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Some members of root-associated Bacillus species have been developed as biocontrol
agents due to their contribution to plant protection by directly interfering with the growth
of pathogens or by stimulating systemic resistance in their host. As rhizosphere-dwelling
bacteria, these bacilli are surrounded and constantly interacting with other microbes via
different types of communications. With this review, we provide an updated vision of
the molecular and phenotypic responses of Bacillus upon sensing other rhizosphere
microorganisms and/or their metabolites. We illustrate how Bacillus spp. may react
by modulating the production of secondary metabolites, such as cyclic lipopeptides
or polyketides. On the other hand, some developmental processes, such as biofilm
formation, motility, and sporulation may also be modified upon interaction, reflecting the
adaptation of Bacillus multicellular communities to microbial competitors for preserving
their ecological persistence. This review also points out the limited data available and
a global lack of knowledge indicating that more research is needed in order to, not
only better understand the ecology of bacilli in their natural soil niche, but also to better
assess and improve their promising biocontrol potential.

Keywords: Bacillus, rhizosphere, bioactive secondary metabolites, microbial interaction, biocontrol, molecular
cross-talk, phenotype modulation

INTRODUCTION

Some Bacillus species of the B. subtilis complex are plant-associated and important members of the
microbiome (Mendes et al., 2013; Müller et al., 2016; Fierer, 2017). During the last decades, their
potential use as biocontrol agents with protective activity toward economically important plant
pathogens has been highlighted thereby representing a promising alternative to chemical pesticides
(Expósito et al., 2017; Fan et al., 2017; Finkel et al., 2017; Fira et al., 2018; Köhl et al., 2019).
The efficacy of such bacilli in plant protection, as well as their constant presence in the strongly
competitive rhizosphere niche, are due to their high potential to synthesize a wide range of volatile
organic compounds (VOCs) and soluble bioactive secondary metabolites (BSMs). High structural
diversity is observed in the patterns of VOCs formed by Bacillus (Caulier et al., 2019; Kai, 2020)
but also in BSMs which can be either ribosomally synthesized and post-translationally modified
like bacteriocins and lantibiotics or enzymatically formed via multi-modular mega-enzymes as
in the case of polyketides (PKs), di-peptides or cyclic lipopeptides (CLPs) (Harwood et al., 2018;
Kaspar et al., 2019; Rabbee et al., 2019). A prime role of some soluble BSMs and volatiles in plant
protection is related to their strong antimicrobial activity leading to direct antagonism against plant
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pathogens (Raaijmakers and Mazzola, 2012; Borriss, 2015;
Chowdhury et al., 2015a; Fan et al., 2018; Caulier et al., 2019;
Rabbee et al., 2019; Kai, 2020). A second important biocontrol-
related trait of those compounds is their ability to trigger an
immune reaction in the host plants which leads to systemic
resistance (Induced SR) rendering the plant less susceptible to
pathogen infection (Pieterse et al., 2014; Chowdhury et al., 2015a;
Fan et al., 2018; Caulier et al., 2019; Rabbee et al., 2019). An
additional role of BSMs is also linked to an efficient plant root
colonization ability of Bacillus which indirectly protects the plant
by decreasing the space and nutrient availability for pathogens
(Raaijmakers et al., 2010; Borriss, 2015; Nayak et al., 2020). Some
BSMs also contribute to colonization since they are involved
in the developmental processes of Bacillus social motility and
biofilm formation (Raaijmakers and Mazzola, 2012; Borriss, 2015;
Pandin et al., 2017).

As rhizosphere-dwelling bacteria, these plant-associated
bacilli are influenced by various environmental factors, such
as temperature, pH, moisture, light, and nutrient composition
dictated by plant exudation (Santoyo et al., 2017). In this
competitive niche, Bacillus species are also surrounded by and
constantly interacting with a myriad of other (micro)organisms
(Mendes et al., 2013; Traxler and Kolter, 2015; Fierer, 2017;
Schmidt et al., 2019). In this review, we illustrate the diversity
of BSMs produced by different Bacillus species and how this
metabolome and phenotypic traits dictating ecological fitness can
be impacted upon interaction with other fungal and bacterial
microorganisms. The outcomes of volatile-based microbial
interactions, in general, have been recently reviewed (Schmidt
et al., 2015; Tyc et al., 2017). However, when dealing with
interactions involving bacilli, information is scarce concerning
possible changes in VOCs production upon cross-talk or
perception of volatiles produced by other microorganisms (Chen
et al., 2015; Tahir et al., 2017; Martínez-Cámara et al., 2019). Thus,
we focus hereafter on interactions based on cross-talks mediated
by the perception of soluble metabolites.

DIVERSITY AND BIOACTIVITIES OF
BACILLUS BSMS

In the comparative genomic era, numerous adjustments have
been done in the last years to clarify the phylogeny of the
B. subtilis complex, which includes, among others, species, such
as B. velezensis, B. amyloliquefaciens, B. atrophaeus, B. subtilis
subspecies subtilis, B. licheniformis, B. pumilus, and B. siamensis
with potential as biocontrol agents (Expósito et al., 2017;
Fira et al., 2018; Maksimov et al., 2020), and which led to
some confusion in species names but also to misassignments
(Dunlap et al., 2016; Fan et al., 2017; Harwood et al., 2018;
Du, 2019; Torres Manno et al., 2019). Many isolates, such
as strains FZB42, QST713, or SQR9 formerly assigned to
the B. subtilis or B. amyloliquefaciens species have been re-
classified as B. velezensis representing the model species for
plant-associated bacilli (Dunlap et al., 2016; Fan et al., 2017).
A large part of the genome of these species is devoted to
the production of antimicrobial compounds with up to 12%

annotated as involved in the synthesis of bioactive secondary
metabolites (Molinatto et al., 2016; Fan et al., 2017; Pandin et al.,
2018).

Non-ribosomal metabolites are synthesized either by
polyketide synthases (PKS) or non-ribosomal peptide synthase
(NRPS), both acting as assembly lines catalyzing different
steps for the incorporation of amino acid residues (Dutta
et al., 2014; Winn et al., 2016; Bozhüyük et al., 2019). The
three main families of Bacillus CLPs are surfactins, fengycins,
and iturins (Figure 1). According to this limited number of
families identified so far, the structural diversity of Bacillus CLPs
may appear quite limited compared to other bacterial genera,
such as Pseudomonas, for which many more different groups
have been discovered (Geudens and Martins, 2018; Götze and
Stallforth, 2020). However, reduced specificity of adenylation
domains allows substitutions at specific places in the peptide
chain and the NRPS machinery can bind different fatty acids
with various chain lengths in the initiation step leading to
co-production of various homologs within the three families
as illustrated in Figure 1 (Kraas et al., 2010; Bozhüyük et al.,
2019). Interestingly, some CLP peptidic variants are synthesized
through species-specific clusters, like pumilacidin and lichenysin
which are only produced respectively by B. pumilus and
B. licheniformis (Figure 1).

The three different types of CLPs retain specific but
complementary functions considering biocontrol efficiency and,
more generally, ecological fitness of the producing strains. By
contributing to motility and biofilm formation, surfactins are
involved in colonization of plant tissues which indirectly allow
Bacillus to outcompete phytopathogens for space and nutrients.
Surfactins are also involved in the molecular cross-talk with
the host and it is well-characterized as an elicitor of plant
immunity leading to ISR (Ongena and Jacques, 2008; Henry
et al., 2011; García-Gutiérrez et al., 2013; Cawoy et al., 2015;
Chowdhury et al., 2015a). Direct antibiotic activity of surfactins
at biologically relevant concentrations toward soil-dwelling or
plant-associated microbes has been only occasionally reported
(Qi et al., 2010; Liu et al., 2014). By contrast, fengycins and
iturins are best characterized for their antifungal activities against
a wide range of plant pathogens (Caulier et al., 2019; Rabbee
et al., 2019). This is mainly due to their ability to perturb
fungal cell membrane integrity resulting in cytoplasm leakage
and finally hyphae death and inhibition of spore germination
(Chitarra et al., 2003; Romero et al., 2007; Deleu et al., 2008;
Etchegaray et al., 2008; Gong et al., 2015; Gao et al., 2017;
Zhang and Sun, 2018). The three CLPs retain some selectivity
but may also act synergistically to inhibit fungal growth (Liu
et al., 2014). The lipid composition of the plasma membrane
could explain differences in the sensitivity of fungal targets to
one or more CLPs (Wise et al., 2014; Fiedler and Heerklotz,
2015).

Besides lipopeptides, most species of the B. subtilis group also
produce other non-ribosomal oligopeptide derivatives, such as
bacilysin, chlorotetaine, bacitracins, and rhizocticins which are
known to be efficient as antibacterial compounds targeting cell
wall biosynthesis (Zhao and Kuipers, 2016). The siderophore
bacillibactin is highly conserved in the B. subtilis group (Figure 1)
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FIGURE 1 | Main non-ribosomal BSMs produced by the various species in
the B. subtilis complex. The BSMs production is indicated for the following
species B. subtilis, B. siamensis, B. velezensis, B. atrophaeus, B.
amyloliquefaciens, B. pumilus, and B. licheniformis by a green square whereas
red square indicates an absence of production of the BSMs in this species
(Zhao and Kuipers, 2016; Fan et al., 2017; Harwood et al., 2018; Du, 2019;
Torres Manno et al., 2019). The surfactins, iturins, and fengycins groups
include lichenycin (1;AA1:L-Gln) and pumilacidin (1;AA4: L-Leu, AA7 = I-Ile);
mycosubtilin (2;AA6: D-Ser, AA7 = L-Thr) and bacillomycin (2; AA6: D-Ser,
AA7 = L-Asn); maltacin (4;AA1: L-Ser), agrastatin (4;AA10: L-Val) and
plipastatin (4;AA9: D-Tyr), respectively. The structure of the representative
metabolite is indicated by a number and represented below. The possible
variations in the PKs structure are highlighted in red. For the macrolactin
family, the main variants are R = H; CO-CH2-COOH; CO-CH2-CH2-COOH or
6-O-succinyl-β-glucose (for review see Piel, 2010).

and is induced in response to iron limitation in the environment.
It allows Bacillus to efficiently acquire Fe3+ and other metals
(Miethke et al., 2006, 2008; Li et al., 2014) thereby depriving
phytopathogens of this essential element (Miethke et al., 2006;
Niehus et al., 2017).

Polyketide biosynthesis is performed by successive
condensation of small carboxylic acids mediated by core
domains of the corresponding enzyme machinery but some PKs
are synthesized via hybrid NRPS/PKS systems leading to the
integration of amino acid residues (Piel, 2010; Olishevska et al.,
2019). The three main PKs produced by Bacillus are difficidins,
macrolactins, and bacillaenes, the latter being more widespread

across species (Figure 1). The main PKs role is related to their
antibacterial activity via the ability to inhibit protein biosynthesis
in numerous phytopathogenic bacteria but certain antifungal
activity has been reported for bacillaenes and macrolactins
(Caulier et al., 2019; Olishevska et al., 2019).

Ribosomally synthetized BSMs encompass bacteriocins and
lantibiotics including plantazolicin, subtilin, ericin, mersacidin,
amylolysin, and amylocyclicin that are specifically produced by
some species or strains (Brötz et al., 1998; van Kuijk et al., 2012;
Arguelles Arias et al., 2013; Scholz et al., 2014; Torres Manno
et al., 2019). These BSMs are responsible for growth inhibition
of Gram-positive bacteria by acting via different modes of action
(Abriouel et al., 2011; Acedo et al., 2018).

PERCEPTION OF FUNGI TRIGGERS THE
PRODUCTION OF APPROPRIATE BSMS

Several works have illustrated the impact of phytopathogenic
fungi on BSMs production by soil bacilli. Some
B. amyloliquefaciens, B. velezensis, and B. subtilis strains
respond to the presence of antagonistic fungi by stimulating
the production of the antifungal CLPs fengycins and/or iturins
(Table 1). Not only the production of specific CLPs varies in
a species-dependent manner but it is also highly dependent
on the interacting fungal species. For example, much higher
production of iturins and fengycins by B. subtilis 98S was
observed in confrontation with Pythium aphanidermatum and
Fusarium oxysporum but not with Botrytis cinerea (Cawoy
et al., 2015). Further, upon interaction with fungi, some
B. velezensis strains (SQR9, FZB42, and S499) overproduced
either iturins or fencycins (Li et al., 2014; Chowdhury et al.,
2015b; Kulimushi et al., 2017). For instance, Li et al. (2014)
showed that when confronted with Sclerotinia sclerotiorum, B.
velezensis SQR9 overproduces bacillomycin D (iturin family),
but not fengycins. An overproduction of bacillomycin along
with a reduced production of fengycins was also reported by
Chowdhury et al. (2015b) upon B. velezensis FZB42 interaction
with Rhizoctonia solani in the rhizosphere of lettuce plants.
Differentially, Kulimushi et al. (2017), showed that strains
S499 and FZB42 improved production of fengycin but not
iturins upon interaction with Rhizomucor variabilis. Most of
these studies also indicated that fengycins and iturins are the
main BSMs responsible for antifungal activities (Table 1).
Thus, Bacillus cells could specifically sense the presence of
fungal competitors and accordingly overproduce appropriate
antifungal BSMs to outcompete the interacting fungi. Moreover,
besides modulating the production of fengycins and iturins,
some strains of B. velezensis (SQR9, FZB42, and QST713) and
B. subtilis (B9-5) may overproduce surfactins when sensing
phytopathogenic fungi (Li et al., 2014; Chowdhury et al., 2015b;
DeFilippi et al., 2018; Pandin et al., 2019). In support to this
hypothesis, surfactin production of B. velezensis FZB42 was
highly induced in the presence of fungal pathogen R. solani in
the lettuce rhizosphere where it was found as the main produced
compound (Chowdhury et al., 2015b). A similar response
was recorded when B. velezensis SQR9 was confronted with
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S. sclerotiorum and Phytophthora parasitica (Li et al., 2014) or
when B. subtilis B9-5 interacted in liquid medium with Rhizopus
stolonifer (DeFilippi et al., 2018). In contrast to fengycins and
iturins, surfactins are not strong direct antifungal metabolites in
biologically relevant concentrations (Raaijmakers and Mazzola,
2012). Thus, it stays unclear why Bacillus responded by surfactin
overproduction to the presence of antagonistic fungi. A possible
explanation could be rooted in its global role promoting the
rhizosphere and thereby, contributing to competition for
nutrients and space with the interacting fungi (Ongena and
Jacques, 2008; Rabbee et al., 2019).

Even though the siderophore bacillibactin is produced by all
members of the B. subtilis species complex (Figure 1), its possible
overproduction upon microbial interactions has been poorly
investigated. Interestingly, the work of Li et al. (2014) showed
that B. velezensis SQR9 overproduces bacillibactin when grown in
presence of a range of fungi including V. dahliae, S. sclerotiorum,
F. oxysporum, R. solani, F. solani, and P. parasitica. This may
be interpreted as a response of the bacterium to some iron-
limitation in the medium caused by the fungi via the release of
their own chelatants.

In B. subtilis, the expression of many BSMs biosynthesis genes
is transcriptionally fine-tuned by compound-specific regulation
but also by global regulators governing the transition to crucial
developmental processes like motility, biofilm formation and
sporulation (Inaoka et al., 2009; López et al., 2009; Vargas-
Bautista et al., 2014). Fungal triggers may affect both types of
regulatory systems involved in BSMs production. For instance,
upon sensing F. verticillioides, the global stress-related regulator
SigB is activated in B. subtilisNCIB3610 which in return enhances
surfactin production (Bartolini et al., 2019). In interaction with
F. culmorum under biofilm-conducive conditions, B. subtilis Bs12
down-regulates the expression of the sinR gene known as a
repressor of biofilm formation which also negatively regulates
surfactin production (Kearns et al., 2005; Khezri et al., 2016;
Zhi et al., 2017). These observations strongly suggest that
specific soluble signals, emitted by fungal pathogens, could be
perceived by bacilli which in turn modulate BSMs synthesis. As
observed by Bartolini et al. (2019), cells of the Bacillus colony,
physically close to the fungal culture, responded to signals by
over-expressing genes coding for transcription factors involved
in CLPs synthesis regulation. In contrast, colony cells positioned
on the opposite side of the fungi did not react to the fungus
(Bartolini et al., 2019). This phenomenon indicates that the
specific fungal metabolite diffuses on a short distance and has an
influence on closely located Bacillus cells. Currently, no fungal
compounds have been identified as triggers of BSM stimulation
in Bacillus. Nonetheless, few commonly produced metabolites
by Fusarium species were suggested to modify Bacillus behavior.
It was shown that two cyclic depsipeptides (enniatins B1 and
enniatins A1) and a pyrone (lateropyrone) had an antagonistic
effect on B. subtilis growth (Ola et al., 2013). Fusaric acid also
modified antibacterial activity of B. mojavensis but it was not
related to a decrease in the production of specific BSMs (Bacon
et al., 2004, 2006; Bani et al., 2014). These metabolites could also
play a triggering role at sub-inhibitory concentration and could
have an inducible effect on the range of Bacillus responses as

has been shown for other signal metabolites (Bleich et al., 2015;
Liu et al., 2018).

BACILLUS PHENOTYPE IS MODULATED
UPON PERCEPTION OF BACTERIAL
COMPETITORS

Some BSMs may also act as molecular determinants driving
outcomes of interactions between B. subtilis and bacterial
competitors as illustrated for the bacillaene polyketide displaying
an essential protective role for survival in competition with
Streptomyces soil isolates (Straight et al., 2007; Barger et al., 2012).
However, there are few direct evidences for enhanced expression
of BSMs upon interbacteria interactions. The only convincing
examples involve the interaction of plant-associated bacilli with
plant pathogens, such as Ralstonia solanacearum (Almoneafy
et al., 2014) and Pseudomonas fuscovaginae (Kakar et al.,
2014). In these two studies, improved expression of surfactin,
bacilysin, and iturin biosynthesis genes were observed when
Bacillus and pathogens were grown together in dual-cultures.
Nevertheless, no clear indication about the enhanced production
of the aforementioned BSMs based on their quantification nor
improved antibacterial activities of Bacillus was presented as a
result of this interaction.

Interestingly, at the phenotypical level, the development of
soil bacilli is differentially altered upon sensing other bacteria
from the same natural environment. Some of these phenotypical
changes can be associated or due to a modulated production
of specific BSMs. First, exogenous antibiotics or signals may
stimulate biofilm formation which depends, to some extent,
on surfactin production (López et al., 2009) and which may
be viewed as a defensive response against exogenous toxic
compounds and/or infiltration by competitors (Flemming et al.,
2016; Townsley and Shank, 2017; Molina-Santiago et al., 2019).
For instance, B. subtilis increased its relative subpopulation of
biofilm matrix-producing cells in response to small molecules
secreted by other bacterial species (López et al., 2009; Shank
et al., 2011). The same phenomenon was illustrated for thiazolyl
peptides emitted by closely related species, such as B. cereus and
putatively formed by other soil microbes, such as Streptomyces
isolates (Bleich et al., 2015). However, no change in surfactin
production associated with the stimulation of biofilm was
reported in these studies.

Besides biofilm formation, other mechanisms drive bacteria to
initiate protective responses upon the detection of competitors.
The flagellum-independent sliding motility is considered as an
adaptive mechanism that allows bacterial cells to physically
relocate in the context of a competitive interaction (Wadhams
and Armitage, 2004; Jones et al., 2017; McCully et al., 2019). Upon
sensing S. venezuelae, the B. subtilis ability to slide was increased
(Liu et al., 2018). It depends in part on the production of
surfactin (Grau et al., 2015; van Gestel et al., 2015) but a potential
boost in lipopeptide synthesis upon the perception of the
Streptomyces challenger was not demonstrated. Chloramphenicol
and derivatives produced by S. venezuelae were identified as
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TABLE 1 | Change in expression and bioactivity of BSMs produced by members of B. subtilis group, upon interaction with fungal species.

BSMs Change in
expression

Involvement in
antifungal activity

Bacillus species
(strains)

Fungal species References

Fengycins 0 Yes B. subtilis (98S) B. cinerea Cawoy et al., 2015

+ Yes B. subtilis (98S) F. oxysporum Cawoy et al., 2015

+ No B. subtilis (98S) P. aphanidermatum Cawoy et al., 2015

+ Yes B. velezensis (S499) R. variabilis Kulimushi et al., 2017

+ Yes B. velezensis (FZB42) R. variabilis Kulimushi et al., 2017

0 Yes B. velezensis (QST713) R. variabilis Kulimushi et al., 2017

+ Yes B. velezensis (SQR9) Verticillium dahliae Li et al., 2014

+ Yes B. velezensis (SQR9) F. oxysporum Li et al., 2014

+ Yes B. velezensis (SQR9) Phytophthora parasitica
var. nicotianae

Li et al., 2014

- Mediating the plant
defense expression

B. velezensis (FZB42) R. solani Chowdhury et al.,
2015b

+ ND B. subtilis (B9-5) R. stolonifer DeFilippi et al., 2018

+ ND B. subtilis (B9-5) Fusarium sambucinum DeFilippi et al., 2018

+ ND B. subtilis (B9-5) V. dahliae DeFilippi et al., 2018

+ ND B. velezensis (QST713) Trichoderma
aggressivum f.
europaeum

Pandin et al., 2019

Iturins 0 Yes B. subtilis (98S) B. cinerea Cawoy et al., 2015

+ Yes B. subtilis (98S) F. oxysporum Cawoy et al., 2015

+ No B. subtilis (98S) P. aphanidermatum Cawoy et al., 2015

+ No B. velezensis (SQR9) V. dahliae Li et al., 2014

+ No B. velezensis (SQR9) S. sclerotiorum Li et al., 2014

+ Yes B. velezensis (SQR9) F. oxysporum Li et al., 2014

+ Yes B. velezensis (SQR9) P. parasitica Li et al., 2014

+ Mediating the plant
defense expression

B. velezensis (FZB42) R. solani Chowdhury et al.,
2015b

Surfactins + Yes B. velezensis (SQR9) S. sclerotiorum Li et al., 2014

+ Yes B. velezensis (SQR9) R. solani Li et al., 2014

+ Yes B. velezensis (SQR9) Fusarium solani Li et al., 2014

+ Yes B. velezensis (SQR9) P. parasitica Li et al., 2014

+ Mediating the plant
defense expression

B. velezensis (FZB42) R. solani Chowdhury et al.,
2015b

+ ND B. subtilis (B9-5) R. solani DeFilippi et al., 2018

+ ND B. subtilis (B9-5) F. sambucinum DeFilippi et al., 2018

+ ND B. subtilis (B9-5) V. dahliae DeFilippi et al., 2018

+ ND B. velezensis (QST713) T. aggressivum f.
europaeum

Pandin et al., 2019

Bacillibactin + Yes B. velezensis (SQR9) V. dahliae Li et al., 2014

+ No B. velezensis (SQR9) S. sclerotiorum Li et al., 2014

+ No B. velezensis (SQR9) F. oxysporum Li et al., 2014

+ Yes B. velezensis (SQR9) R. solani Li et al., 2014

+ Yes B. velezensis (SQR9) F. solani Li et al., 2014

+ Yes B. velezensis (SQR9) P. parasitica Li et al., 2014

“0” indicates no changes, “+” enhanced and, “–”decreased BSMs production by Bacillus upon interaction with fungi. “Yes” indicates fungitoxic activity, “No” no antifungal
activity, “ND” indicates that BSMs with antifungal activity are not detected.

molecular triggers acting at subinhibitory concentrations for
inducing Bacillus motility (Liu et al., 2018).

Multiple bacteria promote sporulation in B. subtilis which
represents another example of alteration of the physiological
development of this species. In a context of distant interactions,
exogenous siderophores accelerate the differentiation of Bacillus
cells into spores. It was notably shown for enterobactin from

E. coli and for ferrioxamine E produced by Streptomycetes
(Grandchamp et al., 2017). In iron-limited environments,
B. subtilis cells would thus respond by taking up those “piratable”
siderophores and start sporulating. This is not a general
response to xenosiderophores since for instance, pyochelin
from Pseudomonas does not affect Bacillus sporulation (Molina-
Santiago et al., 2019). Nevertheless, the ability of siderophores
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to alter cellular differentiation in B. subtilis suggests that
those molecules are likely to mediate complex microbial
interactions in iron-depleted conditions, as often met in a soil
environment. However, induction of B. subtilis sporulation by
other bacteria may also occur in a cell-to-cell contact situation.
Upon interaction with P. chlororaphis, its type VI secretion
system acted as a trigger for sporulation, independently from
its established role as cargo for delivering toxic effectors into
the target Bacillus cells (García-Bayona and Comstock, 2018;
Molina-Santiago et al., 2019).

That said, interspecies interactions may also result in
inhibition rather than in stimulation of key developmental
processes determining the fate of Bacillus multicellular
communities. As an example, 2,4-diacetylphloroglucinol,
a broad-spectrum antibiotic synthesized by fluorescent
Pseudomonas, alters colony morphology, inhibits biofilm
formation and sporulation in B. subtilis populations grown
adjacent to P. protegens colonies (Powers et al., 2015). This
antibiotic seems to act as an interspecific signaling molecule that
inhibits bacterial differentiation at subinhibitory concentrations
(Powers et al., 2015).

CONCLUSION

Here we provide an overview of the phenotypic and molecular
responses of plant-beneficial soil bacilli upon sensing signals
from other microorganisms that can be encountered in the
rhizosphere niche. It is clear that BSMs production by Bacillus
can be modulated upon interactions with other microbes and
that key BSM-driven developmental processes may undergo
unsuspected changes. It somehow illustrates the flexibility of
these bacteria in re-directing their secondary metabolome
to adapt environmental fitness upon sensing the presence
of neighboring microorganisms. Nevertheless, the molecular
mechanisms integrating the perception of exogenous triggers
with a regulatory response leading to enhanced production of
BSMs still remain unclear.

A significant boost in BSMs production by soil bacilli has
been reported in most cases as an outcome from interactions
with plant pathogenic fungi. This is of value in the context
of biocontrol of fungal pathogens since direct antagonism is
considered as the most powerful mode of action for suppression
of plant diseases (Fravel, 2005; Frey-Klett et al., 2011; Köhl et al.,
2019). By contrast, direct evidence for an impact of interbacteria
interactions on the expression of the secondary metabolome
in Bacillus is still globally missing. Nevertheless, interaction-
mediated variations in colony morphology, motility, biofilm

formation, or sporulation illustrate how soil bacilli can protect
themselves from antimicrobials emitted by bacterial competitors.
Such an impact on those key developmental processes should
thus be coupled with significant modulation in the production
of specific BSMs underpinning these phenotypes. Depending on
the concentration, these BSMs would then act as antimicrobials in
interference competition or as signals in cooperative interspecies
communication processes not necessarily affecting the growth of
the partners (Bleich et al., 2015; Liu et al., 2018). However, this
has yet to be thoroughly demonstrated and future examination
of developmental controls for BSMs biosynthesis will likely bring
light upon the key principles driving environmental fitness of soil
bacilli as intrinsically influenced by interspecies competition.

From an ecological viewpoint, further investigations would
also help to better understand why soil amendment with selected
bacilli, even at high doses, do not durably impact the composition
of the rhizosphere microbiome despite their huge arsenal in
antimicrobial weapons (Correa et al., 2009; Chowdhury et al.,
2013; Kröber et al., 2014; Qiao et al., 2017) and by contrast
with some other bacteria and fungi (Buddrus-Schiemann et al.,
2010; Chowdhury et al., 2013; Erlacher et al., 2014; Thomas and
Sekhar, 2016; Wu et al., 2016). Those bacilli may thus provide
protection to their host plant toward microbial pathogen ingress
but would avoid detrimental effect on its naturally selected
beneficial microbiome which is of prime interest for future
application as biocontrol agents.
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