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Purpose. To compare central corneal thickness (CCT), aqueous depth (AQD), and anterior chamber depth (ACD) measurements
using the swept-source (CASIA SS-1000, Tomey, Japan) and time-domain (Visante, Carl Zeiss Meditec, USA) anterior segment
optical coherence tomographers (OCT) in normal eyes. Methods. Sixty-eight eyes of 68 subjects were included. Three consecutive
scans of each subject were obtained using both devices in a random order by one experienced operator. Standard deviation (S,,),
coeflicient of repeatability (CoR), coefficients of variation (CoV), and intraclass correlation coefficients (ICC) were used to
evaluate the intraoperator repeatability. Agreement was assessed using the Bland-Altman plots and 95% limits of agreement
(LoA). Results. All measurements of the swept-source OCT (SS-OCT) and time-domain OCT (TD-OCT) showed high re-
peatability with low CoR (CCT: 2.34 ym and 6.16 gm; AQD: 0.05 mm and 0.09 mm; ACD: 0.06 mm and 0.09 mm), low CoV (CCT:
0.16% and 0.42%; AQD: 0.61% and 0.97%; ACD: 0.53% and 0.83%), and high ICC (>0.98). The mean CCT with SS-OCT was
slightly thicker than the results with TD-OCT (difference =4.55+2.62 ym, P <0.001). There was no statistically significant
difference in AQD or ACD measurements between the two devices (0.01 £0.05mm, P = 0.111; 0.02 +0.05 mm, P = 0.022,
respectively). The 95% LoA between the SS-OCT and TD-OCT were —0.59 to 9.69 yum for CCT, —0.10 to 0.12 mm for AQD, and
-0.09 to 0.12 mm for ACD. Conclusions. High levels of repeatability and agreement were found between the two devices for all
three parameters, suggesting interchangeability. SS-OCT demonstrated superior repeatability compared with TD-OCT.

1. Introduction

Accurate and precise biometry is essential for cataract and
refractive surgery planning. Central corneal thickness
(CCT) is critical in refractive surgery, which can be useful
to reduce the risk of postoperative corneal ectasia, and
plays a major role in measuring intraocular pressure (IOP)
accurately and diagnosing corneal diseases [1, 2]. Anterior
chamber depth (ACD) is the distance from corneal epi-
thelium to anterior surface of crystalline lens, while
aqueous depth (AQD) is the distance from corneal en-
dothelium to anterior surface of crystalline lens [3]. ACD
and AQD are important parameters that can be used to
calculate intraocular lens (IOL) power, select candidates for

phakic IOL implantation, and screen for primary angle
closure glaucoma [3-5].

Various optical biometers are available to measure these
parameters. Optical coherence tomography (OCT) is a
noninvasive biometric technique which was first described
by Huang et al. [6] and was introduced in clinical practice in
1996 to measure retinal thickness [7]. The first commercially
available OCT device designed for anterior segment mea-
surement was a time-domain OCT (TD-OCT). Since then,
an increasing number of OCT devices were developed, in-
cluding the newly designed TD-OCT, spectral-domain OCT
(SD-OCT), and swept-source OCT (SS-OCT) [5, 8-10]. The
Visante OCT (Carl Zeiss Meditec, Dublin, CA, USA) is a
TD-OCT, using a light source of 1310 nm super-luminescent
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light-emitting diode. The more recent SS-OCT CASIA SS-
1000 (Tomey, Nagoya, Japan) uses a 1310 nm swept-source
laser. It achieves a higher scan speed of 30,000 A-scans per
second, which is 7.5 times that of the Visante TD-OCT,
while the axial resolution and transverse resolution are 1.8
times and 2 times [11] that of Visante TD-OCT, respectively
(8].

Theoretically, faster measurement speed and higher
resolution may result in better precision. In order to prove
this hypothesis, the present study sought to comprehensively
assess the repeatability of the SS-OCT (CASIA SS-1000) and
TD-OCT (Visante) in measuring three anterior segment
parameters.

2. Subjects and Methods

2.1. Subjects. This study included 68 eyes of 68 healthy
subjects from the Eye Hospital of Wenzhou Medical Uni-
versity, Zhejiang, China. Patients less than 18 years, or with
any corneal opacities, with ocular diseases other than my-
opia or myopic astigmatism, with contact lens usage (within
4 weeks for rigid contact lens and within 2 weeks for soft
contact lens) before examination, and previous ocular
surgery were excluded. The study was approved by the
Review Board of the Eye Hospital of Wenzhou Medical
University and adhered to the tenets of the Declaration of
Helsinki.

2.2. Examination. Each subject underwent a complete
ophthalmic examination on the same day: visual acuity, slit-
lamp biomicroscopy, noncontact tonometry, and ophthal-
moscopy. One experienced examiner performed three re-
peated measurements using the CASIA SS-1000 and Visante
TD-OCT. The measuring sequence was randomized
according to a computer-generated random number se-
quence to avoid methodological bias. The measurements
took place in a dimly-lit room and spent about 20 minutes
between 10:00 and 17:00. The patients were asked to sit still
and stabilize their heads by using the chin rest and head
band. During measurements, the internal fixation targets
were used to gain the unaccommodated state.

The CASIA SS-1000 is a swept-source Fourier-domain
AS-OCT with a measuring speed of 30,000 axial scans per
second [12]. It can measure a 10 mm diameter scanning
range. Besides the high axial and transverse resolutions
(10 ym and 30 um), the system also performs large depth
scans (6mm tissue penetration) and a 16 mm X 16 mm
horizontal and vertical scan. The built-in software in the
CASIA §S-1000 automatically calculates the CCT, AQD, and
ACD.

The Visante OCT is the first commercially available time-
domain AS-OCT [13]. The scanning speed is 4,000 axial sans
per second, and the axial and transverse resolutions are
18ym and 60um, respectively. When the corneal reflex
occurs, there appears a vertical white line along the center of
the cornea, and then the image is captured. The CCT, AQD,
and ACD are calculated semiautomatically using the on-
screen calibrated caliper function [14].
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2.3. Statistical Analysis. Statistical analysis was performed
using the SPSS software (version 21.0, SPSS, Inc., Chicago,
Ilinois, USA). Normal distribution was evaluated using the
Kolmogorov-Smirnov test. The results were expressed as
mean * standard deviation. The within-subject standard
deviation (S,,), coefficient of repeatability (CoR, 2.77S,,
namely, reproducibility limit), coefficients of variation
(CoV, S,/mean), and intraclass correlation coefficients
(ICC) were used to evaluate the repeatability of the two AS-
OCT devices [15, 16]. In addition, lower values for CoR and
CoV represent better repeatability. The ICC is centered and
scaled using a pooled mean and standard deviation, with
values ranging from 0 to 1 (<0.75 = poor correlation, 0.75 to
<0.90 =moderate correlation, >0.90=high correlation).
Agreement between the two instruments was analyzed with
Bland-Altman plots and 95% limits of agreement (95% LoA,
mean difference + 1.96SD). The narrower the 95% LoA, the
better the agreement [17]. P values <0.05 were considered
statistically significant.

3. Results

This study involved 68 right eyes from 68 healthy volunteers
(37 females and 31 males), with a mean age of 25.56 +2.07
years (range: 21 to 35 years). The mean spherical equivalent
refraction was —4.34+2.25D (range: —0.50 to —10.00 D).
Table 1 displays the mean values of the parameters as well as
the intraobserver repeatability outcomes. The CCT, AQD,
and ACD values showed high intraobserver repeatability for
both instruments, with small values for CoR and with CoV
values less than 0.97% for all parameters. ICC values were
greater than 0.98 for both devices. The CoR and CoV values
for CCT, AQD, and ACD measured by TD-OCT were more
than 2.6 times, 1.5 times, and 1.5 times that of SS-OCT,
respectively, indicating better repeatability with the SS-OCT
for all three parameters.

The mean differences between SS-OCT and TD-OCT are
shown in Table 2. There was no significant difference in the
mean AQD and ACD measurements, whereas the CCT value
showed a statistically significant difference (P <0.01), but it
was clinically insignificant with narrow 95% LoA.
Bland-Altman plots showed high agreements between the
two devices. The 95% LoA for CCT, AQD, and ACD were
-0.6 to 9.7 ym, —0.10 to 0.12mm, and —0.09 to 0.12 mm,
respectively, as shown in Figures 1-3.

4. Discussion

This study found significant differences in CCT between SS-
OCT and TD-OCT, but the difference was low
(4.55+2.62pym) and within a clinically acceptable range.
Several reasons may be attributable to this difference. Firstly,
SS-OCT is a Fourier-domain OCT that has higher sensitivity
and faster measurement speed than TD-OCT [18, 19].
Secondly, the two devices use different refractive indices to
calculate anterior segment dimensions. The cornea refractive
index was 1.376 for SS-OCT and 1.388 for TD-OCT, whereas
the aqueous humor refractive index was 1.336 for SS-OCT
and 1.343 for TD-OCT [11]. Thirdly, the TD-OCT places the
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TaBLE 1: Intraobserver repeatability outcomes provided by SS-OCT and TD-OCT devices.

Parameter Observer Mean + SD Sw CoR CoV (%) ICC (95% CI)
CCT (um) SS-OCT 535.59 +30.31 0.85 2.34 0.16 0.999 (0.999 to 0.999)
TD-OCT 531.04 +£30.46 2.22 6.16 0.42 0.995 (0.992 to 0.997)
AQD (mm) SS-OCT 3.24+0.27 0.02 0.05 0.61 0.995 (0.992 to 0.996)
TD-OCT 3.23+0.25 0.03 0.09 0.97 0.985 (0.977 to 0.990)
ACD (mm) SS-OCT 3.78+0.26 0.02 0.06 0.53 0.994 (0.991 to 0.996)
TD-OCT 3.76 £0.25 0.03 0.09 0.83 0.984 (0.977 to 0.990)

SD =standard deviation; S,, = within-subject standard deviation; CoR = coefficient of repeatability (2.77 S,,); CoV = within-subject coefficient of variation;
ICC =intraclass correlation coefficient; CCT =central corneal thickness; AQD =aqueous depth; ACD = anterior chamber depth.

TaBLE 2: The mean difference, paired t test (P value), and 95% LoA
for differences between the SS-OCT and TD-OCT devices.

Device pairings Mean + SD P value 95% LoA

CCT (um) 4.55+2.62 <0.001 -0.59 to 9.69
AQD (mm) 0.01£0.05 0.111 -0.10 to 0.12
ACD (mm) 0.02+0.05 0.022 —0.09 to 0.12

SD = standard deviation; CCT =central corneal thickness;
depth; ACD =anterior chamber depth.

AQD =aqueous
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FiGure 1: Bland-Altman plot showing the agreement for CCT
measurements between the CASIA SS-OCT and the Visante TD-
OCT. The solid line indicates the mean difference (bias), and the
dotted lines indicate 95% limits of agreement (LoA).

anterior corneal surface boundary slightly below the anterior
corneal surface, so the current study manually located the
corneal surface using the caliper function on the instrument;
however, the SS-OCT automatically measures the CCT,
which may also cause the difference [20].

Zhang et al. [21] recently assessed the measurements of
AQD using both devices and reported excellent repeatability
(CASIA SS-1000, CoR=0.099 mm, ICC=0.946; Visante
TD-OCT, CoR=0.105mm, ICC=0.980); however, they
investigated 97 eyes from 49 myopia patients; binocular
correlation may have some influence on the results. On the
contrary, we found the SS-OCT had better repeatability. The
CoR and CoV values for CCT, AQD, and ACD measured
with TD-OCT were more than 2.6 times, 1.5 times, and 1.5
times that of SS-OCT, respectively; the ICCs of both AS-
OCT devices were higher than their results (CCT,
ICC=0.999 and 0.995; AQD, ICC=0.995 and 0.985; ACD,
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FIGURE 2: Bland-Altman plot showing the agreement for AQD
(corneal endothelium to the anterior lens) measurements between
the CASIA SS-OCT and the Visante TD-OCT. The solid line in-
dicates the mean difference (bias), and the dotted lines indicate 95%
limits of agreement (LoA).

ICC=0.994 and 0.984). Sabatino compared two SS-OCT
devices (IOLMaster 700, Carl Zeiss Meditec AG and Argos,
Movu, Inc.), and both devices showed high ICCs in mea-
suring CCT (>0.988) and ACD (>0.999) [22]. Hua et al. [23]
found the SS-OCT using a wavelength of 1060 nm (OA-2000,
Tomey, Japan) provided highly repeatable measurements of
CCT and ACD, with CoVs less than 0.668% and 0.426%,
CoRs less than 14.06 ym and 0.057 mm, and ICCs greater
than 0.991 and 0.999, respectively. Other studies found that
the repeatability of the CASIA SS-1000 was also high in
postkeratoplasy and keratoconus cases (ICC >0.970)
[12, 24]. Our results for the repeatability with Visante TD-
OCT were marginally better than previous studies
[13, 25, 26]. Nemeth et al. [26] reported the CoV of ACD
measurement was less than 1.9%; Li et al. [25] reported
13.57 ym for CoR, 0.90% for CoV, and 0.98 for ICC in
measuring CCT by TD-OCT, which was similar to the re-
sults reported by Huang et al. (ICC=0.989) [13]. These
studies mentioned above provide indirect evidence that the
repeatability of SS-OCT was better than TD-OCT.

When compared with ultrasound pachymetry, studies
found the CASIA SS-1000 and Visante TD-OCT under-
estimated CCT by 8.9 ym and 16.5 um, respectively [27, 28].
It has also been reported that the CASIA SS-1000 and
Visante TD-OCT measured lower CCT values (12.46 ym and
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FIGURE 3: Bland-Altman plot showing the agreement for ACD
(from the corneal epithelium to the anterior lens) measurements
between the CASIA SS-OCT and the Visante TD-OCT. The solid
line indicates the mean difference (bias), and the dotted lines in-
dicate 95% limits of agreement (LoA).

17.79 pm, respectively) than Scheimpflug devices in normal
eyes [24, 29]. Theories to explain the lower values obtained
by AS-OCT may be that both AS-OCT devices measured
CCT along the optical axis, whilst ultrasound pachymetry
measurements may be affected by tilt and decentration [30].
In addition, unlike Scheimpflug devices, OCT does not
include tear film thickness when measuring pachymetry
[31]. The difference between the two AS-OCT devices and
ultrasound pachymetry or Scheimpflug imaging indirectly
demonstrated that SS-OCT tended to give higher readings
than TD-OCT, which agrees with the outcomes of the
present study.

The Bland-Altman plots and 95% LoA have been used to
assess the level of agreement between AS-OCT devices and
other instruments in the measurement of CCT. It was re-
ported that the 95% LoA was —20.3 to 5.9 ym between CASIA
SS-1000 and ultrasound pachymetry [32], which was nar-
rower compared to the results between Visante TD-OCT and
ultrasound pachymetry (=6.1 to 39.1 ym) [28]. The 95% LoA
between CASIA SS-1000 or Visante TD-OCT and Scheimflug
devices were also poor, with maximum values more than
35 um [24, 33, 34]. Earlier studies reported that the 95% LoA
between SS-OCTand OLCR was good, with a maximum value
of 22.04ym in normal eyes (OA-2000), [35] and 15.7 to
169ym in cataractous eyes (IOLMaster 700) [36, 37].
Cruysberg et al. [38] reported acceptable but a wider 95% LoA
range between OLCR and the Visante TD-OCT (24.1 to
—1.9 um) in healthy volunteers. With respect to the agreement
between the CASIA SS-OCT and Visante TD-OCT, our
current study revealed narrow 95% LoA, —0.59 to 9.69 ym,
which was better than a previous study (maximum value
about 15 ym), [11] indicating that the two devices can be used
interchangeably for CCT measurement in clinical practice.

In terms of AQD and ACD, it is known that accommo-
dation may change the anterior surface of the lens, causing a
decrease of AQD and ACD [39]. In order to minimize the
influence of accommodation, both devices used an internal
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fixation target. Few studies have compared the SS-OCT with
TD-OCT in measuring AQD [11, 40, 41]. Interestingly, Aptel
etal. [11] reported that the AQD measured with the CASIA SS-
1000 was significantly larger than that with the Visante TD-
OCT in normal eyes (mean difference 0.12 + 0.08 mm), and the
LoA range was larger than 0.25 mm. The current study found a
smaller mean difference in AQD (0.01 +0.05mm) and ACD
(0.02 £0.05 mm) between the devices and better agreement
with narrower 95% LoA (-0.10 to 0.12mm and -0.09 to
0.12 mm, respectively). It is known that AQD and ACD are
inheritable traits that are affected by age, sex, and race [42]. The
former study was performed in France, with patients’ mean age
of 38.6+15.1 years. By contrast, younger Chinese healthy
subjects were included in our study. These differences may
contribute to the discrepancy. Angmo et al. [40] compared
measurements using the same two AS-OCT devices in patients
with primary angle closure. The mean difference for AQD was
0.0112 +£0.106 mm and the 95% LoA was quite narrow, +0.22
to —0.20 mm. Chansangpetch et al. [43] compared a different
SS-OCT device (CASIA 2, Tomey Corporation, Nagoya, Japan)
with the Visante TD-OCT in 53 eyes (age range: 52 to 86 years)
and found that the agreement was excellent in measuring AQD
between both devices (ICC, 0.992; LoA, —0.057 to 0.093 mm).

The main limitation of the current study is that we only
evaluated anterior segment measurements in young, myopic
population; further research in older population, or eyes
with ocular disease such as cataract, is warranted. Moreover,
we did not compare the results with other OCT biometry,
including SD-OCT or similar instruments based on TD-
OCT and SS-OCT.

In summary, both SS-OCT and TD-OCT devices pro-
vided excellent repeatable measurements of CCT, AQD, and
ACD. However, the repeatability was better with SS-OCT.
Significant differences were found between the two devices
for the measurement of CCT, but the difference was small
enough to be considered clinically insignificant. Good
agreement in terms of CCT, AQD, and ACD was found,
signifying that the two devices can be used interchangeably
in normal eyes.
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