant improvement in the migratory capacity of EPCs after intervention
(before: 42.0 & 4.08 cells/ %200 field vs. after: 55.67 & 2.73 cells/ x200 field, P < 0.001,
d =3.93). Moreover, we assessed the adhesive capacity of EPCs because adhesion to the
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extracellular matrix is believed to be important during new blood vessel growth. As shown
in Fig. 4B, the intervention also significantly improved EPC adhesive function (before:
25.75 = 4.11 cells/ x200 field vs. after: 40.50 4= 10.46 cells/ x200 field, P < 0.05, d = 1.86).

Correlations
A significant correlation between the increase of circulating irisin levels and the increase in
the number of EPCs was observed by the intervention (r =0.52, P < 0.05) (Fig. 5).

DISCUSSION

This study showed that circulating irisin levels had significantly increased in obese subjects
after an 8-week program consisting of exercise and dietary intervention. Furthermore, the
increase in irisin was positively correlated with an increase of EPC levels. These findings
suggest that irisin may be involved in the regulation of EPC mobilization due to lifestyle
modifications that include exercise and diet. To our knowledge, this is the first report to
investigate the relationship between circulating irisin and EPC levels in an obese population.
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Recently, a role for EPCs in endothelial repair was discovered, and EPCs have been
identified as an independent determinant of endothelial function. A significant elevation
in EPC was previously shown in obese adolescents after 12 weeks of exercise (Park et al.,
2012). Moreover, it has also been reported that dietary intervention can increase EPC
numbers in obese subjects (Heida et al., 2010). In the current study, our results revealed a
significant increase in the number of circulating EPCs in obese subjects after exercise and
dietary intervention. Moreover, we also examined the effect of eight weeks of weight loss
therapy on the functional capacity of EPCs. Our results demonstrated that the migration
and adhesion of EPCs improved following the combined exercise and diet intervention.
These results are in accordance with a recent study that reported that circulating EPC levels
in obese adolescents were increased after a treatment program consisting of moderate diet
and exercise training (Bruyndonckx et al., 2015).

Irisin is a signaling protein secreted by skeletal muscles, which is released into the
circulation after proteolysis of the membrane protein FNDC5 (Hou, Han & Sun, 2015).
Although the effects of exercise on circulating irisin in humans remain controversial, several
studies have demonstrated that exercise promotes irisin secretion (Bostrom et al., 2012; Huh
et al., 2014; Kim et al., 2016; Norheim et al., 2014). In this study, we furthermore found that
serum irisin levels were significantly increased after exercise and dietary intervention.

Recent studies have found an important role of irisin in the regulation of endothelial
function in people suffering from obesity or diabetes (Hou, Han & Sun, 2015; Xiang et
al., 2014). However, the underlying mechanisms remain unknown. In this study, we
hypothesized that the increase of circulating irisin levels might correlate with the increase
in EPC levels after exercise and dietary intervention. Our data confirmed an association
between changes in circulating irisin and changes in EPC levels in obese subjects after weight
loss intervention. This result was consistent with a recent study, which demonstrated that
exogenous administration of irisin was able to restore the number and functional capacity
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of EPCs via the PI3K/Akt/eNOS pathway in diabetic mice (Zhu et al., 2016). Irisin is an
exercise-induced myokine; therefore, it could be activated in response to exercise training.
This would thereby exert its role in promoting EPC mobilization, which may in turn
contribute to improved endothelial function in obese people. Future studies are warranted
to elucidate the complex association between exercise training, exercise-induced irisin
levels, and changes in EPC number and function in humans and animals with obesity.

We recognize the limitations of the present study. For example, we did not have a control
group because the camp program was a traditional residential camp with a specific aim of
weight loss. The camp was located in a remote district of the city, and subjects enrolled
in the program came from all over the country and had an average BMI over 35 kg/m?
(37.8 £ 5.0 kg/mz). Therefore, factors such as location, the level of obesity, and residential
aspects restricted the opportunity to select an appropriate control group. This has been
previously described elsewhere (Gately et al., 2000). The lack of a designated control group
allows a less clear interpretation of the results. The results observed in this study will
require confirmation in randomized controlled trials. Furthermore, another limitation of
this study was the small sample size. Due to the strength and endurance needed for the strict,
military-style camp for eight weeks, we were only able to enroll a limited number of qualified
volunteers. Future studies on a larger scale will be performed. It will be also interesting
to quantify the motor cortical changes following training with non-invasive measurement
approaches, for instance (Huang et al., in press; Shen et al., 2017; Zhou et al., 2017).

In conclusion, this study found a positive correlation between an increase of circulating
irisin and an increase in EPC levels after an 8-week program consisting of exercise and
dietary intervention. This result suggests a beneficial effect of irisin on the regulation of
EPC mobilization, which might contribute to an improvement in endothelial function in
obese people. The underlying mechanism of association between irisin and EPCs needs to
be investigated for future clinical and animal studies.
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