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The cure effect of a virus model with both cell-to-cell transmission and cell-to-virus transmission is studied. By the method of next
generationmatrix, the basic reproduction number is obtained.The locally asymptotic stability of the virus-free equilibrium and the
endemic equilibrium is considered by investigating the characteristic equation of themodel.The globally asymptotic stability of the
virus-free equilibrium is proved by constructing suitable Lyapunov function, and the sufficient condition for the globally asymptotic
stability of the endemic equilibrium is obtained by constructing suitable Lyapunov function and using LaSalle invariance principal.

1. Introduction and Model Formulation

Since tobacco mosaic virus, the first virus of the world
discovered by Beijerinck in 1898 [1], more and more viruses
have been discovered by biologists, biomedical scientists, and
medical scientists and more than 5,000 viruses have been
recorded in detail [2]. However, according to a recent study,
there are at least 32,0000 viruses waiting to be discovered in
the spread between mammalian species. Identifying diseases
caused by these viruses, especially those that can infect
people, perhaps can help us to prevent epidemic disease [3].
At the early stage of the study, it is generally accepted that
because of the specificity of viruses, virus can only infect
certain plant or animal species; however, more and more
cases associated with emerging zoonoses have appeared, and
with a deeper understanding of the virus, we found that
most viruses can infect humans, such as Human Immun-
odeficiency Virus (HIV), Prions, Influenza Virus, Rabies
Virus, Ebola Virus, and Middle East Respiratory Syndrome
Coronavirus (MERSV) [3–6].

Generally, the basic process of viral infection and virus
replication occurs in six main steps: attachment, penetra-
tion, uncoating, replication, assembly, and release [7]. After

the whole replicative cycle, free viruses begin to diffuse and
infect new host cell. Therefore, investigating the processes of
viral growth and destruction of host cells so as to gain the
insights into the evolutionary processes of virus and cell in
body is very important. To this end,mathematicalmodels and
analysis are powerful tools.

Since mathematical models and method of mathematical
analysis were used to study the dynamics of the virus, lots
of models have been established to explain the evolution
of the uninfected target cells, infected cells, and the free
virus. In these models, early works belonged to Nowak et al.
[8], Nowak and May [9], Perelson and Nelson [10], and
Perelson et al. [11].The general class of models that have been
studied [8–12] have a form similar to

𝑑𝑥

𝑑𝑡
= Λ−𝑑𝑥−𝛼V𝑥,

𝑑𝑦

𝑑𝑡
= 𝛼V𝑥− 𝑎𝑦,

𝑑V
𝑑𝑡

= 𝑘𝑦− 𝑢V,

(1)
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where 𝑥, 𝑦, and V represent the concentrations of uninfected
target cells, infected cells, and virus, respectively. For expla-
nations of other parameters we refer to literature [12]. This
model describes the processes of virus invading the target
cells and the release of the virus due to the infected cell
apoptosis. In the model, the authors use 𝛼V𝑥 to represent the
interaction between uninfected target 𝑥 and virus V, which
obey the principle of mass action. Based on model (1), more
authors used nonlinear functions to describe the rate constant
characterizing infection of cells, for example, 𝛽𝑥V/(𝑥 + 𝑦) in
[13], 𝛽𝑥V/(1 + 𝑏V) in [14, 15], 𝛽𝑥V/(1 + 𝑎𝑥 + 𝑏V) in [16], and
𝛽𝑥V/(1+𝑎𝑥+𝑏V+𝑎𝑏𝑥V) in [17], and for details ofmore general
nonlinear incidence rate functions please see [18–20]. Notice
that there exists a potentially possible cure rate of the infected
cells to the susceptible host cells in the infection process of
some virus, such as Hepatitis B Virus (HBV) [21–25] and
HIV [26–32]; recently, Hattaf et al. [19] adopted a general
nonlinear incidence rate function with the form 𝑓(𝑥, 𝑦, V)V
and introduced cure rate (denoted by 𝜌) into the following
model:

𝑑𝑥

𝑑𝑡
= Λ−𝑑𝑥−𝑓 (𝑥, 𝑦, V) V+𝜌𝑦,

𝑑𝑦

𝑑𝑡
= 𝑓 (𝑥, 𝑦, V) V− (𝑎 + 𝜌) 𝑦,

𝑑V
𝑑𝑡

= 𝑘𝑦− 𝑢V.

(2)

In model (2), 𝑓(𝑥, 𝑦, V) satisfies the following hypotheses:

(𝐻
󸀠

1) 𝑓(0, 𝑦, V) = 0, for all 𝑦 ≥ 0.
(𝐻
󸀠

2) 𝜕𝑓(𝑥, 𝑦, V)/𝜕𝑥 > 0, for all 𝑥 > 0, 𝑦 ≥ 0, and V ≥ 0.
(𝐻
󸀠

3) 𝜕𝑓(𝑥, 𝑦, V)/𝜕𝑦 ≤ 0 and 𝜕𝑓(𝑥, 𝑦, V)/𝜕V ≥ 0, for all 𝑥 ≥

0, 𝑦 ≥ 0, and V ≥ 0.

Recently, Tian and Liu [20] improved model (2) by
proposing a more general nonlinear incidence rate function
with the form𝑓(𝑥, 𝑦, V) and investigated the followingmodel:

𝑑𝑥

𝑑𝑡
= Λ−𝑑𝑥−𝑓 (𝑥, 𝑦, V) + 𝜌𝑦,

𝑑𝑦

𝑑𝑡
= 𝑓 (𝑥, 𝑦, V) − (𝑎 + 𝜌) 𝑦,

𝑑V
𝑑𝑡

= 𝑘𝑦− 𝑢V.

(3)

In model (3), 𝑓(𝑥, 𝑦, V) satisfies the following hypotheses:

(𝐻1) 𝑓(0, 𝑦, V) = 0, for all 𝑦 ≥ 0 and V ≥ 0, and 𝑓(𝑥, 𝑦, 0) =
0, for all 𝑥 ≥ 0 and 𝑦 ≥ 0.

(𝐻2) 𝜕𝑓(𝑥, 𝑦, V)/𝜕𝑥 > 0, for all 𝑥 ≥ 0, 𝑦 ≥ 0, and V > 0.
(𝐻3) 𝜕𝑓(𝑥, 𝑦, V)/𝜕𝑦 ≤ 0, for all 𝑥 ≥ 0, 𝑦 ≥ 0, and V ≥ 0.
(𝐻4) 𝜕𝑓(𝑥, 𝑦, V)/𝜕V ≥ 0 and V(𝜕𝑓(𝑥, 𝑦, V)/𝜕V) − 𝑓(𝑥, 𝑦, V) ≤

0, for all 𝑥 ≥ 0, 𝑦 ≥ 0, and V ≥ 0.

However, many researches show that direct cell-to-cell
spread can happen in some enveloped viruses (e.g., Human

Immunodeficiency Virus type-1 (HIV-1) [33–37], Human
T-Lymphotropic Virus Type-1 (HTLV-1) [38–41], Herpes
Simplex Virus (HSV) [42], andMeasles [43–45]). Cell-to-cell
spread not only facilitates rapid viral dissemination, but may
also promote immune evasion and influence disease [46].
Moreover, a recent study has shown that cell-to-cell spread of
HIV-1 can reduce the sensitivity to the antiretroviral drugs by
multiple infections of target cells and, as a result, the efficacy
of antiretroviral therapy is reduced [47].

Motivated by the works [18–20, 48], we propose a virus
dynamical model with both cell-to-virus infection and cell-
to-cell transmission and cure rate as follows:

𝑑𝑥

𝑑𝑡
= Λ−𝑑𝑥−𝑓 (𝑦, V) 𝑥 + 𝜌𝑦,

𝑑𝑦

𝑑𝑡
= 𝑓 (𝑦, V) 𝑥 − (𝑎 + 𝜌) 𝑦,

𝑑V
𝑑𝑡

= 𝑘𝑦− 𝑢V,

(4)

where 𝑥, 𝑦, and V denote the number of host cells, infected
cells, and free virus, respectively. And𝑑, 𝑎, and 𝑢 are the death
rates of them, respectively. Free virus is produced by infected
cells at a rate 𝑘𝑦. Λ represents the regeneration rate of host
cells. 𝜌 is the cure rate. 𝑓(𝑦, V)𝑥 = (𝛽𝑦 + 𝛼V)𝑥 represents
the total infection rate of host cells, which is divided into
two parts 𝛽𝑦𝑥 and 𝛼V𝑥.The former represents the part where
infected cells infect host cells by direct contact, and the latter
means that host cells are infected by the free virus. For more
detail, please see [48]. In the present model, we can see
𝑓(𝑦, 0)𝑥 = 𝛽𝑥𝑦 ̸≡ 0, for all 𝑥 ≥ 0 and 𝑦 ≥ 0, and
𝜕𝑓(𝑦, V)𝑥/𝜕𝑦 = 𝛽𝑥 ≥ 0 for all 𝑥 ≥ 0, 𝑦 ≥ 0, and V ≥ 0, which
do not satisfy conditions (𝐻󸀠3) in model (2) and conditions
(𝐻1) and (𝐻3) in model (3). For biological considerations, we
will study system (4) in the closed set 𝐴 = {(𝑥, 𝑦, V) ∈ 𝑅

3
+
|

𝑥 + 𝑦 ≤ Λ/𝑑, V ≥ 0}.
The main goal of the present paper is to investigate the

globally asymptotic stability of the equilibria of (4).This work
is structured as follows. In Section 1, we give the motivation
and study the background of the model. In Section 2, the
existence of virus-free equilibrium and the endemic equi-
librium is shown based on the basic reproduction number.
And the local stability of the two equilibria is discussed in
Section 3. We focus on the globally asymptotic stability of
the two equilibria in Section 4. Finally, a brief conclusion and
discussion are given in Section 5.

2. Basic Reproduction Number and Equilibria

The basic reproduction number [49, 50] of model (4) is given
as

R =
Λ (𝛼𝑘 + 𝛽𝑢)

𝑑𝑢 (𝑎 + 𝜌)
. (5)

Based on the basic reproduction number R, we have
Theorem 1.
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Theorem 1. Model (4) always has a virus-free equilibrium
𝐸0 = (𝑥0, 0, 0), where 𝑥0 = Λ/𝑑. If R > 1, model (4) has a
unique endemic equilibrium 𝐸1(𝑥

∗
, 𝑦
∗
, V∗), where

𝑥
∗
=

Λ

𝑑R
,

𝑦
∗
=
Λ

𝑎
(1− 1

R
) ,

V∗ =
𝑘

𝑢
𝑦
∗
.

(6)

3. Local Stability of the Two Equilibria

In this section, we shall show the local stability of equilibria
𝐸0 and 𝐸1.

Theorem 2. For model (4), we have the following conclusion:

(i) 𝐸0 is locally stable ifR < 1 and unstable ifR > 1.

(ii) 𝐸1 is locally stable ifR > 1.

Proof. We firstly prove (i). Notice the Jacobian of model (4)
evaluated 𝐸0 is given by

𝐽 (𝐸0) = (

−𝑑 𝜌 − 𝛽𝑥0 −𝛼𝑥0

0 𝛽𝑥0 − (𝑎 + 𝜌) 𝛼𝑥0

0 𝑘 −𝑢

) . (7)

Obviously, 𝐽(𝐸0) has an eigenvalue 𝜆 = −𝜇 < 0, and the other
two eigenvalues 𝜆2 and 𝜆3 satisfy

𝜆2 +𝜆3 = − (𝑎 + 𝜌−𝛽𝑥0 +𝑢)

= −(
𝛼𝑘

𝑢R
+𝛽𝑥0 (

1
R

− 1)+ 𝑢) ,

𝜆2𝜆3 = (𝑎 + 𝜌−𝛽𝑥0) 𝑢 − 𝛼𝑘𝑥0

= (𝑎 + 𝜌) 𝑢 (1−R) .

(8)

Then, when R < 1, 𝜆2 + 𝜆3 < 0, and 𝜆2𝜆3 > 0, all the
eigenvalues of 𝐽(𝐸0) have negative real parts and 𝐸0 is locally
asymptotically stable. And whenR > 1 and 𝜆2𝜆3 < 0, 𝐽(𝐸0)
has a positive eigenvalue and 𝐸0 is unstable.

Next, we prove (ii). The Jacobian of model (4) evaluated
𝐸1 is

𝐽 (𝐸1) = (

−𝑑 − 𝛼V∗ − 𝛽𝑦∗ 𝜌 − 𝛽𝑥
∗

−𝛼𝑥
∗

𝛼V∗ + 𝛽𝑦∗ 𝛽𝑥
∗
− (𝑎 + 𝜌) 𝛼𝑥

∗

0 𝑘 −𝑢

) , (9)

from which we have the characteristic equation

𝐴𝜆
3
+𝐵𝜆

2
+𝐶𝜆+𝐷 = 0, (10)

where

𝐴 = 𝑢𝑥
∗
,

𝐵 = 𝜌𝑦
∗
𝑢+Λ𝑢+𝑥

∗
𝑢
2
+𝑥
∗2
𝛼𝑘,

𝐶 = Λ𝛼𝑥
∗
𝑘 +Λ𝑢

2
+𝜌𝑦
∗
𝛼𝑥
∗
𝑘 + 𝜌𝑦

∗
𝑢
2
−𝑦
∗
𝑢𝑎𝜌

−𝑦
∗
𝑢𝜌

2
+𝑦
∗
𝑢𝑎𝛽𝑥
∗
+𝑦
∗
𝑢𝜌𝛽𝑥
∗
,

𝐷 = 𝑦
∗
𝑢𝑎𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢
2
𝑎𝛽𝑥
∗
+𝑦
∗
𝑢
2
𝜌𝛽𝑥
∗
−𝑦
∗
𝑢
2
𝑎𝜌

−𝑦
∗
𝑢
2
𝜌
2
+𝑦
∗
𝑢𝜌𝛼𝑥
∗
𝑘.

(11)

Obviously,𝐴, 𝐵 > 0.Andnoticing that𝑥∗(𝑢𝛽+𝛼𝑘) = 𝑢(𝑎+𝜌),
we have

𝐶 = Λ𝛼𝑥
∗
𝑘 +Λ𝑢

2
+𝜌𝑦
∗
𝛼𝑥
∗
𝑘 + 𝜌𝑦

∗
𝑢
2
−𝑦
∗
𝑢𝑎𝜌

−𝑦
∗
𝑢𝜌

2
+𝑦
∗
𝑢𝑎𝛽𝑥
∗
+𝑦
∗
𝑢𝜌𝛽𝑥
∗
= Λ𝛼𝑥

∗
𝑘 +Λ𝑢

2

+𝜌𝑦
∗
𝑢
2
+𝑦
∗
𝑢𝑎𝛽𝑥
∗
+𝜌𝑦
∗
𝑥
∗
(𝛼𝑘 + 𝑢𝛽)

− 𝜌𝑦
∗
𝑢 (𝑎 + 𝜌) = Λ𝛼𝑥

∗
𝑘 +Λ𝑢

2
+𝜌𝑦
∗
𝑢
2

+𝑦
∗
𝑢𝑎𝛽𝑥
∗
> 0,

𝐷 = 𝑦
∗
𝑢𝑎𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢
2
𝑎𝛽𝑥
∗
+𝑦
∗
𝑢
2
𝜌𝛽𝑥
∗
−𝑦
∗
𝑢
2
𝑎𝜌

−𝑦
∗
𝑢
2
𝜌
2
+𝑦
∗
𝑢𝜌𝛼𝑥
∗
𝑘 = 𝑦
∗
𝑢𝑎𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢
2
𝑎𝛽𝑥
∗

+𝜌𝑢𝑦
∗
𝑥
∗
(𝑢𝛽 +𝛼𝑘) − 𝜌𝑦

∗
𝑢
2
(𝑎 + 𝜌)

= 𝑦
∗
𝑢𝑎𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢
2
𝑎𝛽𝑥
∗
> 0,

𝐵𝐶−𝐴𝐷 = (𝜌𝑦
∗
𝑢+Λ𝑢+𝑥

∗
𝑢
2
+𝑥
∗2
𝛼𝑘)

⋅ (Λ𝛼𝑥
∗
𝑘 +Λ𝑢

2
+𝜌𝑦
∗
𝑢
2
+𝑦
∗
𝑢𝑎𝛽𝑥
∗
)

− 𝑢𝑥
∗
(𝑦
∗
𝑢𝑎𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢
2
𝑎𝛽𝑥
∗
)

= (𝜌𝑦
∗
𝑢+Λ𝑢+𝑥

∗2
𝛼𝑘+𝑥

∗
𝑢
2
)

⋅ (Λ𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢𝑎𝛽𝑥
∗
+Λ𝑢

2
+𝜌𝑦
∗
𝑢
2
)

− 𝑢𝑥
∗
(𝑦
∗
𝑢𝑎𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢
2
𝑎𝛽𝑥
∗
)

= (𝜌𝑦
∗
𝑢+Λ𝑢+𝑥

∗2
𝛼𝑘)

⋅ (Λ𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢𝑎𝛽𝑥
∗
+Λ𝑢

2
+𝜌𝑦
∗
𝑢
2
)

+ 𝑥
∗
𝑢
2
(Λ𝑢

2
+𝜌𝑦
∗
𝑢
2
)

+ 𝑥
∗
𝑢
2
(Λ𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢𝑎𝛽𝑥
∗
)

− 𝑢𝑥
∗
(𝑦
∗
𝑢𝑎𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢
2
𝑎𝛽𝑥
∗
)

= (𝜌𝑦
∗
𝑢+Λ𝑢+𝑥

∗2
𝛼𝑘)

⋅ (Λ𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢𝑎𝛽𝑥
∗
+Λ𝑢

2
+𝜌𝑦
∗
𝑢
2
)
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+𝑥
∗
𝑢
2
(Λ𝑢

2
+𝜌𝑦
∗
𝑢
2
) + 𝑥
∗
𝑢
2
Λ𝛼𝑥
∗
𝑘

− 𝑢𝑥
∗
𝑦
∗
𝑢𝑎𝛼𝑥
∗
𝑘 = (𝜌𝑦

∗
𝑢+Λ𝑢+𝑥

∗2
𝛼𝑘)

⋅ (Λ𝛼𝑥
∗
𝑘 +𝑦
∗
𝑢𝑎𝛽𝑥
∗
+Λ𝑢

2
+𝜌𝑦
∗
𝑢
2
)

+ 𝑥
∗
𝑢
2
(Λ𝑢

2
+𝜌𝑦
∗
𝑢
2
) + 𝑥
∗2

𝑘𝑢
2
𝛼 (Λ−𝑦

∗
𝑎) > 0,

(12)

where R > 1 and 𝑦
∗
= Λ/𝑎(1 − 1/R) < Λ/𝑎 are used.

Then, by the Routh-Hurwitz Criterion [51], we know that all
the roots of (10) always have negative real parts. Thus, the
epidemic equilibrium 𝐸1 is locally asymptotically stable for
R > 1.

4. Global Stability of the Two Equilibria

In this section, we study the global behaviors of model (4) by
constructing Lyapunov functions. Firstly, we show the global
stability of 𝐸0.

Theorem 3. IfR < 1, the virus-free equilibrium 𝐸0 is globally
asymptotically stable.

Proof. Define a Lyapunov function 𝐿1(𝑡) on 𝐴 as follows:

𝐿1 = 𝑥−𝑥0 −𝑥0 ln
𝑥

𝑥0
+

𝜌

2 (𝑑 + 𝑎) 𝑥0
(𝑥 − 𝑥0 +𝑦)

2

+𝑦+𝑝V;
(13)

here, 𝑝 > 0 is a constant to be determined. It follows from (4)
and (13) that

𝑑𝐿1
𝑑𝑡

= Λ−𝑑𝑥− (𝛽𝑦+𝛼V) 𝑥 + 𝜌𝑦−
𝑥0
𝑥
(Λ−𝑑𝑥

− (𝛽𝑦+𝛼V) 𝑥 + 𝜌𝑦) +
𝜌

2 (𝑑 + 𝑎) 𝑥0
2 (𝑥 − 𝑥0 +𝑦)

⋅ (Λ

−𝑑𝑥− (𝛽𝑦+𝛼V) 𝑥 + 𝜌𝑦+ (𝛽𝑦+𝛼V) 𝑥

− (𝑎 + 𝜌) 𝑦) + (𝛽𝑦+𝛼V) 𝑥 − (𝑎 + 𝜌) 𝑦 +𝑝 (𝑘𝑦

− 𝑢V) = 𝑑 (𝑥0 −𝑥) −
𝑑𝑥0
𝑥

(𝑥0 −𝑥) + 𝜌𝑦+ (𝛽𝑦

+𝛼V) 𝑥0 −
𝑥0
𝑥
𝜌𝑦+

𝜌

(𝑑 + 𝑎) 𝑥0
(𝑥 − 𝑥0 +𝑦)

⋅ (𝑑 (𝑥0 −𝑥) − 𝑎𝑦) − (𝑎 + 𝜌) 𝑦 +𝑝 (𝑘𝑦

− 𝑢V) = −
𝑑

𝑥
(𝑥0 −𝑥)

2
+ (𝛽𝑦+𝛼V) 𝑥0 +𝜌𝑦−

𝑥0
𝑥

⋅ 𝜌𝑦 +
𝜌

(𝑑 + 𝑎) 𝑥0
(−𝑑 (𝑥 − 𝑥0)

2

+ (𝑎 + 𝑑) 𝑦 (𝑥0 −𝑥) − 𝑎𝑦
2
) − (𝑎 + 𝜌) 𝑦 +𝑝 (𝑘𝑦

− 𝑢V) = −
𝑑

𝑥
(𝑥0 −𝑥)

2
+ (𝛽𝑦+𝛼V) 𝑥0 −

𝜌𝑦

𝑥𝑥0
(𝑥0

−𝑥)
2
−

𝑑𝜌

(𝑑 + 𝑎) 𝑥0
(𝑥 − 𝑥0)

2
−

𝑎𝜌

(𝑑 + 𝑎) 𝑥0
𝑦
2
− (𝑎

+ 𝜌) 𝑦 +𝑝 (𝑘𝑦− 𝑢V) = −
𝑑

𝑥
(𝑥0 −𝑥)

2
−
𝜌𝑦

𝑥𝑥0
(𝑥0

−𝑥)
2
−

𝑑𝜌

(𝑑 + 𝑎) 𝑥0
(𝑥 − 𝑥0)

2
−

𝑎𝜌

(𝑑 + 𝑎) 𝑥0
𝑦
2

+ 𝑘(𝑝−
𝑎 + 𝜌 − 𝛽𝑥0

𝑘
)𝑦+𝑢(

𝛼𝑥0
𝑢

−𝑝) V.

(14)

Since R < 1, we have (𝛽𝑘 + 𝛼𝑢)𝑥0 < 𝑢(𝑎 + 𝜌); then, we
can choose 𝑝 > 0 such that 𝛽𝑥0/𝑢 < 𝑝 < (𝑎 + 𝜌 − 𝛼𝑥0)/𝑘.
Hence, we have that 𝑑𝐿1(𝑡)/𝑑𝑡 < 0. Then, 𝐸0 is globally
asymptotically stable.

Next, we study the global stability of the endemic equilib-
rium 𝐸1.

Theorem 4. If 1 < R ≤ 1 + 𝛿, the epidemic equilibrium 𝐸1
is globally asymptotically stable, where 𝛿 = (𝛽Λ + (𝑎 − 𝜌)𝑑 +

√(𝛽Λ + (𝑎 − 𝜌)𝑑)
2
+ 4𝑎𝜌𝑑2)/2𝜌𝑑.

Proof. If R > 1, we define a Lyapunov function 𝐿2(𝑡) as
follows:

𝐿2 (𝑡) = 𝑥 − 𝑥
∗
−𝑥
∗ ln 𝑥

𝑥∗
+(𝑦−𝑦

∗
−𝑦
∗ ln

𝑦

𝑦∗
)

+
𝛼𝑥
∗V∗

𝑘𝑦∗
(V− V∗ − V∗ ln V

V∗
)

+
𝜌

2 (𝑑 + 𝑎)
(𝑥 − 𝑥

∗
+𝑦−𝑦

∗
)
2
.

(15)

It follows from (4) and (15) that

𝑑𝐿2 (𝑡)

𝑑𝑡
= Λ−𝑑𝑥− (𝛽𝑦+𝛼V) 𝑥 + 𝜌𝑦

−
𝑥
∗

𝑥
(Λ−𝑑𝑥− (𝛽𝑦+𝛼V) 𝑥 + 𝜌𝑦) + (𝛽𝑦+𝛼V) 𝑥

− (𝑎 + 𝜌) 𝑦 −
𝑦
∗

𝑦
((𝛽𝑦+𝛼V) 𝑥 − (𝑎 + 𝜌) 𝑦)

+
𝛼𝑥
∗V∗

𝑘𝑦∗
(𝑘𝑦−𝑢V−

V∗

V
(𝑘𝑦 − 𝑢V))

+
𝜌

2 (𝑑 + 𝑎) 𝑥∗
2 (𝑥 − 𝑥∗ +𝑦−𝑦∗)

⋅ (Λ − 𝑑𝑥+ 𝜌𝑦− (𝑎 + 𝜌) 𝑦) = − 𝑑
(𝑥 − 𝑥

∗
)
2

𝑥
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Figure 1: Illustration of numerical solution of system (4) with 𝜆 = 15, 𝑑 = 0.2, 𝛽 = 0.0008, 𝛼 = 0.0005, 𝜌 = 0.1, 𝑎 = 0.02, 𝑘 = 2, and 𝑢 = 1, and
𝑥(0) = 1, 𝑦(0) = 1, and V(0) = 100. By calculation, one gets thatR = 1.125 and 𝛿 = 0.3583; it is easy to verify 1 < R = 1.125 < 1+𝛿 = 1.3583;
then, the equilibrium 𝐸1 is globally asymptotically stable.

+𝛽𝑥
∗
𝑦
∗
+𝛼𝑥
∗V∗ −𝜌𝑦∗ +𝜌𝑦−

𝑥
∗

𝑥
𝛽𝑥
∗
𝑦
∗
−
𝑥
∗

𝑥

⋅ 𝛼𝑥
∗V∗ +

𝑥
∗

𝑥
𝜌𝑦
∗
+𝑥
∗
𝛽𝑦+𝑥

∗
𝛼V−

𝑥
∗

𝑥
𝜌𝑦

− (𝑎 + 𝜌) 𝑦 −𝑦
∗
𝛽𝑥−

𝑦
∗

𝑦
𝛼V𝑥+𝛽𝑥∗𝑦∗ +𝛼𝑥∗V∗

+
𝛼𝑥
∗V∗

𝑘𝑦∗
(𝑘𝑦−𝑢V−

V∗

V
(𝑘𝑦 − 𝑢V))

−
𝑑𝜌

(𝑑 + 𝑎) 𝑥∗
(𝑥 − 𝑥

∗
)
2
−

𝑎𝜌

(𝑑 + 𝑎) 𝑥∗
(𝑦 − 𝑦

∗
)
2

+
𝜌

𝑥∗
((𝑥 − 𝑥

∗
) (𝑦
∗
−𝑦)) = − 𝑑

(𝑥 − 𝑥
∗
)
2

𝑥
−𝛽𝑦
∗

⋅
(𝑥 − 𝑥

∗
)
2

𝑥

+𝛼𝑥
∗V∗ (2− 𝑥

∗

𝑥
+

V
V∗

−
𝑦
∗V𝑥

𝑥∗V∗𝑦
−

𝑦

𝑦∗
)

+𝛼𝑥
∗V∗ (

𝑦

𝑦∗
−

V
V∗

−
V∗𝑦
V𝑦∗

+ 1)+
𝜌

𝑥
(𝑥 − 𝑥

∗
)

⋅ (𝑦 − 𝑦
∗
) −

𝑑𝜌

(𝑑 + 𝑎) 𝑥∗
(𝑥 − 𝑥

∗
)
2

−
𝑎𝜌

(𝑑 + 𝑎) 𝑥∗
(𝑦 −𝑦

∗
)
2
+

𝜌

𝑥∗
(𝑥 − 𝑥

∗
) (𝑦
∗
−𝑦)

= −𝑑
(𝑥 − 𝑥

∗
)
2

𝑥
−𝛽𝑦
∗
(𝑥 − 𝑥

∗
)
2

𝑥

+𝛼𝑥
∗V∗ (3− 𝑥

∗

𝑥
−

𝑦
∗V𝑥

𝑥∗V∗𝑦
−
V∗𝑦
V𝑦∗

)

−
𝑑𝜌

(𝑑 + 𝑎) 𝑥∗
(𝑥 − 𝑥

∗
)
2
−
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∗
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Figure 2: Illustration of numerical solution of system (4) with 𝜆 = 20, 𝑑 = 0.2, 𝛽 = 0.0008, 𝛼 = 0.0005, 𝜌 = 0.1, 𝑎 = 0.02, 𝑘 = 2, and 𝑢 = 1,
and 𝑥(0) = 1, 𝑦(0) = 1, and V(0) = 100. By calculation, one gets thatR = 1.5 and 𝛿 = 0.4472; it is easy to verify 1 < R = 1.5 > 1+𝛿 = 1.4472,
while the equilibrium 𝐸1 is also globally asymptotically stable.

−
𝜌

𝑥𝑥∗
(𝑥 − 𝑥

∗
)
2
(𝑦 − 𝑦

∗
)

= −(𝑑𝑥
∗
+
𝑑𝜌𝑥

𝑑 + 𝑎
+ 𝜌 (𝑦 −𝑦

∗
) + 𝛽𝑥

∗
𝑦
∗
)

⋅
(𝑥 − 𝑥

∗
)
2

𝑥𝑥∗
+𝛼𝑥
∗V∗ (3− 𝑥

∗

𝑥
−

𝑦
∗V𝑥

𝑥∗V∗𝑦
−
V∗𝑦
V𝑦∗

)

−
𝑎𝜌

(𝑑 + 𝑎) 𝑥∗
(𝑦 − 𝑦

∗
)
2

= −(𝑑𝑥
∗
+𝛽𝑥
∗
𝑦
∗
−𝜌𝑦
∗
+
𝑑𝜌𝑥

𝑑 + 𝑎
+ 𝜌𝑦)

⋅
(𝑥 − 𝑥

∗
)
2

𝑥𝑥∗
+𝛼𝑥
∗V∗ (3− 𝑥

∗

𝑥
−

𝑦
∗V𝑥

𝑥∗V∗𝑦
−
V∗𝑦
V𝑦∗

)

−
𝑎𝜌

(𝑑 + 𝑎) 𝑥∗
(𝑦 − 𝑦

∗
)
2
.

(16)

Since the arithmetic mean is greater than or equal to the
geometric mean, it follows that

3− 𝑥
∗

𝑥
−

𝑦
∗V𝑥

𝑥∗V∗𝑦
−
V∗𝑦
V𝑦∗

≤ 0. (17)

The above equality holds only for 𝑥 = 𝑥
∗, 𝑦 = 𝑦

∗, and
V = V∗. Clearly, if R > 1 and 𝑑𝑥∗ − 𝛽𝑥

∗
𝑦
∗
− 𝜌𝑦
∗
> 0, then

𝑑𝐿2(𝑡)/𝑑𝑡 ≤ 0. Note that 𝑑𝑥∗ − 𝛽𝑥
∗
𝑦
∗
− 𝜌𝑦
∗
≥ 0 can be

formulated as
1 < R

≤ 1

+
𝛽Λ + (𝑎 − 𝜌) 𝑑 + √(𝛽Λ + (𝑎 − 𝜌) 𝑑)

2
+ 4𝑎𝜌𝑑2

2𝜌𝑑
= 1+ 𝛿.

(18)
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Since 𝑑𝐿2(𝑡)/𝑑𝑡 = 0 if and only if 𝑥 = 𝑥
∗, 𝑦 = 𝑦

∗, and V =

V∗, by LaSalle invariance principle [52], the equilibrium 𝐸1 is
globally asymptotically stable.

5. Conclusion and Discussion

In this paper, we considered the cure effect of a virus
model with both cell-to-cell transmission and cell-to-virus
transmission. By the method of next generation matrix,
the basic reproduction number R is obtained. Firstly the
locally asymptotic stability of the virus-free equilibrium and
the endemic equilibrium is considered. Then, the globally
asymptotic stability of the virus-free equilibrium is proved by
constructing suitable Lyapunov function, and the sufficient
condition for the globally asymptotic stability of the endemic
equilibrium is obtained by constructing suitable Lyapunov
function and using LaSalle invariance principal. By analyzing
the condition for the globally asymptotic stability of the
endemic equilibrium, we have that if 𝜌 = 0, fromTheorem 4,
the conditions R > 1 can ensure the global stability of the
equilibrium 𝐸1, While if 𝜌 > 0, by the numerical simulations
(see Figures 1 and 2), we find thatR ≤ 1 + 𝛿 in Theorem 4 is
not necessary and can be dropped.
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