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ABSTRACT
Chronic thromboembolic pulmonary hypertension (CTEPH) is an underdiagnosed, but 
potentially curable pulmonary vascular disease. The increased pulmonary vascular resistance 
in CTEPH is caused by unresolved proximal thrombus and secondary microvasculopathy in the 
pulmonary vasculature, leading to adaptive and maladaptive remodeling of the right ventricle 
(RV), eventual right heart failure, and death. Knowledge on the RV remodeling process in 
CTEPH is limited. The progression to RV failure in CTEPH is a markedly slower process. A 
detailed understanding of the pathophysiology and underlying mechanisms of RV remodeling 
may facilitate early diagnosis and the development of targeted therapy. While ultrasound, 
magnetic resonance imaging, right heart catheterization, and serum biomarkers have been 
used to assess cardiac function, the current treatment strategies reduce the afterload of the 
right heart, but are less effective in improving the maladaptive remodeling of the right heart. 
This review systematically summarizes the current knowledge on adaptive and maladaptive 
remodeling of the right heart in CTEPH from molecular mechanisms to clinical practice.
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INTRODUCTION

Chronic thromboembolic pulmonary 
hypertension (CTEPH) belongs to Group 
4 of  “pulmonary hypertension (PH) 
due to pulmonary artery obstruction” 
in the clinical classification.[1] CTEPH 
is diagnosed after at least 3 months of  
effective anticoagulation, with evidence 
of  chronic thrombi and precapillary 
PH.[2] It is caused by single or recurrent 
pulmonary embolism (PE), followed by 
thromboembolic organization, pulmonary 
vascular obstruction, and remodeling. The 

obstruction of  the pulmonary artery (PA) 
by unresolved organized fibrotic clots and 
the secondary microvasculopathy are the 
two distinctive pathological characteristics 
of  CTEPH, leading to increased pulmonary 
artery pressure (PAP) and progressive right 
ventricular (RV) failure.[3] Available therapies, 
such as pulmonary endarterectomy (PEA) 
and balloon pulmonary angioplasty (BPA), 
have been shown to reverse RV remodeling 
partially.[4] However, RV dysfunction remains 
difficult to normalize in most CTEPH cases 
and greatly impacts the quality of  life of  
patients.[5] It is necessary and important 
to rectify the impaired RV function in the 
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treatment of  CTEPH. Here, we review the characteristics 
of  RV dysfunction, the underlying pathophysiological 
mechanisms, and potential interventions targeting right 
heart remodeling in CTEPH.

CHARACTERISTICS OF THE RV IN THE 
NATURAL COURSE OF CTEPH

In acute PE and chronic thromboembolic pulmonary 
disease (CTEPD), RV dysfunction has a strong impact 
on the prognosis of  patients. In CTEPH, the RV 
ejection fraction (EF) and interventricular septal wall 
thickness significantly decreased, while the end-systolic 
volume (ESV) and the end-diastolic volume (EDV) were 
increased compared to healthy controls.[6] In contrast, 
acute thrombotic obstruction secondary to PE causes an 
abrupt increase in RV afterload, leading to RV dysfunction 
or even death.[7] The main feature distinguishing CTEPH 
from PE is the gradual increase of  RV afterload due to 
secondary remodeling of  small arteries and the adaptive or 
maladaptive remodeling of  the myocardium. In addition, 
RV dysfunction may not be limited to CTEPH as it also 
occurs in patients with CTEPD characterized by a mean 
PAP <25 mmHg who demonstrate slower RV relaxation.[8]

The heterogeneity in RV adaptation may be more 
prominent in CTEPH patients in comparison to pulmonary 
arterial hypertension (PAH) patients. Compared to PAH 
patients with similar pulmonary vascular resistance (PVR), 
CTEPH patients have lower PAP, which possibly signifies a 

relative lack of  RV adaptation.[9] It has been shown that the 
correlation coefficient of  RV diastolic stiffness to afterload 
in CTEPH is significantly higher than that of  idiopathic 
PAH.[10] The time constant of  pulmonary circulation, 
representing the exponential pressure decay in the PA 
during diastole, was shown to be significantly shorter in 
CTEPH than that in idiopathic PAH. In addition, the time 
constant of  proximal CTEPH was significantly lower than 
that of  patients with distal disease.[11] Importantly, this 
change is mainly due to the early wave reflection in proximal 
CTEPH, which also contributes to RV dysfunction.[12] 
Impaired RV adaptability in CTEPH could be further 
affected due to the later onset of  the condition, prolonged 
duration of  RV dysfunction, and disease-specific changes in 
the pulmonary circulation.[13] CTEPH patients share similar 
microvascular pathology to that of  patients with PAH, such 
as plexiform lesions from regions close to the pleura that 
are not obstructed and increased vascular resistance in the 
distal lung.[14,15] These studies provided evidences of  certain 
similarities and differences in the RV remodeling between 
CTEPH and other diseases; nevertheless, more studies are 
needed for a detailed comparison.

PATHOPHYSIOLOGY AND PROGRES-
SION OF RV REMODELING

In CTEPH, unresolved thrombus mechanically obstructs the 
PA and when combined with pulmonary microvasculopathy, 
it leads to increased PVR, resulting in a gradual increase 
in RV afterload. Initially, the RV increases the force of  

Figure 1: The pathophysiology of chronic right heart failure in chronic thromboembolic pulmonary hypertension. PVR: pulmonary vascular resistance; RV: right 
ventricle; LV: left ventricle.
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contraction to maintain cardiac output, adapting to the 
increased afterload. Long-term pressure overload leads to 
RV dysfunction and failure. The pathophysiology of  RV 
failure in CTEPH is shown in Figure 1.

Early drivers of  the change in RV function in CTEPH 
include a long-term increase in RV afterload and ventricular 
wall stress. Ventricular pressure overload causes increased 
wall stress initially, leading to RV hypertrophy, which is 
characterized by increased RV wall thickness and cell size.[4]  
The increase in sarcomeres composed of  contractile and 
cytoskeletal proteins results in myocardial cell enlargement 
unloading single muscle fibers, thereby improving the 
RV contractile efficiency.[16] This process is similar to left 
ventricular (LV) adaptive remodeling.[17]

Chronic pressure overload inevitably leads to subsequent 
maladaptive remodeling of  the RV. The chronic obstruction 
of  proximal vasculature and in situ thrombosis contributes 
to the continuous pressure overload, and the secondary 
microvasculopathy further aggravates the increase of  
afterload.[14] RV diastolic dysfunction, including increased 
ventricular stiffness, impaired filling, and prolonged 
isovolumic relaxation, may arise from diffuse myocardial 
fibrosis and may occur at a relatively early stage of  the 
disease, as patients with PH show defective diastolic 
function and relatively preserved systolic function.[4] 
Increased myocardial oxygen consumption, resulting from 
the increase in ventricular wall stress, and decreased RV 
perfusion, predispose to diastolic dysfunction, decreased 
contractility, and myocardial fibrosis. Meanwhile, later-stage 
changes reduce RV stroke volume, causing insufficient 
filling of  the left heart due to interventricular septal shift, 
which aggravates the severity of  heart failure symptoms.[18]  
The level of  tolerance of  patients to RV pressure overload 
is heterogeneous, mainly due to variations in the response to 
high PA pressure, load, and myocardial and neurohumoral 
regulation.[4]

Decompensated RV failure is regulated by the heart itself  
and by various compensatory mechanisms and sympathetic 
nerve overstimulation. A thorough understanding of  the 
pathophysiological progression of  RV remodeling may help 
determine the state of  the right heart in patients and better 
direct the clinical practice. Moreover, the identification 
of  key mechanisms and targeted intervention toward RV 
remodeling are essential to improve or ultimately reverse 
maladaptive remodeling of  RV.

MOLECULAR MECHANISMS OF 
MALADAPTIVE RV REMODELING 

Few studies have investigated and elucidated the 
mechanisms of  right heart changes in CTEPH. The 

principal limitations are the lack of  stable animal models 
and the scarcity of  human myocardial tissue. Importantly, 
severe right heart structural changes appear in the late stage 
of  CTEPH, whereas the early functional changes may be 
mild and easily overlooked. 

Myocardial fibrosis, as a hallmark pathological process 
of  maladaptive ventricular hypertrophy, involves 
the participation of  a variety of  molecules in the 
differentiation and scar formation.[19] A study of  
RV histopathology in CTEPH autopsy cases found 
apparent interstitial fibrosis in the right heart, where 
the area of  RV collagen deposition was 15.7%.[20] 
Transforming growth factor-β (TGF-β), a known key 
molecule in fibrosis, is involved in extracellular matrix 
(ECM) deposition by upregulating the expression of  
ECM and tissue inhibitors of  matrix metalloproteinase 
genes and downregulating the expression of  matrix 
metalloproteinase genes.[19,21] The oxidative stress 
response may also amplify the ECM remodeling mediated 
by TGF-β, inducing myofibroblast differentiation through 
nicotinamide adenine dinucleotide phosphate hydrogen 
(NADPH) oxidase and aggravation of  myocardial fibrosis.[19]  
In experimental models of  CTEPH, there is a faster RV 
fibrosis progression with an enlargement of  cardiomyocytes, 
compared with the sham-operated animals. [22,23]  
Inhibition of  myocardial fibrosis is the key to the 
improvement of  maladaptive remodeling of  RV.

Another pathological process involved in the RV remodeling 
process is phenotypic shift in energy metabolism. When 
hypoxia or cardiac insufficiency occurs, the energy supply 
mode switches from fatty acid oxidation (FAO) to glycolysis 
and the local tissue lactic acid accumulation damages the 
myocardium. RV glucose uptake in patients with PH is 
increased, as shown by measuring myocardial 18F-FDG.[24,25]  
In the hypertrophic RV of  PAH, the shifting of  energy 
metabolism to aerobic glycolysis (i.e., Warburg effect) leads 
to lactate accumulation and reduced energy production.[26,27] 
This glycolytic transition of  adaptively remodeled RV tissue 
has been associated with increased angiogenesis, mainly 
mediated by hypoxia-inducible factor.[26] Additionally, 
increased fatty acid accumulation in the RV in CTEPH is 
significantly correlated with mean PAP, which is reversible 
after PEA as a result of  decreased RV mass and altered 
metabolism.[28]

Hypertrophic RV tissue also shows decreased angiogenesis 
and capillary rarefaction.[29,30] Capillary rarefaction results 
from disturbed angiogenesis and injury to microvascular 
endothelial cells. Infusion of  autologous intracoronary 
endothelial progenitor cells (EPCs) may improve the RV 
function and capillary density.[31] Insulin-like growth factor 
may mediate a protective role of  EPCs in the left ventricle 
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following myocardial infarction,[32] but the role of  EPCs 
in the RV in CTEPH is still unclear. The expression of  
vascular endothelial growth factor (VEGF), acting as the 
main determinant of  capillary growth and maintenance, 
is significantly reduced, and this correlates with decreased 
RV capillary density in maladaptive remodeling in contrast to 
preserved capillary density in adaptive remodeling.[26] Studies 
have found that cardiomyocyte-specific knockout of  
VEGF-B induced reprogramming of  the cardiomyocyte 
metabolism, including increased glucose uptake and 
decreased FAO-related gene expression.[33] In addition, 
RV remodeling is associated with other potential 
mechanisms, as reflected by the increased expression of  
genes associated with inflammation, oxidative stress, and 
apoptosis.[30]

Based on the abovementioned evidences from CTEPH 
and PAH studies, we have proposed several potential 
pathological processes involved in the maladaptive 
remodeling of  the right heart (Figure 2), including 
myocardial fibrosis, capillary rarefaction, metabolic 
conversion to glycolysis, mitochondrial dysfunction, 
inflammation, increased apoptosis, and overstimulation of  
neurohumoral factors. These pathophysiological changes 
of  RV and the corresponding molecular mechanisms are 
potentially helpful for the early diagnosis and intervention 
of  RV dysfunction in CTEPH.

ASSESSMENT OF THE RV 
AFTERLOAD AND FUNCTION IN 
CTEPH

Echocardiography is a noninvasive screening examination 
method for measurement of  PA pressure and cardiac 
function, while it is an indirect measure of  RV 
hemodynamics. More detailed functional assessment of  RV 
afterload can be performed by right heart catheterization, 
which may be further complemented by generation of  RV 
pressure-volume loops. End-systolic ventricular elastance 
(Ees) and arterial elastance (Ea) reflect the contractility and 
afterload of  the RV, respectively. While Ees/Ea ratio is 
correlated with the RV-PA coupling,[34] invasive assessment 
methods to obtain Ees/Ea using cardiac catheterization 
remain challenging. Importantly, the RV and PA should be 
studied together in the evaluation of  CTEPH.[68] Gallium-
labeled fibroblast activation protein inhibitor imaging has 
also been a promising indicator of  activated fibroblasts in 
CTEPH patients.[35] Cardiac magnetic resonance imaging 
(CMR) is a noninvasive clinical assessment, which may be 
more suitable for the accurate and consistent evaluation 
of  RV-PA coupling in CTEPH patients.[36] Although well 
suited for the follow-up of  CTEPH, CMR is not yet fully 
integrated into routine clinical practice due to its limited 
accessibility.

Figure 2: The proposed molecular mechanisms of RV remodeling. ECM: extracellular matrix; RAAS: renin-angiotensin-aldosterone system; RV: right ventricular.
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TREATMENT STRATEGIES OF CTEPH 
AND THEIR EFFECTS ON THE RV

Current treatments of  CTEPH include multiple strategies 
or their combinations. While these treatments improve the 
RV function, advanced CMR assessments have found that 
it is difficult for the RV to recover to normal performance 
after treatment. 

Partial reversal of rv remodeling after pea
PEA removes the proximal thrombus and apart of  the 
thickened neointima, as well as segmental arteries, thus 
reducing the afterload of  RV. PEA has been shown to relieve 
interventricular asynchrony and RV systolic wall stress, but it 
cannot recover the RV to its original healthy state, as shown 
by patients who, following PEA, exhibit abnormal exercise 
responses.[37,38] Findings from previous studies assessing the 
RV after PEA by CMR are shown in Table 1.[39–53]

The mass and function of  the RV normalized by body 
surface area may improve 2 weeks after PEA.[42–44] In 
addition, tricuspid annular plane systolic excursion 
(TAPSE), an index of  the RV systolic function, initially 
showed a downward trend after PEA and partially 
recovered after a 1-year follow-up. In this study, the short-
term reduction in TAPSE postoperatively was mainly due 
to the temporary decline in overall cardiac function. The 
reason for the incomplete recovery after PEA may be 
that chronic elevation in afterload leads to a decrease in 
RV functional reserve. The increase in afterload is related 
to a decrease in PA compliance, rather than a slightly 

elevated PVR.[54] Therefore, PEA partially reverses RV 
remodeling, but it infrequently returns to baseline levels, 
and so, a range of  additional strategies are needed for 
further improvement.

Improvement in the cardiac function after bpa
Inoperable CTEPH patients and patients with a low risk-
benefit ratio for surgery often undergo BPA.[55,56] A meta-
analysis of  five echocardiographic studies shows that BPA 
can significantly reduce the RV basal diameter and increase 
the RV fractional area change, but the beneficial effects on 
TAPSE and tricuspid lateral annular systolic velocity (S’) are 
not significant.[57] CMR is also useful for evaluating the RV 
function in CTEPH patients after BPA. BPA significantly 
reduces the EDV and ESV of  the RV, while improving 
RVEF.[58–61] In addition, BPA also improves the LV function 
to an extent.[58,59] However, it is proposed that a single BPA 
makes changes in pulmonary blood flow without improving 
cardiac function significantly.[62] It is interesting to note that 
the plasma concentration of  soluble ST2 is increased in 
CTEPH patients and its levels decline significantly after 
several BPA intervention.[63] sST2 represents a potential 
prognostic biomarker of  CTEPH.

The degree of  improvement of  RV function in patients 
with BPA varies, mainly due to the heterogeneity of  patients 
treated, as there is no standardized indication for BPA.[64] 
As a complementary approach in the treatment of  CTEPH, 
BPA further improves the cardiac function, but the degree 
of  improvement is still limited.

Table 1: Evaluation of right ventricular function in CTEPH patients after pulmonary endarterectomy by cardiac magnetic resonance imaging
Reference Number of patients (post-

PEA)
Follow-up period RV

Mass EDV(I) ESV(I) SV(I) EF
Kreitner et al.[39] 34 14 ± 8 days NA NA NA NA ↑
Surie et al.[40] 18 (17) NA ↓ ↓ ↓ NSS* ↑
Waziri et al.[41] 19 12 months ↓ ↓ ↓ NSS ↑
Schoenfeld et al.[42] 19 12 days (average) ↓ ↓ ↓ ↑ ↑
Maschke et al.[43] 22 12 days (average) ↓ ↓ ↓ NSS ↑
Czerner et al.[44] 31 12 days (average) ↓ ↓ ↓ NA ↑
Ruigrok et al.[45] 68 6 months NA ↓ ↓ NA ↑
Mauritz et al.[46] 13 6 months ↓ ↓ ↓ NSS ↑
Claessen et al.[47] 15 (7) NA NA NSS ↓ NSS ↑
Reesink et al.[48] 17 At least 4 months ↓ ↓ ↓ ↑ ↑
Armini et al.[49] 37 (35) Discharge NSS ↓ ↓ NA NSS
Rolf et al.[50] 65 NA ↓ ↓ ↓ ↑ ↑
Hardziyenka et al.[51] No RVF 4 8 months (average) ↓ ↓ NA NSS NSS

RVF 16 ↓ ↓ NA ↑ ↑
Berman et al.[52] 72 3 months ↓ ↓ ↓ ↑ ↑
Iino et al.[53] 22 (20) 1 month NA ↓ ↓ NA ↑

CTEPH: chronic thromboembolic pulmonary hypertension; PEA: pulmonary endarterectomy; RV: right ventricle; EDV(I): end-diastolic volume index; ESV(I): 
end-systolic volume index; SV(I): stroke volume index; EF: ejection fraction; RVF: right ventricular failure; NSS: not statistically significant; NA: not available.

The arrows indicate statistically significant changes.

*SVI increased significantly after 3 min of exercise in the post-PEA group compared to the pre-PEA group.
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Medical therapies to rv remodeling of cteph 
Pharmacological therapies, riociguat and treprostinil, are 
approved for the treatment of  CTEPH.[3] In general, these 
improve RV function by reducing RV afterload; however, still, 
there is a lack of  therapies directly targeting RV remodeling. 

Studies have confirmed that RV remodeling may be 
alleviated by riociguat.[65–68] Moreover, sildenafil can 
directly mitigate myocardial interstitial fibrosis caused 
by RV dysfunction, as myocardial endothelin signaling is 
upregulated in the RV of  PAH.[69,70] Recently, it has been 
found that the cardiac function improved after long-term 
subcutaneous administration of  treprostinil in severe 
inoperable CTEPH.[71] Meanwhile, inhalation of  iloprost 
significantly improved TAPSE and exercise capacity and 
partially reversed RV fibrosis in experimental model of  
PAH.[72] The mechanism of  action of  iloprost may involve 
reduced collagen synthesis and increased collagen turnover 
by cardiac fibroblasts.

RV remodeling-targeted drugs of  the right heart are being 
developed in recent years. Beta-blockers are important in 
the treatment of  heart failure and in the mitigation of  
ventricular remodeling.[73] Carvedilol, a selective α1/β1/
β2-adrenergic receptor blocker, is effective in reversing 
RV remodeling in PAH.[74–76] In addition, partial fatty acid 
antioxidants could enhance the function of  RV by reducing 
fatty acids and normalizing the oxidative phosphorylation of  
glucose.[77] Moreover, inhibiting myocardial mitochondrial 
FAO may protect the myocardium by reducing the 
production of  reactive oxygen species.[78] Aldosterone has 
been reported to increase oxidative stress and promote 
inflammation and fibrosis of  the heart.[79] A recent 
randomized controlled trial has found that spironolactone, 
an aldosterone antagonist, could relieve heart failure with 
preserved EF (HfpEF), reducing the markers of  fibrosis 
in circulation.[80] Angiotensin-converting enzyme inhibitors 
or angiotensin receptor blockers are also known to reduce 
myocardial remodeling, but further research is needed 
to investigate their effects on the maladaptive overload-
induced remodeling of  the right heart. 

PROGNOSIS OF CTEPH BY RV DYSFUNC-
TION

RV dysfunction, caused by maladaptive remodeling, is 
widely recognized as the major determinant of  long-term 
prognosis in CTEPH, including survival rate and quality 
of  life.[1,2,81] CTEPH patients with surgical indication have 
significantly higher upstream resistance due to proximal 
fibrotic clots than those with inoperable CTEPH. The 
higher preoperative downstream resistance, indicating the 
existence of  distal microvascular disease that resembles 
PAH, appears to be correlated to increased risk for 

persistent PH and poor prognosis after PEA.[82] New 
York Heart Association (NYHA) functional class and 
right atrial pressure (RAP) are associated with mortality in 
CTEPH patients over a prolonged period of  time. NYHA 
class IV was the most important predictor of  death in 
both operated and non-operated CTEPH patients in 
comparison with NYHA class I and II patients, while 
RAP was correlated with mortality in non-operated 
patients.[83] However, it has also been controversial that the 
major cause of  deaths in CTEPH after the perioperative 
period was attributed to RV failure.[84] The positive role of  
rehabilitation has been demonstrated in the improvement 
of  the cardiac index at rest and during exercise among 
inoperable CTEPH patients, indicating that exercise 
training may improve RV function.[85,86] Furthermore, 
home-based rehabilitation might also be an efficient and 
practical option.

FUTURE PROSPECTS

In CTEPH, the increase in PVR and afterload caused by 
unresolved thrombi and microvascular disease leads to right 
heart failure, resulting in a high mortality rate. A variety 
of  mechanisms are involved in maladaptive remodeling 
of  the RV. The use of  CMR is important for assessing 
the improvement in RV function after treatment and may 
be more widely adopted and further optimized. In future 
research, it will be useful to combine laboratory blood-
based testing with the parameters derived from CMR or 
echocardiography for a comprehensive analysis of  the RV 
phenotypes in individual patients and for monitoring their 
disease progression. 

Current treatment strategies are unable to completely 
reverse the maladaptive remodeling of  the RV. Research on 
the RV in CTEPH is hindered by the limited availability of  
human tissue and robust animal models. Mechanistic studies 
comparing compensated hypertrophy and maladaptive 
remodeling may facilitate the discovery of  novel targets to 
prevent decompensated remodeling while preserving more 
beneficial adaptation. Given the importance of  RV function 
in the severity and prognosis of  CTEPH patients, further 
investigation is desperately needed to develop interventions 
and therapies specifically targeting RV.
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