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Cardiolipin (CL), the signature phospholipid of mitochondrial membranes, is crucial for both mitochondrial function and cellular
processes outside of themitochondria.The importance of CL in cardiovascular health is underscored by the life-threatening genetic
disorder Barth syndrome (BTHS), which manifests clinically as cardiomyopathy, skeletal myopathy, neutropenia, and growth
retardation. BTHS is caused bymutations in the gene encoding tafazzin, the transacylase that carries out the second CL remodeling
step. In addition to BTHS, CL is linked to other cardiovascular diseases (CVDs), including cardiomyopathy, atherosclerosis,
myocardial ischemia-reperfusion injury, heart failure, andTangier disease.The link betweenCL andCVDmaypossibly be explained
by the physiological roles ofCL in pathways that are cardioprotective, includingmitochondrial bioenergetics, autophagy/mitophagy,
and mitogen activated protein kinase (MAPK) pathways. In this review, we focus on the role of CL in the pathogenesis of CVD as
well as the molecular mechanisms that may link CL functions to cardiovascular health.

1. Introduction

Cardiolipin (CL) is the signature lipid of mitochondrial
membranes. It contains two phosphatidyl moieties joined
by a central glycerol backbone, forming a dimeric structure
[1]. Thus, unlike other phospholipids that contain two fatty
acyl chains linked by glycerol, CL has four acyl chains.
Considering the potential number of combinations of fatty
acyl groups, a very large number of CL species may be
possible. Interestingly, in most organisms and tissues, the
fatty acyl composition of CL is unique and specific. In
humans, CL acyl species vary in different tissues, but the
most abundant species in the heart is tetralinoleoyl-CL [2].
While CL plays critical roles in mitochondrial biogenesis,
fusion and fission, respiration, and protein import [3], it
is also involved in various cellular processes outside of the
mitochondria. These include, but are not limited to, cell wall
biogenesis [4], vacuole homeostasis [5], ageing [6], the cell
cycle [7], and apoptosis [8]. In this review, we focus on the
role of CL in the pathogenesis of CVDaswell as themolecular
mechanisms that may link CL functions to cardiovascular
health.

2. CL Synthesis

Unlike mitochondrial membrane lipids that are synthesized
in the endoplasmic reticulum, de novo synthesis of CL occurs
exclusively in the innermembrane of themitochondria [9], in
a series of well-characterized steps that are highly conserved
fromyeast to higher eukaryotes [10]. As shown in Figure 1, the
first step in the CL biosynthetic pathway is the conversion of
phosphatidic acid (PA) to CDP-diacylglycerol (CDP-DAG),
which is catalyzed in the inner membrane by CDP-DAG
synthase encoded by TAM41 [11–13] in yeast. PGS1 encoded
phosphatidylglycerolphosphate synthase catalyzes transfer of
the phosphatidyl group from CDP-DAG to a glycerol-3-
phosphate molecule to generate phosphatidylglycerolphos-
phate (PGP) [14, 15]. PGP is subsequently dephosphorylated
to phosphatidylglycerol (PG) by PGP phosphatase [16, 17],
encoded by PTPMT1 in mammals [18, 19] and GEP4 in yeast
[20]. The final step in the biosynthetic pathway is carried out
byCL synthase, encoded by hCLS1 in human cells [21–23] and
by CRD1 in yeast [24–26]. In this step, a second phosphatidyl
group is added to PG from another CDP-DAG molecule,
generating unremodeled CL [9, 23, 27].
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Figure 1: Cardiolipin synthesis and remodeling pathway in
humans and yeast. Phosphatidic acid (PA) is converted to CDP-
diacylglycerol (CDP-DAG) by CDP-DAG synthase. Phosphatidyl-
glycerolphosphate synthase catalyzes the conversion of CDP-DAG
to phosphatidylglycerolphosphate (PGP), which is dephosphory-
lated to phosphatidylglycerol (PG). PG is converted to unremodeled
CLwithmostly saturated acyl chains (CLSAT). CLSAT is deacylated to
monolyso-CL (MLCL) by phospholipases and MLCL is reacylated
to CL with mostly unsaturated acyl chains (CLUNSAT). The genes
encoding human enzymes are indicated in red, and genes that
encode yeast enzymes are in blue.

The acyl composition of CL varies in different tissues, due
primarily to CL remodeling following de novo synthesis. CL
remodeling may occur through two mechanisms (Figure 1)
[28]. In the two-step mechanism, CL is first deacylated to
monolyso-CL (MLCL) by phospholipases [29]. In yeast, the
only CL-specific phospholipase is encoded by CLD1 [30]
while in mammals, several phospholipases are reported to
have CL-hydrolyzing activities, including iPLA

2
𝛽, iPLA

2
𝛾,

cPLA
2
, and sPLA

2
[31–33]. MLCL is then reacylated to

remodeled CL by the transacylase tafazzin, encoded by the
tafazzin gene (TAZ/G4.5) located onXq28 in human cells [34]
and by TAZ1 in yeast [35, 36]. Acyltransferases encoded by
ALCAT1 [37] andMLCLAT1 [38] have also been described in
mammalian cells. In the one-stepmechanism,CL remodeling
occurs by direct transacylation [39, 40].Mutations in tafazzin
perturb CL remodeling and cause the life-threatening genetic
disorder Barth syndrome (BTHS) [41], which is discussed
below.

3. Relationship between CL and CVD

3.1. Cardiomyopathy

3.1.1. Barth Syndrome. The most direct link between CVD
and CL is seen in Barth syndrome (BTHS), an X-linked
genetic disorder of CL remodeling caused by tafazzin muta-
tions. BTHS manifests clinically as cardiomyopathy, skele-
tal myopathy, neutropenia, and growth retardation [42].
Biochemical phenotypes include decreased levels of CL,
increased MLCL, and altered CL fatty acyl composition [43–
45]. More than 160 mutations in the tafazzin gene have been
identified in BTHS patients [46–48]. Interestingly, there is a
wide disparity of clinical phenotypes, even among patients
with the same mutation, ranging from being asymptomatic
to death of newborns. Thus, some patients with an increased
MLCL/CL ratio appear asymptomatic [49]. A study in which
mutated BTHS tafazzin proteins were expressed in the yeast
taz1Δ mutant reported that 18 of 21 BTHS proteins did not
restore MLCL levels to normal, as expected [50]. However,

expression of 3 of the 21 BTHS proteins restored MLCL
levels in the yeast taz1Δ mutant to normal. In typical cases,
total CL is decreased to about 80% in BTHS platelets and
skeletal muscle and 20% in cardiac tissue [44]. CL species
vary in different tissues. Tetralinoleoyl-CL (L4-CL) is the
most abundant CL species in heart, skeletal muscle, and
most other tissues, whereas acyl species such as arachidonic
and docosahexaenoic acids are found in brain [51, 52]. L4-
CL is absent in BTHS, while increases in other CL species
are found [43–45]. As mentioned, tafazzin deficiency results
in decreased CL, increased MLCL, and altered CL species,
any of which may cause the pathology in BTHS. Recent
findings in yeast indicate that deletion of Cld1-mediated
deacylation rescues growth and lifespan defects in tafazzin-
deficient cells [53, 54]. Because the CLD1 mutation restored
CL levels without generating remodeled CL, these findings
suggest that, at least in yeast, decreased total CL and/or
increased MLCL but not decreased remodeled CL leads to
defects associated with tafazzin deficiency. If this is true in
BTHS cells, inhibiting CL deacylation may, thus, be a novel
potential strategy to treat BTHS patients.

3.1.2. Diabetic Cardiomyopathy. Diabetes is a metabolic dis-
ease characterized by increased levels of glucose in the
blood over a prolonged period. It is due to poor insulin
production (type I) or insulin resistance with 𝛽-cell dysfunc-
tion (type II) [55]. Diabetic complications include a group
of diseases derived from microvascular and macrovascular
damage, including diabetic cardiomyopathy, myonecrosis,
stroke, peripheral vascular disease, nephropathy, retinopa-
thy and encephalopathy [56]. Diabetes doubles the risk of
CVD, of which diabetic cardiomyopathy is the leading cause
of mortality. Diabetic cardiomyopathy is characterized by
altered lipid composition and mitochondrial dysfunction
in the diabetic myocardium [57]. In the early stages of
pathological development in the type II diabetic mouse
model, a sharp decrease in total cardiac CL is observed
[58]. In addition to a decrease in the whole cell CL content,
there is also a shift from the predominant fatty acyl species,
L4-CL (18 : 2), to longer and polyunsaturated fatty acids,
due to aberrant CL remodeling [58, 59]. Strikingly, these
alterations are similar to changes observed in the type I
model of diabetes. In type II diabetic mice treated with the
antidiabetic drug rosiglitazone, the wild type CL profile in
the heart was restored, as total CL and L4-CL increased,
and polyunsaturated CL decreased [60]. Impairment of CL
synthesis plays a causal role in mitochondrial dysfunction
[61–63], andmitochondrial dysfunction is associatedwith the
pathogenesis of diabetic CVD, especially with the sequential
events following silent myocardial ischemia in diabetics
[64]. Thus, the sharp decrease in total cardiac CL and the
altered CL fatty acyl species in the early stages of diabetic
pathogenesis may play a key role in the progression of this
disease.

3.2. Myocardial Ischemia-Reperfusion Injury. Myocardial
ischemia occurs when themyocardiumdoes not receive suffi-
cient blood flow, resulting in irreversible injury and cell death
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[65]. Restoration of circulation in the ischemic myocardium
leads to reperfusion injury [65]. Ischemia-reperfusion injury
causes diverse myocardial dysfunctions, including cardiac
contractile abnormalities [66–68], abnormal left-ventricular
pressure [69], arrhythmia [70–72], and increased occurrence
of ventricular fibrillation [73, 74].

In the early stages of myocardial ischemia, there is
an increase in reactive oxygen species (ROS). During and
after ischemia-reperfusion, ROS is thought to trigger lipid
peroxidation as well as damage to cellular macromolecules
and the electron transport chain which, together, lead to
apoptosis, necrosis, and tissue damage [75–77]. Unsaturated
CL acyl species in themitochondrial innermembrane that are
close to the site of ROS generation are vulnerable to oxidative
damage. Consistentwith this, total CLwas decreased and per-
oxidized CL was increased in the rat heart during ischemia-
reperfusion [78]. A study of ischemia-reperfusion in rabbit
heart reported that reduction of total CL was due in large
part to a significant decrease in CL in the subsarcolemmal
mitochondria, whereas CL in the interfibrillar mitochondria
was unchanged [79]. The levels of all other phospholipids
remained unaffected. Decreased CL was proposed to be the
cause of decreased enzyme activities of electron transport
chain complexes I [80], III [81], and IV [78] in the rat
heart ischemia-reperfusion model. The enzyme activities
were restored by the addition of exogenous CL, but not by
other phospholipids or peroxidized CL [78]. In summary, a
feedback loop appears to be formed, in which CL is damaged
by ischemia-reperfusion-induced ROS, and damaged CL
leads to impairment of electron transport chain complexes,
resulting in the generation of more ROS. CL also directly
binds to cytochrome c (Cytc), and CL-bound Cytc has
peroxidase activity that can produce CL hydroperoxides [82].
A known factor that stimulates the activity of this CL/Cytc
peroxidase is increased H

2
O
2
[83]. Peroxidized CL has a

much lower affinity for Cytc [84]. In addition, several studies
show that apoptosis factors, t-Bid and Bax, preferentially
localize to the inner and outermembrane contact sites, which
are rich in CL [85–87]. t-Bid binding and Bax insertion at the
contact sites cause irreversible membrane permeabilization
and promotes release of Cytc into the cytosol [87, 88],
resulting in apoptosis.

3.3. Atherosclerosis. Atherosclerosis is a form of arterioscle-
rosis in which an artery wall thickens due to chronic invasion
and further accumulation of white blood cells, remnants
of dead cells, cholesterol, and triglycerides [89]. Oxidized
CL (oxCL) is found to accumulate both in rabbit and
human atherosclerotic lesions [90] and in the aortic root
of mice fed a high fat diet [91]. Increased anti-oxCL IgG
[92–94] and IgM [93, 95] antibodies are associated with
atherosclerosis development. oxCL is recognized as a natural
antigen that stimulates proinflammatory effects in the artery
and promotes formation of atherosclerotic plaques [92, 96].
However, some studies purport that autoantibodies to oxCL
may serve a protective role against the onset and development
of atherosclerosis [97, 98]. The discrepancies regarding the
effects of anti-oxCL antibodies on atherosclerosis may reflect

the influence of potential physiological modifiers, including
age, gender, and other existing diseases. The anticoagulation
protein annexin A5 has been reported to bind to and inhibit
the proinflammatory effects of oxCL [99], providing the
basis for a potential therapeutic strategy for oxCL positive
atherosclerosis.

3.4. Emerging Relationships between CL and Dilated
Cardiomyopathy with Ataxia Syndrome (DCMA),
Heart Failure (HF), and Tangier Disease

3.4.1. DCMA. Dilated cardiomyopathy with ataxia (DCMA)
syndrome is an autosomal recessive genetic disorder that
is characterized by early onset dilated cardiomyopathy with
conduction defects, nonprogressive cerebellar ataxia, tes-
ticular dysgenesis, growth failure, and 3-methylglutaconic
aciduria [100]. The clinical manifestations of DCMA are
similar to those found in BTHS. Patients with DCMA have a
commonmutation, a G→C base substitution within a splice
site of theDNAJC19 gene [100]. DNAJC19 protein localizes to
themitochondria and shares sequence and location similarity
with yeast Tim14, an essential subunit of the TIM23 complex
[101, 102]. TIM23 is required for the import of protein
precursors from the cytoplasm into themitochondrial matrix
and inner membrane [103]. This suggests that the DCMA
phenotype may result from defective mitochondrial protein
import. As the loss of CL also leads to defectivemitochondrial
protein import [104–108], it is interesting to speculate that
defective import of specific mitochondrial proteins may be
common to DCMA and BTHS.

A recent study suggests that CL may play a role in
the pathogenesis of DCMA [109]. DNAJC19 protein is
reported to form a PHB/DNAJC19 complex with prohibitin,
a ring-like scaffold protein located in the mitochondrial
innermembrane.ThePHB/DNAJC19 complexmodulates CL
remodeling by regulating tafazzin activity. siRNA-mediated
knockdown of DNAJC19 did not affect CL or MLCL levels
but altered the acyl chain composition of CL [109], while
knockout of PHB2 resulted in reduced total CL, accumulated
MLCL, and altered CL species. These data suggest that the
PHB/DNAJC19 complex plays a role in CL synthesis and
remodeling. However, whether the cause of DCMA is due
to defective protein import, altered CL fatty acyl species that
results from loss of DNAJC19, or a combination of the two
remains unknown.

3.4.2. HF. Heart failure (HF) results from inability of the
heart to pump blood with normal efficiency, resulting in
edema, shortness of breath, and lack of energy. HF is usually
the end stage of CVD, including cardiomyopathy, heart
attack, cardiac valvular disease, atrial fibrillation, and high
blood pressure [110]. In both the spontaneously hypertensive
HF rat model (SHHF) and human HF patients, decreased
tafazzin mRNA levels were observed, concomitant with
compensatory increases in the activity of phosphatidyl-
glycerolphosphate synthase and MLCL acyltransferase [111].
However, studies of the CL profile in HF are controversial.
While most studies report a significant reduction of total
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CL and L4-CL in human HF [112–114] and in the rat HF
model [112, 115], one study reported an unchanged CL
profile in a rat model with intracoronarymicroembolization-
induced HF [116]. It is likely that different HF pathogenesis
mechanisms lead to varying degrees of CL profile change and
mitochondrial damage.

3.4.3. Tangier Disease. Tangier disease (TD) is a genetic
disorder of cholesterol efflux and lipid metabolism charac-
terized by a nearly complete absence of plasma high-density
lipoproteins (HDLs), atherosclerosis, peripheral neuropathy,
and an increased risk for developing CVD [117, 118]. The
genetic cause of TD is the mutation of the ABCA1 gene,
which is located on chromosome 9 [119]. ABCA1 encodes
a highly conserved ATP-binding cassette transporter. The
ABCA subfamily of ABC transporters is involved in lipopro-
tein metabolism and lipid transport across the plasma mem-
brane [120]. Researchers propose that a physical interaction
between apoA-I and ABCA1 results in the formation of
a phospholipid-apoA-I complex that promotes cholesterol
efflux [121].Three phospholipids, including CL, lysoCL 1, and
2 (LC

1
and LC

2
), which together contribute only a small

fraction of the total cellular phospholipid content, were found
to be enriched up to fivefold in TD fibroblasts compared to
wild type cells [122]. This finding suggests that phospholipid
and cholesterol efflux may be coregulated and, therefore,
dually impaired in TD cells. Additionally, it is possible that
increased CL may play an as yet uncharacterized regulatory
role in cholesterol trafficking and efflux.

4. CL Plays a Role in Cellular Events
and Pathways That Are Important for
Maintaining Cardiovascular Health

4.1. Mitochondrial Function

4.1.1. Mitochondrial Dysfunction and CVD. To support the
normal function of the heart, cardiomyocytes have a high
mitochondrial density that comprises about 30% of the total
intracellular volume [123].This allows cardiomyocytes to pro-
duce ATP quickly to satisfy the high demand for energy. Even
subtle alterations in mitochondrial function or membrane
potential can cause a significant change in cardiomyocyte
energy production and further harm cardiovascular health.

As discussed in Section 3.4, mitochondrial dysfunction
and ROS play a causative role in the pathogenesis of
myocardial ischemia-reperfusion injury. Mitochondrial dys-
function and related morphological abnormalities, ROS gen-
eration, and altered mitochondrial permeability transition
pore and mitochondrial Ca2+ storage also contribute to the
development of diabetic cardiomyopathy [124–126], dilated
cardiomyopathy [127–129], dystrophic cardiomyopathy [130,
131], and hypertrophic cardiomyopathy [132–134]. Mitochon-
drial dysfunction is also linked to the development of HF, as
demonstrated in the hamster [135].The role of mitochondrial
dysfunction as a cofactor accelerating the progression of
existing CVD to HF has been addressed elsewhere [136, 137].

4.1.2. CL Deficiency Leads to Mitochondrial Dysfunction.
CL interacts with many inner mitochondrial membrane
proteins, including electron transport chain (ETC) complex
proteins that are components of complex I [62, 138], complex
III [61, 138–140], complex IV [61, 139, 140], complex V
[141], cytochrome c [142], and transporter proteins such
as the ADP-ATP carrier [143], pyruvate carrier [144], and
phosphate carrier [145]. Thus, CL deficiency can negatively
impact the activity and efficiency of these proteins. Several
studies demonstrate that ROS-induced CL oxidation causes
concomitant inactivation of complexes I, III, and IV [146–
148]. In vitro studies indicate that adding CL liposomes,
but not PE, PC, or oxidized CL liposomes, prevents ETC
complex defects caused by CL oxidation [146]. In addition
to interactions with single complexes, CL is required for
the proper assembly and stability of ETC supercomplexes.
Inmammalianmitochondria, supercomplexes are comprised
of complex I associated with complex III dimers and up to
four monomers of complex IV [148]. Yeast mitochondria,
which lack complex I, contain small supercomplexes of
complex III dimers. Large supercomplexes are characterized
by two small supercomplexes associated with complex IV
[148]. CL is required for the assembly and stability of these
supercomplexes. Supercomplexes of complexes III and IV are
destabilized in yeast crd1Δ cells as detected by CN-PAGE
[61, 140]. In lymphoblast cells of BTHS patients, complex
IV readily dissociates from the supercomplex, and I/III
supercomplex levels are decreased [149]. In addition to the
impact of CL on the respiratory chain, CL deficiency also
leads to other manifestations of mitochondrial dysfunction
such as defective protein import and mitophagy, as discussed
below.

4.1.3. Mitochondrial Pharmaceutics in CVD. Because mito-
chondrial dysfunction plays a pivotal role in the pathogenesis
and progress of CVD, the field of mitochondrial pharma-
ceutics is rapidly expanding [150]. Therapeutics that target
heart mitochondria, including synthetic peptides (SS peptide
family) [151–153], superoxide dismutase mimetics [154], and
triphenylphosphonium- (TPP-) ligated antioxidants such as
vitamin E [155], ubiquinone [156], and lipoic acid [157],
exhibit promise in alleviatingmitochondrial damage in CVD.
Several of these drugs are currently being tested in clinical
trials [150].

4.2. Mitochondrial Protein Import. More than 98% of mito-
chondrial proteins are encoded in the nucleus, synthesized in
the cytosol as precursors, and imported into the mitochon-
dria [158].Thus, mitochondrial protein import is essential for
maintaining normal mitochondrial function. As discussed
above, a link between defectivemitochondrial protein import
and CVD was suggested by mutations in the DNAJC19 gene
in DCMA syndrome. Two in vitro studies showed that the
unfolding of an artificial mitochondrial protein precursor by
CL was required for binding to isolated yeast mitochondrial
outer membranes or liposomes. These findings were the first
to demonstrate a mechanistic link between CL and protein
import [105, 106]. A more direct demonstration of the role of
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CL in mitochondrial protein import was shown by decreased
protein import in the yeast CL mutant crd1Δ [108]. CL was
also shown to be involved in the biogenesis of mitochondria
outer membrane protein import complexes [104]. Functional
assays of precursor binding to the TOM complex, the
translocase of the mitochondrial outer membrane, and the
SAM complex, the outer membrane sorting and assembly
machinery, revealed partially impaired precursor binding in
CLmutants [104]. Loss of CL also leads to defective import of
mitochondrial ATPase subunit precursors, which are located
in the inner membrane or matrix [108].

4.3. Autophagy/Mitophagy

4.3.1. Autophagy/Mitophagy as a Protective Mechanism
against Cardiac Aging and Ischemia-Reperfusion. Autophagy
refers to the cellular process in which cytoplasmic contents
are delivered into the lysosome or vacuole for degradation.
Autophagy is further classified as selective and nonselective
autophagy [159]. Various types of selective autophagy have
been identified, including mitophagy, pexophagy, lipophagy,
nucleophagy, lysophagy, reticulophagy/ER-phagy, and
ribophagy [160]. Mitophagy is the selective degradation of
mitochondria by autophagy [161]. Mitophagy and autophagy
are generally not distinguished in studies of CVD and will be
discussed together here.

Numerous studies link autophagy to CVD. In the heart,
autophagy is an important housekeeping process that is
essential for maintaining cardiac health [162]. Deletion of
ATG5, the gene encoding a protein that regulates phagophore
expansion, is known to result in cardiomyopathy in mice
[163]. Autophagic activity declines with age, and decreased
or impaired autophagy leads to accumulation of proteins and
damaged mitochondria, contributing to cardiac aging [164].

As early as the 1970s, autophagy was shown to be
increased during ischemia [165]. After decades of research,
the relationship between autophagy and cardiovascular phys-
iology is only partially clear. As discussed above, damage
to mitochondria is a hallmark of ischemia. During mild
and chronic ischemia, mitophagy is increased as an adaptive
and protective strategy to eliminate damaged mitochondria
[166–168]. Increased autophagy is accompanied by decreased
apoptosis during ischemia, suggesting that autophagy limits
apoptotic necrosis of cardiomyocytes [166, 169].Many studies
implicate the involvement of AMPK activation in triggering
autophagy/mitophagy during ischemia [170–172], although
this is not conclusive [173]. Following reperfusion, autophagy
is even more dramatically increased in animal models [166,
174, 175] and primary neonatal cardiomyocytes [169], having
a detrimental effect that is at least partially mediated by acti-
vation of Beclin-1, the protein required for autophagosome
formation [169, 170, 176].

4.3.2. CL Is Needed for Maintaining Normal Mitophagy. CL
is reported to externalize the outer mitochondrial mem-
brane as an elimination signal for mitophagy in neuronal
cells and to bind the microtubule-associated protein 1 light
chain 3 (MAP1LC3/LC3), the marker protein of autophagic
membranes. Binding induces recognition of mitochondria as

the cargo by the autophagic machinery [177, 178]. The role of
CL in mitophagy is supported by the finding that ALCAT1-
catalyzed remodeling of CL with aberrant acyl groups leads
to defectivemitophagy in hepatocytes [179]. Interestingly, the
autophagy-related protein Beclin-1 is preferentially enriched
in lipid membranes that contain high concentrations of CL
[180]. Deletion of ATG5, which is essential for autophagy,
results in cardiomyopathy inmice [163].These findings invite
speculation that loss of CL and defective CL remodeling
may contribute to the development of cardiomyopathy by a
mechanism related to perturbation of mitophagy.

4.4. The PKC Pathway

4.4.1. The Role of PKC in Cardiovascular Health. Protein
kinase C (PKC) is a family of protein kinases that regu-
late the function of other proteins through specific phos-
phorylation of hydroxyl groups on threonine and serine
residues. Human cells have fifteen PKC isozymes [181].
Overstimulation of PKC𝛼, PKC𝛽, PKC𝛿, or PKC𝜀 results
in hypertrophy of cardiomyocytes through activation of
the extracellular signal-related kinase (ERK) pathway [182].
However, during ischemia preconditioning, PKC𝛼, PKC𝛿,
PKC𝜀, and PKC𝜂 have been shown to translocate to the
active membrane pool and perform cardioprotective func-
tions [182]. Activation of PKC𝛿 results in intracellular pH
changes and viability protection; activation of PKC𝜂 protects
against myocardial stunning; activation of both PKC𝛿 and
PKC𝜂 provides global myocardial protection against necro-
sis, acidosis, and myocardial stunning [183]. Blocking the
phosphatidylinositol-specific phospholipase C- (PI-PLC-)
induced translocation of PKC𝛼, PKC𝜀, and PKC𝜂 during
ischemia impairs myocardial recovery [184]. Therefore, PKC
isozymes have dual functions in the pathogenesis and pro-
gression of CVD. However, unlike other PKC isozymes that
have dual roles in different CVDs, PKC𝜂 is mainly reported
to play a cardioprotective role during ischemia.

4.4.2. Loss of CL Leads to Defective PKC. During hyper-
thermia-induced apoptosis, PKC𝛿 phosphorylates phospho-
lipid scramblase 3 (PLS3), which then induces CL transloca-
tion from the inner to outer mitochondrial membrane [185–
187].This series of reactions is considered an indicator of both
apoptosis and autophagy. The relationship between CL and
PKC appears to be interdependent. While CL translocation
is regulated by PKC𝛿, CL may also be a regulator of the PKC
pathway. Studies in yeast, which have only one PKC (Pkc1),
show that loss of CL may lead to defects in the activation
of the PKC pathway [188]. Human PKC𝜂 is the only human
PKC isozyme that can complement the defects caused by
deletion of PKC1 in yeast through activation of the same
protein kinase cascade [189]. This suggests that PKC𝜂 shares
both functional homology and structural homology with
Pkc1. Extrapolating from the finding in yeast that CL plays
a role in PKC pathway activation, the cardioprotective role
of PKC𝜂 activation during ischemia preconditioning may be
dependent on CL.



6 BioMed Research International

5. Conclusion

As discussed above, CL plays important roles in cellular
processes and pathways that are crucial for heart function,
including mitochondrial function, mitochondrial protein
import, autophagy/mitophagy, and the PKC pathway. CL
synthesis and remodeling are highly regulated under phys-
iological conditions, and perturbation of this regulation
results in aberrant CL profiles in associated cardiac disorders,
including cardiomyopathy, myocardial ischemia-reperfusion
injury, HF, atherosclerosis, and Tangier disease. However, the
mechanisms linking CL to these pathologies remain to be
elucidated.

Mechanisms underlying the role of ox-CL in the
pathogenesis of myocardial ischemia-reperfusion injury and
atherosclerosis have been suggested. Apoptosis and necro-
sis during ischemia-reperfusion may result from decreased
binding of cytochrome c to ox-CL [84], which likely leads
to the release of cytochrome c and to increased permeability
of the mitochondrial membrane to apoptosis factors [82,
190]. In addition, ox-CL also functions as an antigen to
stimulate proinflammatory effects during the formation of
atherosclerosis.

The relative contribution of CL/MLCL levels and acyl
composition in maintaining respiratory chain function and
cardiovascular health is not understood. Many studies have
suggested that the lack of unsaturated L4-CL may be the
cause of the pathology in BTHS [43, 44]. Consistent with the
importance of CL acyl composition, knockdown ofDNAJC19
alters the acyl chain composition of CL without influencing
the total CL level [109]. However, the finding that growth
and respiratory defects of the yeast taz1 mutant are rescued
by deletion of CLD1, which restores CL/MLCL levels without
generating remodeled CL, suggests that CL/MLCL levels are
more important for mitochondrial function than CL acyl
composition [53, 54].

In summary, elucidating the mechanisms whereby CL
regulates cardiac function remains a vastly unexplored and
exciting frontier that holds the promise of potential new
therapies to treat cardiac disorders.
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targeted macrocyclic Mn(II) superoxide dismutase mimetic,”
Chemistry & Biology, vol. 19, no. 10, pp. 1237–1246, 2012.

[155] R. A. J. Smith, C. M. Porteous, C. V. Coulter, and M. P. Murphy,
“Selective targeting of an antioxidant to mitochondria,” Euro-
pean Journal of Biochemistry, vol. 263, no. 3, pp. 709–716, 1999.

[156] G. F. Kelso, C. M. Porteous, C. V. Coulter et al., “Selective
targeting of a redox-active ubiquinone to mitochondria within
cells: antioxidant and antiapoptotic properties,” The Journal of
Biological Chemistry, vol. 276, no. 7, pp. 4588–4596, 2001.

[157] S. E. Brown, M. F. Ross, A. Sanjuan-Pla, A.-R. B. Manas,
R. A. J. Smith, and M. P. Murphy, “Targeting lipoic acid to
mitochondria: synthesis and characterization of a triphenyl-
phosphonium-conjugated 𝛼-lipoyl derivative,” Free Radical
Biology and Medicine, vol. 42, no. 12, pp. 1766–1780, 2007.

[158] A. Sickmann, J. Reinders, Y. Wagner et al., “The proteome
of Saccharomyces cerevisiae mitochondria,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 100, no. 23, pp. 13207–13212, 2003.

[159] U. Nair and D. J. Klionsky, “Molecular mechanisms and regu-
lation of specific and nonspecific autophagy pathways in yeast,”
The Journal of Biological Chemistry, vol. 280, no. 51, pp. 41785–
41788, 2005.

[160] K. Okamoto, “Organellophagy: eliminating cellular building
blocks via selective autophagy,”The Journal of Cell Biology, vol.
205, no. 4, pp. 435–445, 2014.

[161] K. Wang and D. J. Klionsky, “Mitochondria removal by
autophagy,” Autophagy, vol. 7, no. 3, pp. 297–300, 2011.

[162] A. G. Moyzis, J. Sadoshima, and Å. B. Gustafsson, “Mending
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