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SUMMARY
Taxanes are amainstay of treatment for breast cancer, but resistance oftendevelops followed bymetastatic disease andmortality. Aiming to

reveal the mechanisms underlying taxane resistance, we used breast cancer patient-derived orthoxenografts (PDX). Mimicking clinical

behavior, triple-negative breast tumors (TNBCs) fromPDXmodelsweremore sensitive to docetaxel than luminal tumors, but they progres-

sively acquired resistance uponcontinuousdrug administration.Mechanistically,we found that aCD49f+ chemoresistant populationwith

tumor-initiating ability is present in sensitive tumors and expands during the acquisition of drug resistance. In the absence of the drug, the

resistant CD49f+ population shrinks and taxane sensitivity is restored. We describe a transcriptional signature of resistance, predictive of

recurrent disease after chemotherapy in TNBC. Together, these findings identify a CD49f+ population enriched in tumor-initiating ability

and chemoresistance properties and evidence a drug holiday effect on the acquired resistance to docetaxel in triple-negative breast cancer.
INTRODUCTION

Triple-negative breast cancer (TNBC) is a heterogeneous

disease with divergent profiles of chemosensitivity and

prognosis (Perou et al., 2000; Prat et al., 2010; Shah et al.,

2012; Yu et al., 2013). Standard chemotherapywith anthra-

cyclines and taxanes is the mainstay treatment. A subset of

TNBCs shows increased chemosensitivity compared with

other breast cancer subtypes; however, for a significant

number of patients, overall prognosis is poorer, with high

risk of early relapse. Once metastases appear the patient

median survival is drastically reduced (Andre and Zielinski,

2012). Despite enormous efforts, the cause of resistance to

chemotherapy agents, including taxanes, is unclear (Bon-

nefoi et al., 2011). There remains an urgent unmet need

to identify the population of patients that will benefit

from taxanes, on one hand, and to determine the mecha-

nisms of resistance, on the other.
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There is increasing evidence that in a variety of neoplasia,

including breast cancer, only a subset of cancer cells are

capable of reconstituting the tumor after transplantation.

These cells called cancer stem cells (CSCs) or tumor-initi-

ating cells (TICs), have the ability to self-renew and regen-

erate tumor heterogeneity (Al-Hajj et al., 2003) and show

intrinsic resistance to conventional chemotherapies, lead-

ing to recurrence or metastasis. In fact, breast tumors

from patients who received neoadjuvant chemotherapy

are substantially enriched for CSCs compared with tumors

of untreated patients (Yu et al., 2007), suggesting that anti-

cancer agents kill the bulk of tumor cells, but spare the

CSCs (Dean et al., 2005). In breast cancer, a variety of

markers (CD44, CD24, EpCAM, CD49f, CD133/2, CD10,

and ALDH activity) have been shown to identify CSCs

(Al-Hajj et al., 2003; Bachelard-Cascales et al., 2008; Li

et al., 2008; Lim et al., 2009; Stingl et al., 2006). However,

it is still unclear whether all these markers are appropriate
hor(s).
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Figure 1. Generation and Characterization of PDX Models of Human Breast Cancer
(A) Percentage of palpable tumors that engrafted relative to total number of independent patient samples, classified by subtype and
source. The total number of original patient samples is indicated and mice that did not survive for at least 60 days after surgery were
excluded.
(B) Tumor latency in IDB-01 at the indicated passages. Total number of tumors (n), mean, SD, and t test p values are shown.
****p < 0.0001.

(legend continued on next page)
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for the different breast cancer subtypes, and further studies

are necessary to identify the population of TICs and their

functionality in each type of tumors.

The lack of appropriate tools and models has hindered

our efforts to gain insight into the mechanisms of drug

resistance. The best approach to investigate acquired resis-

tance requires analysis of primary or metastatic samples

collected before and after recurrence, but these paired sen-

sitive/resistant samples are often difficult to obtain. To

advance our knowledge in clinical breast cancer and the

molecular mechanisms of resistance, we have generated

breast cancer patient-derived orthoxenografts (PDXs),

which allow the amplification and perpetuation of hu-

man tumors by serial passages. Our panel of breast cancer

PDXs recapitulates the heterogeneity of the clinical dis-

ease and constitutes a unique tool for studying the biolog-

ical mechanisms of clinical response to taxanes and acqui-

sition of resistance. We demonstrate that a CD49f+ cell

population with tumor-initiating ability and increased

resistance to taxanes is present in the initially sensitive

TNBC tumors and expands during continued exposure

to the drug in vivo, contributing to taxane resistance

and tumor recurrence. Remarkably, the transcriptional

differences observed between the CD49f+ population of

sensitive and resistant tumors accompany and may

contribute to the acquisition of chemoresistance. Finally,

we demonstrate that docetaxel sensitivity is recovered in

the absence of the drug and associates with changes in

the CD49f+ population.
RESULTS

PDX Models Resemble Human Tumors of Origin in

Early Passages

PDX were generated as described (DeRose et al., 2011;

Zhang et al., 2013; Table S1). Increased tumor rates and

shorter latency to tumor formation was observed in sam-

ples derived from pleural effusions compared with tumor

pieces. The TNBC engrafted better than luminal tumors

and all palpable tumors derived from grade 3 human sam-

ples (Figures 1A, S1A, and S1B). Of the mammary glands,

52% with no palpable tumor contained human mam-

mary epithelium, mostly normal ducts and grade 1 intra-

ductal carcinoma indicating engraftment of these low-

grade lesions (Figures S1C and S1D; Table S1). Tumor lines

(Table 1, yellow in Table S1) were maintained by consec-
(C) Tumor growth in IDB-01, calculated as L 3 I (mm 3 mm)/100 ve
(D) Unsupervised clustering using the PAM50 genes across the PDX
clinical samples (Prat et al., 2015b). The type of sample and the subtyp
transcript abundance. All PDX tumors were from passage 5.
See also Table S1; Figures S1 and S2.
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models derived from pleural effusions, the second one a

BRCA1 mutant (IDB-01, IDB-02); two luminal/HER2-

negative models (IDB-03 and IDB-04) derived from tumor

pieces and pleural effusion, respectively; and one (IDB-

05) derived from a tumor piece of a triple-positive (ER+

PR+ HER2+) breast cancer. In most models, shorter la-

tency and faster tumor growth were observed in late pas-

sages (Figures 1B, 1C, S1E, and S1F). Thus, as demon-

strated previously (DeRose et al., 2011; Dobrolecki et al.,

2016; Zhang et al., 2013), establishment of PDX models

was associated with increased tumor aggressiveness and

poor prognosis.

Expression analyses of markers used in the clinical

setting for histopathological tumor classification and selec-

tion of treatment (ER, PR, HER2, CK5/6, CK18, and p53), in

parental human tumors and PDX tumors at early (0–1) and

late passages (4–8) demonstrate that PDX retain most hu-

man characteristics in the early passages, but occasional

changes are observed in some models (Table 1; Figures

S1G and S2A). ER and PR mRNA and protein expression

was detected in tumors from all passages of the luminal

models IDB-04 and IDB-05 (Figures S2A and S1G), but

only IDB-05 required estrogen/progesterone pellets to

grow (Figure S1H). IDB-03, ER+ and PR+ in the patient,

lost ER and PR expression in the PDX and a population of

p53+ cells was enriched (Table 1; Figure S2A and S1G). After

surgically resection of tumors, most models developed

local relapses andmetastases to clinical relevant sites (Table

1; Figure S2B).

Next, we performed intrinsic subtyping of our 5 PDX

models and their corresponding human tumors of origin

using the PAM50 subtype predictor (Parker et al., 2009),

and clustered these samples with 1,834 breast tumor

samples representing all subtypes (Prat et al., 2015b).

Mimicking the intrinsic subtypes of their corresponding

human tumors, the two TNBC models were identified as

basal-like, IDB-04 (HR+/HER2–) as luminal B, and the

HER2+ IDB-05 as HER2 enriched (HER2-E). Interestingly,

the human tumor of origin for IDB-03 was identified

as luminal B but the PDX was identified as HER2-E by

PAM50 without HER2 overexpression (Figure 1D). As re-

ported in similar PDX collections (Dobrolecki et al.,

2016), our mouse grafts retain initial human tumor char-

acteristics, but some models change during serial passages

in mice, which may reflect evolution of the clinical

disease.
rsus time (weeks). Each line represents a representative tumor.
models, human tumors of origin, and 1,834 human breast cancer
e call of each sample are shown. Each square represents the relative



Table 1. Main Characteristics of Human Tumor of Origin and Mouse Grafts in Five Established IDB Models

Model IDB-01 (TNBC) IDB-02 (TNBC)
IDB-03
(Luminal)

IDB-04
(Luminal)

IDB-05
(HER2+)

Mouse phenotype early

passage

ER-PR-HER2-CK5/6+

CK18+ p53-

ER-PR-HER2-CK5/6+

CK18+ p53-

BRCA1 mut

ER+ PR+

HER2-CK5/6-

CK18+ p53+

BRCA2 mut

ER+ PR+

HER2-CK5/6-

CK18+ p53-

ER+ PR+

HER2+

CK5/6-CK18+ p53-

phenotype late

passage

no change no change loss of ER

and PR

no change no change

passage 13 8 16 7 9

latency (p5) (days) 19 42 18 63 27

growth without

hormone pellets

yes yes yes yes no

Local relapse (%) 17.24 (n = 116) 6.94 (n = 144) 20.79 (n = 178) 23.40 (n = 94) 8.54 (n = 94)

axillary metastasis (%) 10 10 46 0 8

lymph ND

metastasis (%)

14 33 41.2 0 50

lung metastasis (%) 20 20 10 0 20

metastasis to other

sites

ND Yes (brain, axillary,

subcutaneous)

Yes (bone,

kidney)

Yes (liver) ND

Human subtype TNBC grade 3 TNBC grade 3 luminal grade 3 luminal grade 3 HER2+ grade 3

IHC ER-PR-HER2-CK5/6+

CK18+ p53-

ER-PR-HER2-CK5/6+

CK18+ p53-

BRCA1mut

ER+ PR+

HER2-CK5/6-

CK18+ p53+

ER+ PR+

HER2-CK5/6-

CK18+ p53-

ER+ PR+

HER2+

CK5/6-CK18+ p53-

source pleural pleural tumor pieces pleural tumor pieces

treatment FEC, docetaxel,

capecitabine

FEC, docetaxel not treated paclitaxel, carboplatin,

capecitabine

not treated

ER, estrogen receptor; PR, progesterone receptor; CK, cytokeratin, FEC, triple treatment composed of 5-fluorouracil, epirubicin and cyclophosphamide.

Frequency of tumor relapse per mammary gland (local relapse) and metastasis is indicated in each model. Only mice that survived for at least 60 days after

primary tumor excision with no relapse/metastasis were considered as relapse/metastasis free. All metastases were confirmed by pathologists. ND, not deter-

mined. See also Table S1.
Basal-like PDX Are Initially Sensitive to Docetaxel but

Acquire Resistance after Continuous Exposure to the

Drug In Vivo

Next, we tested the sensitivity of orthotopic mouse

models to docetaxel, one of the most commonly used che-

motherapeutics in breast cancer and other solid tumors

(Figure S3A). According to docetaxel response, tumors

were classified as sensitive when the treatment induced

complete tumor regression; partially sensitive when the

treatment interfered with tumor growth inducing com-

plete regression in some tumors but not in others; and resis-

tant when tumors continued growing despite docetaxel

treatment. In line with these criteria, luminal tumors

from IDB-03 and IDB-04 were resistant to docetaxel, the

TNBC IDB-01 model was sensitive (IDB-01S), and the

TNBC IDB-02 was partially sensitive to the drug (Figures
2A, 2B, and S3B). Despite the initial pathological complete

response, all IDB-01 tumors started growing again

30–60 days after treatment interruption. In the second

round of treatment, more doses of docetaxel were required

to eliminate tumors and a more heterogeneous response

between individual tumors was observed (partially sensi-

tive tumors). This behavior was accentuated during consec-

utive docetaxel treatments and the tumors became resis-

tant in passage 3 (Figures 2B and 2C). Resistance was

retained for at least two passages in the absence of doce-

taxel, as IDB-01-resistant tumors (IDB-01R, passage 5)

grew at comparable growth rates irrespective of docetaxel

treatment (Figure 2D). Importantly, tumors growing

without the selective pressure of docetaxel partially re-

gained sensitivity after five passages (IDB-01R, passage 8),

which demonstrates that taxane resistance can be reverted
Stem Cell Reports j Vol. 8 j 1392–1407 j May 9, 2017 1395
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(Figure 2D). No differences in latency to tumor formation

or tumor growthwere observed between IDB-01S (sensitive

tumors of origin) and the resistant ones, IDB-01R, derived

from them (Figures S3C and S3D). Gene expression ana-

lyses of IDB-01S and IDB-01R tumors identified a signature

(22 downregulated genes in IDB-01R) that was predictive of

residual disease after anthracycline/taxane-based therapy

in 166 patients with basal-like disease (GSE25066) (Hatzis

et al., 2011) and poor survival in the TCGA dataset, high-

lighting the clinical relevance of our sensitive and resistant

PDX pairs (Figures 2E, 2F, and S3E). In IDB-02 an already

heterogeneous response was observed after the first doses,

and docetaxel treatment could not be interrupted in most

mice (Figures 2B, 2C, and S3B). Tumors started growing

very fast after interruption of the treatment and became

resistant in passage 2. A third passage and additional doce-

taxel treatments did not change tumor growth, demon-

strating that tumors had acquired resistance to docetaxel,

which was retained for at least two passages (Figures 2B–

2D). IDB-02R resistant tumors showed similar latency as

IDB-02S sensitive tumors but grew significantly faster (Fig-

ures S3C and S3D). These results demonstrate that our tri-

ple-negative PDX tumors are more sensitive to docetaxel

than the luminal ones. In the clinic, a better response to

chemotherapy is observed in TNBC compared with

luminal tumors, and in some studies taxanes have been

shown to be superior to anthracyclines in this subtype

(Kim et al., 2010; Martin et al., 2011). Moreover, initially

sensitive PDX tumors gradually became less responsive to

docetaxel and acquired resistance after continuous expo-

sure to the drug, mimicking the clinical scenario.

Docetaxel Acquired Resistance Is Accompanied by an

Increase in the CD49f+ Population

It has been shown that chemotherapy efficiently elimi-

nates the bulk tumor cells but spares the CSC population
Figure 2. TNBC PDX Tumors were Sensitive to Docetaxel and Acquir
Tumors were Resistant
(A) Representative kinetics of tumor growth during docetaxel treatmen
tumors reached 6 3 6 mm. Each line illustrates a representative tum
(B) Percentage of sensitive, partially sensitive or resistant tumors of e
indicated.
(C) Representative kinetics of tumor growth during acquisition of res
represents one tumor and each color represents an independent sensi
indicate the tumors that were transplanted.
(D) Representative kinetics of tumor growth during docetaxel treatmen
tumor. IDB-01R tumors were analyzed after growing for two and five
(E) Supervised expression analysis of the genes found differentially
resents the relative transcript abundance.
(F) Association of IDB-01 resistant signature with chemotherapy res
2011). Response was measured as pathological complete response (pC
max) and t test p values are shown.
(A, C, and D) Arrows represent docetaxel doses. See also Figure S3.
(Li et al., 2008). Thus, we analyzed the expression of

markers previously shown to identify CSCs in our PDX tu-

mor collection including paired sensitive and resistant tu-

mors from IDB-01 and IDB-02 (Figure S4A-B). Variability

in marker expression was detected between models with

the same histological and molecular subtype. Docetaxel-

resistant luminal tumors (IDB-03 and IDB-04) showed the

highest percentages of EpCAM, CD49f, and CD24 cells,

but the CD133 population was scarce. IDB-03 contained

an abundant CD44+ population and ALDH activity, and

is the only one expressing CD10. A CD133+ population

was found in basal-like and HER2+ PDX. The CD44+

CD24– population, shown to identify human breast

CSCs (Al-Hajj et al., 2003), was only detected in the

TNBC IDB-02 (Figures S4B and S4C).

No significant changes in the expression of CD44,

CD24, CD133, or CD10 were found between sensitive

and resistant TNBC paired samples, neither in IDB-01 nor

in IDB-02. The CD44+ CD24– population remained barely

detectable in the chemoresistant models, and the ALDH+

population, based on ALDH enzymatic activity, was also

comparable between paired sensitive and resistant tumors

(Figure 3A). In contrast, the frequency of CD49f+ cells

significantly increased in TNBC-resistant tumors compared

with paired sensitive ones in both models. A significant in-

crease in the frequency of EpCAM+ cells was also observed

in IDB-01R compared with IDB-01S tumors (Figure 3A).

Resistant tumors from IDB-01 and IDB-02 showed signifi-

cantly higher mRNA expression levels of CD49f (ITGA6)

but not EpCAM, than the corresponding sensitive tumors

(Figure 3B).

We next sought to investigate the clinical relevance of

our findings by analyzing different clinical datasets. In

basal-like tumors from the EORTC 10994/BIG-1-00 clinical

trial (Bonnefoi et al., 2011), higher expression of CD49f

and EpCAM was associated with a non-pathological
ed Resistance after Continuous Treatment, whereas the Luminal

t. Docetaxel treatment (20 mg/kg i.p., once per week) started when
or (passages 4–14).
ach model to docetaxel. Total number of tumors (n) and passage are

istance to docetaxel in the basal-like IDB-01 and IDB-02. Each line
tive tumor of origin. Ps, passage treated with docetaxel. Red circles

t after acquisition of resistance to taxanes. Each line represents one
passages, respectively, in the absence of docetaxel.
expressed between IDB-01R and IDB-01S tumors. Each square rep-

ponse in 166 patients with basal-like breast cancer (Hatzis et al.,
R) or residual disease (RD). Mean values, box and whiskers (min to
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Figure 3. The CD49f+ Population Is Enriched after Acquisition of Resistance to Docetaxel
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t test p values are shown.
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See also Figures S3 and S4.
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Figure 4. CD49f Expression Increases in Residual Disease of Most TNBC PDX Tumors after Treatment with Docetaxel, but Not on
Resistant Tumors
(A) Scheme of short-term docetaxel treatment and CD49f mRNA expression levels in sensitive tumors from IDB-01S and IDB-02S
after short-term treatment with docetaxel (DTX) and in untreated controls (CT). Each dot represents one tumor. *0.01 < p < 0.05; **0.001 <
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p < 0.05; **0.001 < p < 0.01.
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complete response (non-pCR) after chemotherapy (Fig-

ure 3C). UsingGOBO, theGene expression-basedOutcome

for Breast cancer Online tool (Ringner et al., 2011), high

expression levels of EpCAM and CD49f combined

predicted a reduction in distal metastasis-free survival in

basal-like tumors (Figure S3F). Associations with poor over-

all survival were obtained for CD49f, but not EpCAM, in

other ER-negative or basal-like tumor samples after chemo-

therapy treatment (Clarke et al., 2013; Desmedt et al.,

2011) (Figures 3D, S3G, and S3H). These results demon-

strate that, whereas CD44+ CD24– and ALDH activity are

not altered, the percentage of the CD49f+ population

significantly increases during the acquisition of resistance

to docetaxel in basal-like breast cancer.

A Chemoresistant CD49f+ Population Is Present in

Most TNBC Tumors

We hypothesized that a chemoresistant CD49f+ popula-

tion is present in the original sensitive tumors. To test

this hypothesis we analyzed CD49f mRNA expression in

IDB-01S and IDB-02S tumors after two to three doses of do-

cetaxel treatment when tumors were shrinking, and found

a significant increase in CD49fmRNA expression in the re-

sidual disease of both PDX tumors (Figure 4A). Next, we

evaluated by flow cytometry the percentage of cells ex-

pressing CD49f in residual disease and found that the fre-

quency of CD49f+ cells in residual disease of IDB-01S after

docetaxel treatment increases by 20%; these levels are com-

parable with those of resistant IDB-01R tumors, indicating

that the surviving population is enriched in CD49f+ cells

(Figure 4B). Importantly, in IDB-01R tumors that regained

sensitivity to taxanes after growing in the absence of doce-

taxel (passage 8), the frequency of the CD49f+ population

decreases again to basal levels, similar to those found in

sensitive tumors of origin (Figure 4B).

To evaluate whether a chemoresistant CD49f+ popula-

tion could be found in other TNBC tumors, we analyzed

CD49f expression after short-term in vivo treatment with

docetaxel in 12 additional TNBC PDX tumors derived

from patient samples (Bruna et al., 2016; DeRose et al.,

2011). Four of these PDX tumorswere resistant to docetaxel

(no differences in tumor growth after docetaxel treatment),

and eight showed different grades of sensitivity to the drug

(tumors either shrank or showed tumor growth stabiliza-

tion after two to four doses of docetaxel). After docetaxel

treatment, an increase in CD49f mRNA expression levels
(C and D) Docetaxel-sensitive tumors (C) and docetaxel-resistant tum
with docetaxel (20 mg/kg, arrows) and corresponding controls relative
****p < 0.0001. Bottom panels: CD49f mRNA expression levels in PDX
controls. Each dot represents one tumor. *0.01 < p < 0.05; **0.001 <
(A–D) Mean values, SEM, and t test p values are shown in all cases.
See also Figure S5.
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was observed in residual disease of five out of the eight

TNBC-sensitive tumors treated, whereas in resistant tumors

CD49f expression remained unaltered (Figures 4C, 4D,

and S5A). No changes in the expression of the most

common partners of CD49f, CD29 (ITGB1) and CD104

(ITGB4), were observed between sensitive, resistant and

residual disease in TNBC tumors (Figure S5B-D). The in-

crease in CD49f expression in residual tumors suggests

that CD49f+ chemoresistant cells are present in doce-

taxel-sensitive tumors and get enriched in residual disease.

In addition, we analyzed CD49fmRNA expression in five

independent TNBC cell lines after 72 h of treatment with

increasing concentrations of docetaxel. Different cell lines

showed different grades of sensitivity to taxanes but, in

four out of the five cell lines tested, a significant increase

in CD49f mRNA expression was found in cells that survive

docetaxel treatment compared with the untreated ones

(Figure 5A). No changes inCD49f expressionwere observed

at shorter time points with negligible cell death, suggesting

that docetaxel does not induce CD49f expression and that

the observed increase in residual disease, most probably

represents the survival of a pre-existing CD49f+ population

(Figure 5B). Higher levels of CD49f mRNA after paclitaxel

treatmentwere also observed in some cell lines (Figure S5E).

No changes in docetaxel sensitivity were observed inMDA-

MB-436 cells upon stable reduction of CD49f expression

with two independent short hairpin RNA constructs, ruling

out a functional role for CD49f itself in chemoresistance of

these cells (Figures 5C–5E and S5F).

Together these results demonstrate that higher expres-

sion of CD49f was observed in residual disease after doce-

taxel treatment for most TNBC-sensitive models (seven

out of ten PDX models and four out of five cell lines), sug-

gesting that despite the heterogeneity of the TNBC subtype

a chemoresistant CD49f+ population is present in most

TNBC.

CD49f+/hi Cells Show Enhanced Tumor-Initiating

Ability and Resistance to Docetaxel

Next, we asked whether chemoresistant CD49f+ cells

showed a higher tumor-initiating potential than CD49f�
cells and could be responsible for tumor recurrence. Using

fluorescence-activated cell sorting (FACS), we sorted the

higher and lower quartile of tumor cells based on CD49f

expression fromIDB-01S and IDB-02S tumors and function-

ally tested their tumor-initiating potential (Figure 6A).
ors (D). Top panels: tumor size of the indicated PDX tumors treated
to the size at the first day of treatment. n = total number of tumors.
tumors after short-term treatment with docetaxel and in untreated
p < 0.01; ***0.001 < p < 0.0001.
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Indeed, only CD49f+/hi cells, but not the CD49f� in

the IDB-01S model, were able to give rise to tumors when

re-implanted in mice (Figure 6B). Tumors derived from

the IDB-01S-CD49f+/hi cells contained a more abundant

CD49f+ population, but also CD49f– cells demonstrating

that the tumor-initiating CD49f+/hi cells were able to give

rise to non-TICs CD49f� cells (Figure 6C). Docetaxel atten-

uated growth in tumors derived from IDB-01S-CD49f+/hi

cells, but tumors were still palpable after ten doses of doce-

taxel, in contrast to sensitive tumors of origin IDB-01S that

were not detectable after four doses (Figure 6D). Thus, IDB-

01S-CD49f+/hi derived tumors are more resistant to doce-

taxel than the original IDB-01S tumors.

In IDB-02, where tumors were partially sensitive to

docetaxel and contained a higher proportion of CD49f+

cells, bothCD49f+/hi andCD49f� cells gave rise to tumors.

However, limiting dilution assays and extreme limiting

dilution analyses (ELDA) revealed that the CD49f+/hi pop-

ulation showed a 5-fold increase in tumor-initiating ability

compared with the CD49f� cells (Figure 6E). In addition,

the CD49f+/hi cells gave rise to tumors with shorter

latency than CD49f� cells (Figure 6F). CD49f+ cells

were more abundant in CD49f+/hi than in tumors derived

from CD49f�, but tumors from both groups contained

CD49f+ and CD49f� cells (Figure 6G), demonstrating that

CD49f� cells can also give rise to CD49f+ cells. Again,

IDB-02S-CD49f�/lo-derived tumors were more sensitive

to docetaxel than the ones derived from IDB-02S-CD49f+

cells (Figure 6H).

Unsupervised gene expression profiling of FACS-sorted

CD49f+/hi and CD49f� cells from IDB-01S and -01R, us-

ing 105 breast cancer-selected genes, revealed twomain clus-

ters which broadly represents the CD49f+ and CD49f� pop-

ulations (Figures 6I and S6A). Compared with CD49f� cells,

CD49f+ cells showed downregulation of keratins, claudins

and CDH3, and upregulation of SFRP1, MIA and prolifera-

tion-related genes (UBE2C, CDC6 and CDC20) (Figure 6I).

Further gene expression analyses revealed significant tran-

scriptome differences between CD49f+/hi cells from resis-

tant and sensitive tumors, including enhanced decrease in

tight junctionproteins, claudins, andCDH3,whichmaysug-

gest amore claudin-lowphenotype (Prat et al., 2010).Down-

regulation of tumor suppressors (e.g., PTEN and RAB25) is

also observed in CD49f+ cells from resistant tumors (Fig-

ure S6A). Interestingly, CD49f+/hi cells showed increased

proliferation by gene expression analysis thanCD49f� cells,

especially within sensitive tumors (Figure S6B). Among the
(C and D) CD49f mRNA expression levels (C) and CD49f protein expressi
independent shCD49f knockdown constructs and control vector (pGIP
(E) Percentage of surviving shCD49f-infected and control pGIPZ-infec
RT-PCR Determinations were done in triplicate and means are used in
SEM, and t test p values for the higher concentrations are shown. Se
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two CD49f+ signatures, the IDB-01R/CD49f+ signature was

found to predict residual disease following anthracycline/

taxane-based therapy in breast tumors (GSE25066), concor-

dant with our preclinical observations (Figure S6C). On

the other hand, the IDB-01S/CD49f+ signature was found

to predict pathological complete response (pCR) following

anthracycline/taxane-based therapy, likely due to the large

difference in proliferation between CD49f+ and CD49f�
cells in IDB-01S tumors (Figures S6B and S6C) (Hatzis et al.,

2011). The IDB-01S/CD49f+ signature was associated with

lower recurrence-free survival in an additional dataset

of breast cancer patients (Prat et al., 2010) (Figure S6D).

Together, these results demonstrate that sensitive tumors

of origin contain a tumorigenic and docetaxel-resistant

CD49f+ population that changes and expands during the

acquisition of taxane resistance; whereas in the absence of

the drug, the CD49f+ chemoresistant population shrinks

and taxane sensitivity is restored.
DISCUSSION

Patient-derived xenograft (PDX)models have emerged as an

important intermediate toolbetweenbasic researchandclin-

ical trials to expedite the translation of basic research find-

ings into effective therapies for patients. We have generated

a panel of PDX models that recapitulates the heterogeneity

of human breast tumors. Initial collections of breast PDX

were reported to remain phenotypically identical to human

tumors during serial passages (DeRose et al., 2011; Zhang

et al., 2013). However, in agreementwith our findings, there

is increasing evidence that tumors in PDX are not ‘‘static’’

and can evolve, as observed in patients (Eirew et al., 2015).

Our PDX models constitute a unique tool to investigate

resistance in cancer as they mimic clinical responses:

TNBC tumors are more sensitive to chemotherapy than

the luminal tumors, confirming previous clinical results

(Berry et al., 2006; Colleoni et al., 2004; Guarneri et al.,

2006;Martin et al., 2011), and even initially sensitive tumors

develop resistance upon continuous exposure to taxanes.

Both basal-like tumors (IDB-01 and IDB-02) derived from

metastatic samples that were heavily exposed to multiple

treatments including taxanes showed minimal clinical

response. Strikingly, sensitivity to docetaxel was restored

upon xenografting and was retained for months. Moreover,

we observed that in PDX tumors with acquired resistance,

sensitivity is partially restored when maintained in the
on measured by flow cytometry (D) in cells stably infected with two
Z).
ted cells treated with indicated doses of docetaxel for 72 hr.
the calculations. Mean values of three independent experiments,

e also Figure S5.
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(legend continued on next page)
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absence of the drug. This regain of sensitivity, the so-called

‘‘drug holiday,’’ has been described for targeted therapies in

melanoma (Das Thakur et al., 2013; Sun et al., 2014). We

now demonstrate that the same is true for cytotoxics such

as docetaxel, with important implications for clinical deci-

sions and drug scheduling, as resistant metastatic disease

may benefit from intermittent docetaxel treatment.

Our data demonstrate that a pre-existing and chemore-

sistant CD49f+ subpopulation is present in most sensitive

TNBC, expands during long-term therapy, and has the abil-

ity to generate novel tumors contributing to recurrence and

acquisition of chemoresistance (as shown in the graphical

abstract), and importantly that this population shrinks

again in the absence of taxanes, restoring drug sensitivity.

Previous reports have also shown the increased tumor-initi-

ating ability of CD49f+ cells in breast and other solid tu-

mors (Haraguchi et al., 2013; Lo et al., 2012; Meyer et al.,

2010; Vassilopoulos et al., 2014). These findings do not

imply that the CD49f+ cells are the CSC in TNBC, but

demonstrate that the CD49f+ population is associated

with taxane resistance.

Aiming to further characterize the chemoresistant

CD49f+ population, an unbiased approach was under-

taken. Gene expression analysis revealed important differ-

ences, not only between CD49f+ and CD49f� cells, but

also between CD49f+ cells from sensitive and resistant tu-

mors. These changes may suggest that the chemoresistant

CD49f+ population has expanded during the exposure to

docetaxel, and can provide novel therapeutic targets for

the metastatic chemoresistant basal-like tumors. Given

the heterogeneity of the TNBC subtype, the significant in-

crease in CD49f expression observed in residual or stabi-

lized disease of most TNBC cell lines and PDX models is

remarkable and indicates that modulation of CD49f posi-

tivity as a biomarker of taxane resistance is not a peculiarity

of a single PDX model but a general event in TNBC, which

can be exploited for clinical benefit.

These findings can be clinically validated in the neoadju-

vant setting, evaluating whether an enrichment of the

CD49f population is observed in residual disease following

taxane-based chemotherapy. However, as the rates of pCR

in TNBC are high (30%–40%), a dynamic study of early

changes in the CD49f population after the first cycles of
(C and G) Frequency of CD49f+ cells in tumors derived from indicated
**0.001 < p < 0.01; ***0.001 < p < 0.0001.
(D and H) Kinetics of tumor growth during docetaxel treatment in tumo
are shown. **0.001 < p < 0.01; ****p <0.0001.
(F) Latency of tumors derived from the injection of the indicated numb
SEM and significant t test p values are shown. **0.001 < p < 0.01.
(I) Unsupervised analysis of all CD49f sorted samples from IDB-01S a
sample and tumor are shown below the array tree. Each square repres
See also Figure S6.
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taxane treatment and occurrence of pCR could be a

better approach. The clinical utility of the biomarker

could be tested in a prospective clinical trial in the neoadju-

vant setting where patients are randomized based on the

biomarker modulation to change treatment or continue

with taxane-based therapy. Improvement of clinical out-

comes (pCR rates or survival) should be the final objective.

The effect of novel drugs can be evaluated in the subgroup

of chemoresistant CD49f-enriched TNBC. In clinical series

the presence of CD49f+ in breast cancer is associated with

a poor clinical outcome (Friedrichs et al., 1995; Ye et al.,

2015). Moreover, within several CSC markers (CD44,

CD24, ALDH1A3, and CD49f) analyzed by IHC in breast

cancer samples, only CD49f retained prognostic value in a

multivariate analyses in ER– disease (Ali et al., 2011).Our re-

sults provide a functional rationale for the poor outcome

associated with CD49f expression in hormone receptor-

negative breast cancer. Further studies will reveal whether

this population can be manipulated in order to unveil the

ever-elusive status of tumor drug resistance and recurrence.
EXPERIMENTAL PROCEDURES

Patient Characteristics and Generation of PDX
IDB PDX were generated by orthotopic transplantation of primary

tumor pieces obtained directly after surgery or cancer cells isolated

from pleural effusions and transplanted into the fat pad of immu-

nodeficientmice, as described previously (DeRose et al., 2011). The

clinical characteristics from original patient samples, the number

and strain of recipient mice, and the outcome of the implant are

indicated in Table S1 (IDB-01-05models). All experimental proced-

ures were performed according to Spanish regulations. Informed

consent was obtained from all subjects and the study received

approval from the institutional Ethics Committee. Additional

models were generated following similar procedures (Bruna et al.,

2016). All research involving animals was performed at the IDI-

BELL animal facility in compliance with protocols approved by

the IDIBELL Committee on Animal Care and following national

and European Union regulations.

Breast Cancer Cell Isolation, Flow Cytometry, and

Sorting
Single cells were isolated from tumors as described previously

(Smalley, 2010). Single cells were resuspended and blocked with
cells. Mean values, SEM, and significant t test p values are shown.

rs derived from indicated cells. Mean values, SEM, and t test p values

er of IDB-02S-CD49f+/hi and 02S-CD49f� tumor cells. Mean values,

nd -01R tumors using 105 breast cancer-related genes. The type of
ents the relative transcript abundance.



PBS 2% fetal bovine serum (FBS), 2 mM EDTA, and immunoglob-

ulin G blocking reagent for 10 min on ice. Then they were labeled

with antibodies against CD24-PE (555428), CD44-APC (559942),

EpCAM-FITC (347197), CD10-PECy5 (555376), and CD49f-A647

(562473) (all from BD Pharmingen), CD133/1-PE (130-098-826

fromMiltenyi Biotec), andCD49f-APC (FAB13501A fromR&DSys-

tems). Mouse cells were excluded in flow cytometry using H2Kd-

PECy7 (116622 from BioLegend). Gating was based on ‘‘Fluores-

cence Minus One’’ controls. Single cells were assessed for their

ALDH activity using the ALDEFLUOR assay system (01700 from

STEMCELL Technologies) following the manufacturer’s proced-

ures. A population of 10,000 living cells was captured in all FACS

experiments. FACS analysis and sorting was performed using Gal-

lios and MoFlo (Beckman Coulter) flow cytometers, respectively.

Data was analyzed using the FlowJo software (see Figure S4).

Therapeutic and Limiting Dilution Assays
Docetaxel (Hospira/Actavis, 20 mg/kg) was administered intraperi-

toneally once per week (unless reported otherwise), followed 24 hr

later by Fortecortin (Dexametasona, 0.132 mg/kg, Merck). The

treatment scheme of resistant variants generation is shown in Fig-

ure S3. For orthotopic ELDA, isolated tumor cells were mixed 1:1

with Matrigel Basement Membrane (BD Biosciences) and ortho-

topically implanted in the inguinal mammary gland of non-obese

diabetic/severe combined immunodeficiency females. Tumor

development was monitored once per week for a maximum of

25 weeks. In all assays the tumor-initiating potential was defined

as the ability to formpalpable, growing tumors ofR2mmdiameter.

Culture and Treatment of Human Breast Cancer Cells
All cell lines were purchased from the American Type Culture

Collection (Rockville, MD), except for UACC3199 which was ob-

tained from the Arizona Cancer Center (Tucson, AZ). All cells but

HCC1143, which was cultured in RPMI 1640, were maintained

in DMEM high glucose, containing 10% FBS (Gibco), L-glutamate

(Gibco), and penicillin/streptomycin (PAA Laboratories) at 37�C in

5% CO2. At 60%–70% confluence the indicated concentrations of

docetaxel or paclitaxel were added. Cells were collected at the indi-

cated time points and counted with trypan blue to exclude dead

ones. All cell lines were routinely tested for mycoplasma, and

were shown to be free of contamination.

Gene Expression-Based Analyses
A minimum of �100 ng of total RNA was used to measure the

expression of 105 breast cancer-related genes and five house-keep-

ing genes using the nCounter platform (Nanostring Technologies).

Data was log base 2 transformed and normalized using five house-

keeping genes (ACTB, MRPL19, PSMC4, RPLP0 and SF3A1). The list

of 105 genes includes genes from the following three signatures:

PAM50 intrinsic subtype predictor (n = 50) (Parker et al., 2009),

claudin-low subtype predictor (n = 43) (Prat et al., 2010),

13-VEGF/hypoxia signature (n = 13) (Hu et al., 2009), and eight in-

dividual genes that have been found to play an important role in

breast cancer (e.g., CD24). Raw gene expression data and

signatures can be found in Table S2. All tumors were assigned

to an intrinsic molecular subtype of breast cancer (luminal A,

luminal B, HER2-enriched, basal-like, and claudin-low) and the
normal-like group using the previously reported PAM50 subtype

and the claudin-low subtype predictors (Parker et al., 2009; Prat

et al., 2010, 2015b).

Gene Expression-Based Signatures
Genes differentially expressed between the two groups were iden-

tified using a two-class unpaired Significance Analysis of Microar-

rays (SAM) (Tusher et al., 2001) and a false discovery rate of <5%.

The final signature of up- and/or downregulated genes was then

summarized as a single ‘‘enrichment/activity score’’ bymultiplying

the SAM score of each gene by its expression value in the tested

sample and then summing all the values of each sample. Each

signature was evaluated in GSE25066, a microarray-based dataset

of patients treated with neoadjuvant anthracycline/taxane-based

chemotherapy (Hatzis et al., 2011) and the Perou-extended dataset

GSE18229 (Prat et al., 2010). This microarray dataset was normal-

ized as described previously (Prat et al., 2015a). Raw data can be

found in Table S2.

Statistical Analyses
All data are expressed as mean ± SEM. Statistical comparison was

performed by Student’s t test using GraphPad Prism version 5.04.

p% 0.05 was considered statistically significant. The statistical sig-

nificance of difference between groups is expressed by asterisks:

*0.01 < p < 0.05; **0.001 < p < 0.01; ***0.001 < p < 0.0001;

****p < 0.0001.
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