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Abstract: Alzheimer’s disease (AD) is associated with modifications in cerebral blood perfusion
and autoregulation. Hence, neurovascular coupling (NC) alteration could become a biomarker of
the disease. NC might be assessed in clinical settings through multimodal electroencephalography
(EEG) and functional near-infrared spectroscopy (fNIRS). Multimodal EEG-fNIRS was recorded
at rest in an ambulatory setting to assess NC and to evaluate the sensitivity and specificity of the
methodology to AD. Global NC was evaluated with a general linear model (GLM) framework by
regressing whole-head EEG power envelopes in three frequency bands (theta, alpha and beta) with
average fNIRS oxy- and deoxy-hemoglobin concentration changes in the frontal and prefrontal
cortices. NC was lower in AD compared to healthy controls (HC) with significant differences in
the linkage of theta and alpha bands with oxy- and deoxy-hemoglobin, respectively (p = 0.028 and
p = 0.020). Importantly, standalone EEG and fNIRS metrics did not highlight differences between AD
and HC. Furthermore, a multivariate data-driven analysis of NC between the three frequency bands
and the two hemoglobin species delivered a cross-validated classification performance of AD and
HC with an Area Under the Curve, AUC = 0.905 (p = 2.17 × 10−5). The findings demonstrate that
EEG-fNIRS may indeed represent a powerful ecological tool for clinical evaluation of NC and early
identification of AD.

Keywords: Alzheimer’s disease (AD); electroencephalography (EEG); functional near-infrared spec-
troscopy (fNIRS); multimodal neuroimaging; neurovascular coupling (NC); multivariate analysis

1. Introduction

Alzheimer’s disease (AD) is a form of dementia that usually begins with slight memory
failures and slowly progresses into evident cognitive impairment [1–3]. AD is the cause
of about 70% of cases of elderly dementia [4]. The underlying mechanisms of the clinical
symptoms of AD are poorly understood [5]. However, AD is known to be associated
with extracellular amyloid beta deposits [6,7], tau protein abnormalities [8,9] and neuronal
loss [10,11]. Moreover, AD has been recently linked to early neurovascular dysfunction,
which clearly contributes to disease pathogenesis [12–14]. In this perspective, probing
functional hyperemia, i.e., neurovascular coupling (NC), could provide relevant diagnostic
and prognostic neuromarkers of the disease [15–17].

Neurovascular coupling is a physiological mechanism that refers to the causal relation-
ship between local neural activity and subsequent increases in cerebral blood flow (CBF)
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through cerebrovascular reactivity (CVR) [18–21]. NC ensures a rapid augmentation in
CBF and oxygen delivery to activated brain structures. The increase in oxygenated blood
delivery overcompensates the rise in the local cerebral metabolic rate of oxygen (CMRO2),
effectively, and paradoxically, reducing the regional oxygen extraction fraction (OEF) [22].
This decrease in OEF can be probed by functional neuroimaging technologies by assessing
the local increase in oxy-hemoglobin (HbO) coupled with a regional decrease in deoxy-
hemoglobin (HbR). The NC mechanism is commonly exploited in functional magnetic
resonance imaging (fMRI) to infer brain activity from the hemodynamic signal [23,24]. In
fMRI, functional hyperemia induces an increase in signal intensity driven by a reduction of
the paramagnetic HbR and it is generally referred to as the blood oxygen level-dependent
(BOLD) effect [25].

Functional near-infrared spectroscopy (fNIRS) is an ecological alternative to fMRI
that has become a useful tool for brain activity monitoring due to its portability, low
invasiveness and limited cost [26,27]. fNIRS is a scalp-based optical technology that uses
light injection and detection points to probe brain tissues. fNIRS relies on multiwavelength
differential measurements of the backscattered light which is sensitive to changes in the
concentration of the main oscillating chromophores in the near-infrared (NIR) spectral
range (wavelengths between 650 and 900 nm), namely HbO and HbR. This characteristic,
together with the highly diffusive properties and low absorption of biological tissues in
NIR, allows us to probe the cortex and to measure changes in the concentration of HbO and
HbR directly from the scalp. In recent years, fNIRS has become a common brain imaging
method for studying different populations and experimental conditions [28–34].

Functional neuroimaging technologies, such as fMRI and fNIRS, provide a powerful
tool to study brain activity. However, since neuronal activation is inferred indirectly from
a hemodynamic signal, they require a priori assumptions about its temporal character-
istics [24]. In general, neuronal activity is assumed to perfectly match the stimulation
which, for this reason, is performed through temporally structured tasks [35]. Moreover,
the hemodynamic shape in response to a short stimulation (i.e., the hemodynamic response
function, HRF) is assumed to be known, or only slight modifications are allowed, effectively
providing stringent constraints on the shape of NC [36]. An alternative approach is to
use functional neuroimaging technologies to directly assess the hemodynamic response
function and the NC [37–39]. In this case, a priori assumptions about the duration of the
underlying neuronal activity are also required; this implies employing temporally paced
stimulations. Indeed, multimodal approaches are ideal to probe brain activity and NC
with fewer a priori assumptions. Technologies that measure electrical brain activity, such
as electroencephalography (EEG) [40], and magnetoencephalography (MEG) [41], can be
used together with functional neuroimaging technologies, such as fMRI and fNIRS, to
concurrently measure electrical and hemodynamic brain fluctuations [42–44] and deliver
NC estimates in the absence of structured tasks, for example, during a resting state [45].

To this end, combining fNIRS with synchronous EEG is gaining increasing interest
in research and clinical settings [46]. Because of the absence of electro-optical interference
with these two scalp-located technologies, it is simple to integrate fNIRS with EEG. The
simplicity of the hardware integration also encourages the development of unified ana-
lytical frameworks [19,47,48]. EEG is a well-established technique in neurological and
neuroimaging settings suitable for capturing the temporal dynamics of brain electrical
activity through measurements of voltages generated by macroscopic currents within
neuronal ensembles [49]. EEG systems are widely used for research and clinical purposes
to monitor and diagnose brain function and dysfunction [50].

EEG-fNIRS multimodal systems have already been employed to identify functional
modifications associated with AD. For example, Li et al. recently evaluated EEG-based
dynamic cortical connectivity alterations associated with AD and used fNIRS-based spa-
tial constraints as priors for EEG source localization [51]. Moreover, Cicalese and col-
leagues [52] used a hybrid EEG-fNIRS system to perform a data-driven identification of
AD based on EEG and fNIRS features evaluated on recordings performed during a random
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digit encoding retrieval task. They obtained sufficiently good classification performances
(around 80% in a four-class classification) which were superior to those obtained employ-
ing standalone modalities. Notably, while they did combine EEG and fNIRS features in a
multivariate data-driven analysis, they did not evaluate cross-modality metrics related to
NC. In fact, although EEG-fNIRS systems have been employed to extract cross-modality
metrics of NC in different clinical populations, such as stroke patients [53], neonates [54],
patients with acute brain injury [55] and in the assessment of physiological aging [56], to
our knowledge, such multimodal methodology was not applied for the evaluation of NC
and its modification in AD.

In this study, a comparison of resting-state EEG-fNIRS NC between AD and healthy
controls (HC) was performed. The extent of NC was assessed by correlating whole-head
EEG power envelopes in three frequency bands (theta (θ), alpha (α) and beta (β)) with
changes in HbO and HbR, assessed through fNIRS in the frontal and prefrontal cortices
(six NC metrics). The coupling between electrical and hemodynamic brain activity was
evaluated employing a general linear model (GLM) [57–60]. The GLM is a standard
approach to infer brain activity from functional neuroimaging technologies such as fNIRS
and fMRI, and it is a generalization of univariate regression. In this context, GLM allowed
us to concurrently evaluate the coupling between multiple EEG frequency bands and
hemoglobin species. Finally, a multivariate data-driven (i.e., machine learning) analysis of
the six global NC metrics was performed to demonstrate the statistical robustness of the
findings and to deliver an approach that could support AD diagnosis in clinical settings.

2. Materials and Methods
2.1. Participants

Thirty-five participants were recruited for the study. The population was composed of
17 AD patients and 18 healthy controls (HC, refer to Table 1 for demographic information).
The AD patients had a diagnosis of mild probable Alzheimer’s disease, as defined by the
Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5). Patients with
moderate cognitive impairment (Mini Mental State Examination, MMSE, < 20/30) [61],
vascular dementia, behavioral or psychiatric disorders, brain lesions or with a history of
stroke or traumatic brain injury were excluded.

Table 1. Demographic information of Alzheimer’s disease (AD) and healthy controls (HC) involved
in the study.

AD HC p-Value

Gender
(M–F) 9–8 9–9 /

Age (years)
(mean ± SD) 75.1 ± 7.1 71.4 ± 7.8 0.1354

Education (years)
(mean ± SD) 9.6 ± 4.5 10.9 ± 4.3 0.3719

Mini Mental State
Examination (MMSE)

score (mean ± SD)
22.9 ± 3.2 27.5 ± 2.2 4.05 × 10−6

2.2. Experimental Design

Resting-state recordings of 5 min in duration were performed after the administration
of the MMSE. The patients sat comfortably on a chair in front of a doctor, and they were
asked to stay as still as possible with their eyes closed and to not think anything specific
during the recordings.

2.3. EEG Instrumentation and Measurements

A high-density, 128-channel, full-head EEG system (Electrical Geodesic Inc., Eugene,
OR, USA, EEG System Net 300, Figure 1a) was used to record brain electrical activity.
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Skin/electrode impedance was measured before recordings and kept below 50 kΩ. Notably,
50 kΩ is considered an impedance within the optimal range for the EEG system employed.
Although a sensor-to-scalp impedance below 5 kΩ is generally required for EEG recordings,
the HydroCel Geodesics Sensor Net provides excellent signals with impedances up to
50–100 kΩ thanks to the high input impedance amplifiers [62]. EEG data were sampled at
250 Hz.

2.4. FNIRS Instrumentation and Measurements

A frequency domain near-infrared spectroscopy (NIRS) system (Imagent, ISS Inc.,
Champaign, IL, USA) was used to perform the optical measurements. The system was
made of 32 laser diodes sources, 16 emitting at 690 nm wavelength and 16 emitting
at 830 nm wavelength, and 4 photomultiplier tube (PMT) detectors. The lasers were
modulated at 110 MHz, whereas the PMTs were modulated at 110 MHz and 5 KHz for
heterodyne detection of the modulated light. A time multiplexing scheme was used on the
sources to avoid their crosstalk. The measurement sampling rate (accounting for source
time-multiplexing) was set at 10.42 Hz. The light intensity delivered to the scalp was below
4 mW/cm2, within the ANSI standard safe limits. NIR light was carried to the scalp using
optic fibers with a 400 µm core (2 fibers reached each light injection location delivering
light from one laser diode emitting at 830 nm wavelength and one laser diode emitting
at 690 nm wavelength) and from the scalp back to the PMTs using fiber bundles with a
diameter of 3 mm.

The fibers were located on the frontal and prefrontal areas and were held in place with
a home-made optical patch located on top of the high-density EEG cap (Figure 1a). The fiber
heads reached the scalp using the space among the electrodes of the EEG cap, that were
also employed for positioning of the optical array with reference to the 10/20 system [63]
(Figure 1b). Notably, the need to develop a home-made optical patch was driven by the
necessity to locate fNIRS optodes in between EEG electrodes that were arranged in a
high-density configuration and that were around 1 cm thick. These mechanical constraints
led us to develop a home-made patch that was able to hold the optodes on top of the EEG
cap while allowing them to reach the scalp surface for a correct optode-to-scalp coupling
using the small space available among EEG electrodes. The optical array allowed us to
perform fNIRS measurements from 16 channels at source–detector distances of 35 mm (long
separation channels), probing the brain cortex (Figure 1b,c), and from 4 short separation
channels at a 15 mm interoptode distance (Figure 1b). These short separation channels
were used to selectively measure hemoglobin concentration changes in the scalp and to
correct for their contamination in the long separation channels [64,65].

Slightly longer interoptode distances were employed compared to standard prac-
tices for both long and short separation channels (35 mm vs. ~30 mm and 15 mm vs.
~10 mm) [64]. These interoptode distances were preferred because of the age range and the
disease of the population examined. Brain atrophy associated with aging and AD tends to
increase the distance of the cortical surface from the scalp. Moreover, only 4 short sepa-
ration channels were used because of the limited number of optodes available. However,
because of the not exceedingly large area covered by the optical array, the average distance
between the centroid of the closest short separation channel and the centroid of each long
separation channel was 18 mm, which is considered a good compromise [66].
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Figure 1. (a) Electroencephalography and functional near-infrared spectroscopy (EEG-fNIRS) probes located on a partici-
pant’s head. The fNIRS fiber heads reached the scalp using the spaces between the electrodes of the EEG cap. (b) EEG-fNIRS
probes overlaid on a template head. The high-density (128-channel) EEG layout was arranged in agreement with the 10/20
system and the fNIRS probes were positioned with reference to the EEG sensors. (c) Channels’ average sensitivity map
of the fNIRS measurements. The sensitivity map was computed using the finite element method to solve the diffusion
equation [67] and it is displayed up to an attenuation of 60 dB from its maximum value.

2.5. EEG Pre-Processing

The flowchart of EEG pre-processing is reported in Figure 2a. EEG data were visu-
ally inspected to reject saturated or corrupted epochs. Data were then band-pass filtered
between 1 and 80 Hz and notch-filtered at 50 Hz (zero-lag 2nd order Butterworth digital
filters). Furthermore, a semiautomatic procedure based on independent component anal-
ysis (ICA) was applied to identify and to remove cardiac and ocular artifacts, as well as
signals coming from muscles [68,69]. The filtered and artifact-corrected EEG signals were
decomposed in three frequency bands of interest (i.e., theta: 3.5–8.2 Hz, alpha: 7.4–13 Hz
and beta: 13–30 Hz) and the power temporal envelopes were computed as the absolute
values of their Hilbert transform.
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Figure 2. (a) Pre-processing of the EEG involving band-pass filtering, independent component analysis (ICA) motion
correction and power envelope computation. The end results of the EEG pre-processing were artifact-corrected EEG power
envelopes for the 128 channels in the three frequency bands of interest (theta, alpha and beta). (b) Pre-processing of the
fNIRS involving Optical Densities (OD) computation, wavelet-based motion correction and oxy-hemoglobin (HbO) and
deoxy-hemoglobin (HbR) computation. The end results of the fNIRS pre-processing were artifact-corrected HbO and HbR
changes in both the long and the short separation channels.

2.6. FNIRS Pre-Processing

The flowchart of fNIRS pre-processing is reported in Figure 2b. The raw continuous-
wave components of the acquired signals were converted into optical densities (ODs)
according to the equation:

OD = − ln
(

I(t)
Im

)
(1)
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where I(t) is the time dependence of the recorded signal intensity and Im is its average value
during rest. Furthermore, motion artifacts were corrected by applying a wavelet-based
procedure [70] and the ODs were band-pass filtered with a zero-lag, 4th order Butterworth
digital filter with cut-off frequencies of 0.01 Hz and 0.4 Hz. These motion correction and
filtering approaches allowed us to highlight the hemodynamic components of the acquired
optical signal. Notably, the recordings were performed standing still and at rest and they
were poorly contaminated by motion-related signals. Thus, the use of a motion correction
algorithm that does not distort the data in the presence of a low level of motion noise was
preferred (kurtosis-based wavelet filtering) [70]. After visual inspection of the filtered and
motion-corrected ODs, changes in the concentration of HbO and HbR were derived for the
rest period from each channel based on the modified Lambert–Beer law [71]:[

HbO
HbR

]
=

1
ρ

[
εHbO−830nm·DPF830nm εHbR−830nm·DPF830nm
εHbO−690nm·DPF690nm εHbR−830nm·DPF690nm

]−1

×
[

OD830nm
OD690nm

]
(2)

where ρ is the interoptode distance (either 35 mm or 15 mm), ε is the extinction coefficient
for each chromophore and wavelength and DPF is the differential pathlength factor for
each wavelength. The extinction coefficients were extracted from Zijlstra et al. [72], whereas
the DPFs [73], accounting not only for wavelength used but also for subject’s age, were
extracted from Scholkmann and Wolf [74].

2.7. Neurovascular Coupling Estimation

The algorithmic approach for NC estimation is reported in Figure 3. For each subject
and frequency band, EEG power timecourses were normalized (z-scored) and fed to a tem-
poral principal component analysis (PCA). This analysis provided temporally independent
timecourses (principal components, PCs) that were common to the different EEG channels
within each band. The first PC, i.e., the component that explained the largest amount of
signal variance, was retained for each frequency band. This analysis effectively provided
a global EEG signal for each frequency band which was not obtained through simple
arithmetic averaging among channels but through weighted averaging that accounted for
temporal correlation among the different channels. As the EEG signal is highly correlated
among channels due to volume conduction effects, this approach is intrinsically robust to
non-homogenous noise across channels.

The first PCs of the three EEG frequency bands were convolved with a canonical
HRF [24] to obtain a model of the expected hemoglobin concentration changes following
resting-state electrical brain activity. These three global signals were resampled (at 1 Hz)
and normalized (z-score) and then they were considered as independent variables of
the GLM. The normalized (z-score) and resampled (at 1 Hz) HbO and HbR changes in
the long separation fNIRS channels were employed as dependent variables. In order
to regress out the scalp contamination in the long separation channels, the normalized
hemoglobin changes in the four short separation fNIRS channels were also considered
as independent variables. The NC estimate was encoded in the β-weight, that, given
the normalization of the signals prior to the GLM, delivered a standardized regression
coefficient of each EEG power envelope association with the HbO and HbR changes for
each of the long separation fNIRS channels. Notice that, whereas the GLM has already
been used in EEG-fMRI studies [75,76], it is novel in the EEG-fNIRS investigation of brain
activity and NC.
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Figure 3. Algorithm for neurovascular coupling (NC) estimation from EEG-fNIRS recordings using a general linear model
(GLM) framework. The independent variables of the GLM were the expected hemodynamic responses (z-scored, 1 Hz
resampled) obtained from the convolution of the global EEG power envelopes with the canonical hemodynamic response
function (HRF). The global EEG power envelopes were obtained by selecting the 1st principal components (PCs) of bandwise
principal component analyses (PCAs). Control for scalp contamination was obtained by considering hemoglobin oscillations
in the short separation fNIRS channels as additional independent variables (z-scored, 1 Hz resampled). The dependent
variable was either HbO or HbR signal in each long separation fNIRS channel (z-scored, 1 Hz resampled). The analysis
provided standardized β-weights depicting the strength of association (NC) between bandwise global EEG power envelopes
and HbO and HbR in each long separation channel considered.

In order to prove the utility of the EEG-fNIRS multimodal approach and GLM for
studying the NC in AD, unimodal electrical and hemodynamic brain activities and their
changes with AD were investigated as well. In particular, the average EEG and fNIRS
powers were evaluated by measuring the mean value of the EEG power in the theta, alpha
and beta bands and the standard deviation in the HbO and HbR fNIRS timecourses.

2.8. Statistical Inference and Multivariate Data-Driven Analysis

The global NC of the three EEG frequency bands with HbO and HbR (6 metrics of NC
for each subject) were evaluated by computing the average of the GLM β-weights among
the fNIRS long separation channels.

The global electrical and hemodynamic brain activities were estimated by computing
the channels’ average EEG power in the theta, alpha and beta bands (3 metrics of electrical
brain activity for each subject) and the channels’ average fNIRS power (i.e., signal standard
deviation) for HbO and HbR timecourses (2 metrics of hemodynamic brain activity for
each subject).

In order to test the statistical significance of NC in AD and HC and test between-groups
differences, t-tests were performed [77].

Once univariate statistical significance was explored, in order to further corroborate
the results and to explore the clinical significance of the findings, a multivariate data-driven
analysis was implemented [78]. A multivariate regression analysis was performed in
the attempt to classify each subject as AD or HC based on EEG, fNIRS and NC metrics.
Since the classification was known, such an approach represented a classical problem of
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supervised learning in a machine learning framework [79]. Although several machine
learning approaches could be suitable for such a purpose, given the limited number of
independent features available and the exploratory nature of the implemented approach,
the procedural complexity was limited to the use of a simple linear regressor followed by an
output threshold selection. Moreover, the use of a linear regression avoided investigation
of the model hyperparameter space, which is compulsory if regularization approaches
or non-linear regressors are used (e.g., choosing the regularization parameter or the non-
linearity extent). The closed solution and the small number of effective degrees of freedom
of the linear regressor (equal to the number of the independent features) greatly reduced
the chance of overfitting [80].

In order to build and test the multivariate linear regression, a value of “1” and “0” was
attributed to AD and HC, respectively, and the model was trained on all subjects except
one and tested on the remaining subject in an iterative manner (i.e., using the leave-one-out
cross-validation (CV) scheme) [81,82]. The classification outcome was assessed through a
receiver operating characteristic (ROC) analysis of the out-of-training-sample outputs of
the iteratively trained regressor which, given the labeling value associated with AD and
HC, tended to provide larger values for the AD group. The framework was implemented
multiple times to estimate the capability of the procedure to separate AD from HC using
the 6 global EEG-fNIRS NCs, the 3 global EEG powers in the theta, alpha and beta bands
and the 2 global fNIRS powers for the HbO and HbR timecourses.

In order to investigate the effect of the EEG channel distribution on the global char-
acteristics of the NC metrics, the exact same multivariate data-driven analysis using NC
metrics was performed again, but selectively evaluating the EEG signals acquired with
half of the available electrodes, all located on the frontal and prefrontal brain areas, while
excluding the occipital ones.

Finally, in order to evaluate the performance of the proposed approach as a function
of practical variables of interest, such as EEG-fNIRS recording time and number of EEG
channels employed, the multivariate data-driven analysis was conducted multiple times
by changing either the temporal duration of the signals used (from 15 s to 300 s with
a 15 s step) or the number of channels employed (from 4 to 128 with a 4-channel step).
The different time windows were selected at the center of the recordings for each subject,
whereas the subsample of channels was randomly selected from the 128 channels covering
the whole head. When the 300 s window or the 128 channels were evaluated, the analyses
were equivalent to the original one where all the signals recorded were employed for NC
evaluation and AD vs. HC classification.

3. Results

Table 1 reports demographic information for AD and HC. Notably, AD and HC were
matched for gender, age and education. A lower MMSE score was identified in AD (t = 5.51,
df = 33, p = 4.05 × 10−6).

The first PCs of the EEG power envelopes explained an average 64% (SD = 13%),
68% (SD = 14%) and 69% (SD = 12%) of the variance in the theta, alpha and beta bands,
respectively.

Figure 4 shows the distributions of the GLM standardized β-weights for the long
separation fNIRS channels in the different subjects (reported with different colors) for the
three EEG frequency bands and HbO and HbR in AD and HC.
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Figure 4. Distributions of the GLM standardized β-weights for the fNIRS long separation channels depicting the linkage of
the 1st PCs of the three EEG power envelopes in theta (θ), alpha (α) and beta (β) bands with HbO and HbR changes in AD
and HC. The different colors represent different subjects.

Figure 5 reports the boxplots of the average GLM standardized β-weights (global
NCs) computed among the long separation fNIRS channels. Figure 5a reports the NC of
theta, alpha and beta bands with HbO for AD and HC, whereas Figure 5b reports the NC
of theta, alpha and beta bands with HbR for AD and HC.
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A statistically significant NC was obtained for HC in the coupling between theta band
and HbO (t = 2.12, df = 17, p = 0.049) and in the coupling between the alpha band and
HbR (t = 2.24, df = 17, p = 0.039). This link was lost in AD (p > 0.05). In fact, a statistically
significant decrease in global NC in AD with respect to HC was obtained for the coupling
between the theta band and HbO (t = −2.30, df = 33, p = 0.028) and for the alpha band and
HbR (t = −2.44, df = 33, p = 0.020). Notably, no NC was statistically above zero and no
significant increase in global NC was obtained for AD with respect to HC.

For comparison, Figure 6 reports the boxplots showing global metrics of electrical
and hemodynamic brain activity evaluated through standalone EEG and fNIRS. Figure 6a
reports the global EEG power in theta, alpha and beta bands for AD and HC. Figure 6b re-
ports the global HbO and HbR power for AD and HC. No statistically significant differences
were found between AD and HC for the metrics evaluated through unimodal recordings.
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Figure 6. Boxplots showing the EEG and fNIRS average power for AD and HC. (a) Global EEG power in theta (θ), alpha (α)
and beta (β) bands. (b) Global fNIRS power in HbO and HbR timecourses.

Figure 7 reports the outcome of the multivariate data-driven analysis trying to predict
AD and HC from the six NC metrics. Importantly, the results were obtained using a leave-
one-out CV, depicting the generalization performance of the approach. Figure 7a reports
the outcome of the ROC analysis where an area under the curve (AUC) of 0.905 (z = 4.090,
p = 2.17 × 10−5) was obtained. Table 2 reports the confusion matrix that was computed by
selecting the threshold of the outcome of the multivariate linear regression that provided
a sensitivity of 88.2% and a specificity of 94.5%. Figure 7b shows the CV loadings of the
multivariate regression analysis, showing how the different features were concurrently
weighted to deliver the classification. Since in the classification procedure AD had a value
of “1”, whereas HC had a value of “0”, a positive load depicts a larger NC for AD whereas
a negative load represents a smaller NC for AD. Notice that, whereas the upper panel of
Figure 7b reports the regression loadings, the lower panel of Figure 7b reports the loadings
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normalized by their variability (i.e., their standard deviation) estimated using a bootstrap
approach (10,000 iterations) and effectively providing the statistical significance (z-score
value) of each multivariate load.
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Figure 7. Cross-validation (CV) classification outcome of the multivariate data-driven analysis
predicting AD and HC from the 6 NC metrics. (a) Receiver operating characteristic (ROC) analysis.
(b) Upper panel: model loadings; lower panel: z-scores obtained as loadings normalized by a
bootstrap estimate of their standard deviation.

Table 2. Confusion matrix obtained by selecting a specific threshold of the output of the multivariate
linear regression classifying AD and HC from the 6 NC metrics.

Label HC AD TOT

Counts
HC 17 1 18
AD 2 15 17

%
HC 94.5% 5.5% 100%
AD 11.8% 88.2% 100%

For comparison with the multivariate data-driven analysis of NC, Figure 8 reports the
outcome of the multivariate data-driven analysis trying to predict AD and HC from the
standalone EEG and fNIRS metrics. Figure 8a reports the CV outcome of the ROC analysis
employing the three EEG global powers, whereas Figure 8b reports the results of the ROC
analysis employing the two fNIRS global hemoglobin powers. Using unimodal analysis, a
poor AD vs. HC classification was obtained with AUC = 0.521 (z = 0.212, p = 0.416) and
AUC = 0.555 (z = 0.555, p = 0.289) for the EEG and the fNIRS features, respectively. Impor-
tantly, the multivariate classification performance based on the multimodal NC evaluation
was statistically superior to both the unimodal EEG and fNIRS analysis (AUC = 0.905 vs.
0.521, z = 3.403, p = 6.6 × 10−4; AUC = 0.905 vs. 0.555, z = 3.115, p = 1.8 × 10−3).
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Figure 8. CV classification outcome of the multivariate data-driven analysis predicting AD and HC from the standalone
EEG and fNIRS metrics. (a) ROC analysis employing the 3 global EEG powers. (b) ROC analysis employing the 2 global
fNIRS hemoglobin powers.

Notably, when the whole analysis was re-run using half of the total electrodes, elimi-
nating the occipital ones, the difference between AD and HC in the coupling of the theta
band and HbO was still statistically significant (t = −2.170, df = 33, p = 0.037), whereas the
difference in the coupling between the alpha band and HbR vanished (t = −0.530, df = 33,
p = 0.600), with the multivariate data-driven analysis delivering an AUC of 0.830 (z = 3.329
p = 4.4 × 10−4).

Finally, Figure 9 reports the outcome of the multivariate data-driven analysis trying
to predict AD and HC from the six NC metrics as a function of either the recording time
or the number of randomly selected EEG channels. Figure 9a shows the loadings of the
multivariate regression analysis and the associated z-scores as a function of recording
time available. Figure 9b instead shows the AUC of the classification outcome, always
as a function of the recording time. Indeed, the loadings and the associated z-scores
converged to negative values, whereas the AUC increased as a function of recording time.
Figure 9c shows the loadings and the associated z-scores as a function of the number of
randomly selected EEG channels. Figure 9d shows the AUC of the associated classification
outcome. In this case, the loadings quickly assumed negative values, whereas the AUC
was quite stable.
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Figure 9. Cross-validated (CV) loadings and classification performance of the multivariate data-driven analysis predicting
AD and HC from the 6 NC metrics as a function of either recording time or number of EEG channels employed. (a) Left
panel: loadings as a function of recording time; right panel: z-scores, obtained as loadings normalized by their standard
deviation (estimated using bootstrapping), as a function of recording time. (b) Area under the curve (AUC) of the ROC
analysis as a function of recording time. (c) Left panel: loadings as a function of the number of randomly selected EEG
channels; right panel: z-scores, obtained as loadings normalized by their standard deviation, as a function of the number
of randomly selected EEG channels. (d) AUC of the ROC analysis as a function of the number of randomly selected
EEG channels.

4. Discussion
4.1. Identification of EEG-fNIRS De-Coupling in AD

AD is characterized by a progressive cognitive decline over the course of the disease
that slowly disrupts daily life [83]. The exact mechanisms inducing AD symptoms remain
largely unknown [84]. Nonetheless, novel neuroimaging modalities and advanced data
analysis may enhance the ability to non-invasively assess brain status and subsequently
identify its functional deterioration in AD. Such approaches must be suitable for ambulatory
settings in order to impact standard clinical practice. To this end, multimodal evaluation of
brain activity and NC through synchronous EEG-fNIRS recordings represents a promising
tool [46]. EEG and fNIRS are relatively cheap, portable and easy to use technologies.
These characteristics make them highly suited for both screening-like and longitudinal
ambulatory evaluation of brain diseases. Synchronous EEG and fNIRS recordings may
provide relevant information regarding NC, whose deterioration is known to be associated
with AD [12–14].

In this study, multimodal EEG-fNIRS recordings were performed at rest and they
were used to infer NC and evaluate its impairment in AD. The multivariate correlations of
whole-head EEG power envelopes in the theta, alpha and beta bands with fNIRS-derived
changes in HbO and HbR in frontal and prefrontal cortices were estimated by means of
a GLM approach and representative metrics of NC. A significant decrease in correlation,
i.e., a global neurovascular un-coupling, was found in AD patients between the theta band
power envelope and HbO changes (t = −2.30, df = 33, p = 0.028) and between the alpha
band power envelope and HbR changes (t = −2.44, df = 33, p = 0.020, Figure 5). Hence,
for simplicity, we preferred to only report the results about theta and beta bands in the
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paper as representative of low- and high-frequency EEG band associations with fNIRS
hemoglobin oscillations.

The selective un-coupling between specific EEG frequency bands and fNIRS hemoglobin
species requires further discussion. The decrease in EEG-fNIRS correlations in AD was
found for EEG frequency bands and hemoglobin species where the average NC was sig-
nificantly above chance in HC (i.e., average β-weight larger than zero, Figure 5). Notably,
these results are in line with previous multimodal works combining EEG with BOLD fMRI
in HC [45,85].

In HC, a strong negative correlation of EEG alpha power with parietal and frontal
cortical activity of BOLD was found [86], whereas a positive correlation was identified at
rest between BOLD and theta power of local field potentials in parahippocampal areas [87].
Since the BOLD signal has a coarse negative association with HbR and positive association
with HbO [23], both the fMRI findings and the results of this study suggest that the selective
de-coupling found in AD between theta and HbO and alpha and HbR could simply reflect
a general neurovascular un-coupling that is more pronounced for frequency bands and
hemoglobin species where the original physiological association is stronger.

Moreover, none of the six EEG-fNIRS NC metrics were significantly higher in AD
with respect to HC. Indeed, these results supported the hypothesis of NC decline in AD.
To further highlight the importance of investigating NC in AD with multimodal EEG-
fNIRS recordings, unimodal evaluation of either global electrical or hemodynamic brain
activity, expressed as average EEG and fNIRS signal powers, did not highlight statistically
significant differences between AD and HC. Although not statistically significant, it is
interesting to notice that a qualitatively lower EEG power in AD with respect to HC was
found for all frequency bands considered coupled with a qualitatively higher fNIRS power
for both HbO and HbR. This result may be indicative of a dysregulation of NC which is
selectively identified by the multimodal analysis.

4.2. Multivariate Exploitation of EEG-fNIRS De-Coupling in AD

To further investigate the NC dysregulation in AD and to exploit the potentialities
of the approach presented, a multivariate data-driven analysis was also performed. This
analysis concurrently evaluated how the NC metrics (i.e., the standardized regression
weights between the three frequency bands and the two hemoglobin species, six features)
were modified in AD and it investigated to what extent these NC metrics could be used to
identify the pathology. The procedure classified AD and HC relying on the six NC metrics
and a multiple linear regression approach. The CV classification outcome was assessed by
means of an ROC analysis that delivered AUC = 0.905 (z = 4.090, p = 2.17 × 10−5, Figure 7a).
An interesting result of the multivariate data-driven analysis was that the expected value of
the loadings of the linear regression, associated to each of the six NC features was always
negative (Figure 7b). This finding further supported the neurovascular un-coupling in
AD already found in the univariate analysis. Moreover, the highest statistical relevance of
the magnitude of the multivariate loadings was indeed found for the two NCs that were
significantly lower in AD based on the univariate analysis (i.e., the link between the theta
band and HbO and the link between the alpha band and HbR).

Always in accordance with the univariate analysis, the multivariate data-driven
approach used on standalone EEG and fNIRS powers did not provide a classification
accuracy of AD and HC above chance (Figure 8). These results further demonstrated
the higher sensitivity and specificity to AD of NC metrics evaluated through multimodal
approaches with respect to brain activity metrics estimated based on unimodal procedures
(AUC = 0.905 vs. 0.521, z = 3.403, p = 6.6 × 10−4; AUC = 0.905 vs. 0.555, z = 3.115,
p = 1.8 × 10−3). At a specific threshold of the outcome of the multivariate data-driven
analysis of NC, a sensitivity of 88.2% and a specificity of 94.5% were obtained, providing
additional evidence of the high potentialities of the method.

Of note, whereas the univariate evaluation of the couplings between multiple EEG
frequency bands and fNIRS hemoglobin forms might have produced false positives, the
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multivariate analysis indeed relied on considering all the information at once, greatly
decreasing the chance of false positives related to multiple comparison. Indeed, the highly
significant multivariate results support the positive findings of the study.

As a further investigation of the findings, the multivariate classification of AD and
HC based on EEG-fNIRS NC metrics was evaluated as a function of either the recording
time available or the number of EEG channels employed (Figure 9). These are important
aspects of the replicability of the results and the implementation of the approach in a
clinical environment. With respect to recording time length, both the multivariate loadings
and associated z-scores tended to reach stable and negative values after 200 s. The AUC
was close to the best performance only when the recording time was close to 300 s, while
showing a rather linear decrease in value with shorter recording times. These results
corroborated the robustness of the original findings but also highlighted the need for
recording durations of several minutes to employ the proposed approach with sufficient
sensitivity and specificity. On the contrary, both the multivariate loadings and associated
z-scores were stable with the number of randomly selected EEG channels and, importantly,
the AUC was very close to the best classification performance even with particularly small
numbers of channels used. These findings highlighted the applicability of the approach in
a clinical environment where a small number of electrodes is generally available.

4.3. Study Limitations

Several limitations of the study must be commented upon and might be addressed in
future studies.

Firstly, whereas the high-density EEG provided whole-head coverage, the fNIRS
layout allowed us to limit the investigation to the frontal and prefrontal cortices. The
layout choice was driven by practical limitations of the available fNIRS instrumentation
that provided a limited number of optodes. The choice to cover the frontal and prefrontal
cortices was led by the higher sensitivity of the fNIRS optodes in areas not covered by hair
and by the involvement of these areas in AD-related cognitive impairment, although to a
lower extent with respect to other areas, such as the medial temporal lobe [88,89]. In order to
control for the different head coverage levels of EEG and fNIRS, the analysis was run again,
but by selectively choosing EEG signals acquired with half of the electrodes all located on
the frontal and prefrontal brain areas. With this analysis, the difference between AD and HC
in the coupling of the theta band and HbO remained unaltered (t = −2.170, df = 33, p = 0.037),
whereas the difference in the coupling between the alpha band and HbR still pointed toward
a reduction of the linkage strength in AD but vanished statistically (t = −0.530, df = 33,
p = 0.600). Because of the reduced effect in the coupling between the alpha band and HbR,
the multivariate data-driven analysis delivered an AUC of 0.830, which was below the
original one of 0.905. These findings suggest that the analysis of the whole-head EEG signal
identified an increase in global alpha activity (known to be associated with brain electrical
activity de-activation) that induced a decrease in HbR (known to be associated with brain
hemodynamic de-activation) in frontal and prefrontal areas and that the alteration of this
effect in AD was useful in identifying the patients with the disease. This information was
lost when limiting the useful electrodes to those located in the frontal region because of the
diminished sensitivity of those electrodes to the alpha band activity. This result, coupled
with the findings regarding the classification performance as a function of the number of
randomly selected EEG channels, suggested that, although a limited number of electrodes
can be used to exploit the proposed approach, such electrodes should be evenly distributed
across the scalp. However, further studies should be performed with a whole-head fNIRS
system to assess a global NC estimated using whole-brain hemodynamic information in
conjunction with electrical activity. Nonetheless, it might be possible that a global NC
assessed through whole-head fNIRS may deliver a lower sensitivity for AD. In fact, since
the pathology is associated with a cognitive decline often related to frontal cortex activity
dysregulation, AD may be characterized by a selective disruption of fNIRS modulation
within the frontal lobes in response to global EEG oscillations [90]. Particularly, it could be
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worth extending the fNIRS investigation to other brain regions highly impaired by AD,
such as the medial temporal lobe [89].

Secondly, always with reference to the electrode and optode distribution on the
scalp, a less relevant issue, mainly driven by mechanical limitations, was associated with
the fact that the EEG electrodes where not placed on the same scalp locations as the
optodes nor were exactly in between an optical source and a detector. However, we should
further stress that EEG, due to volume conduction effects, is intrinsically a low spatial
resolution technology. Indeed, a displacement of EEG sensors of a few centimeters does not
drastically modify the signal recorded. In this perspective, a small displacement between
fNIRS optodes and EEG electrodes does not affect the assessment of a global NC using
EEG-fNIRS, also considering that the global signal was extracted using a high-density
EEG system which has an average distance between sensors well below the minimum
wavelength (corresponding to the maximum spatial frequency component) of the measured
voltages across the head [91]. This statement was indeed heavily supported by the results
regarding the stability of the proposed approach as a function of the number of randomly
selected EEG channels used.

Thirdly, although the optical probes were located with reference to the EEG 10/20 sys-
tem, an accurate co-registration of the optical sensors with a specific subject anatomy (e.g.,
structural MRI of the head) was missing. In fact, also for this reason, only global estimates
of NC were evaluated, effectively not accounting for its spatial characteristics. Further
studies should indeed be focused on assessing the spatial features of NC modifications in
AD. However, although the spatial characteristics of NC may provide additional informa-
tion, a global metric of NC can be more directly employed in a clinical environment. In fact,
providing an accurate spatial localization of electrical and hemodynamic brain activity with
EEG and fNIRS requires several methodological steps that make such an approach impracti-
cal for employment outside research environments (e.g., co-registration with an anatomical
image of the subject, implementation of forward and inverse approaches [92,93]).

Fourthly, although the multivariate data-driven analysis delivered a high classification
performance, further studies should be conducted to increase the overall sample size of
the population. In fact, these approaches rely on analyses that might drastically increase
their performances when large sample sizes are available [80]. When a larger data sample
is available, the analysis of NC might be extended beyond the six global metrics that were
used in this work, for example, considering more than one principal component for each
EEG frequency band, and with the possibilities to explore non-linearities in the data.

Fifthly, in vivo neuroimaging metrics, such as the NC measured with multimodal
EEG-fNIRS recordings, are certainly not suitable to understand the underlying microscopic
mechanisms associated with the macroscopic manifestations. The drop in correlation
between EEG and fNIRS signals identified in AD patients was plausibly associated with a
disruption of signal pathways in astrocytes, vascular smooth muscle cells and endothelia,
causing a decreased or slower cerebrovascular reactivity in NC, but further study should
be performed to fully explain the findings [15].

Finally, this study was limited to the comparison of NC between AD and HC. In order
to employ this approach for diagnostic purposes, the capabilities of this method to identify
AD and to differentiate it from other similar pathologies should be assessed, effectively
providing a procedure able to perform a differential diagnosis [94]. This is particularly
relevant since other forms of dementia might indeed exhibit similar neurovascular un-
coupling to that found in AD. In fact, since AD shares similar symptomologies with other
neurological pathologies, early diagnosis and monitoring of AD represents a major issue
for clinicians.

4.4. Study Significance

The findings clearly demonstrated a neurovascular de-coupling in AD and highlighted
how this de-coupling might be exploited to identify AD at an early stage of the disease.
Importantly, the approach implemented can be easily translated to clinical, ambulatory
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settings, thanks to the portability and usability of both EEG and fNIRS. Thanks to the
extraction of global metrics of brain activity to assess NC, this procedure does not require
EEG and fNIRS sensor co-registration to an anatomical image, which would imply the usage
of expensive and time-consuming imaging techniques (e.g., MRI or CT). The unbiased
cross-validated framework built to assess the performance of the multivariate approach
in identifying AD through global EEG-fNIRS NC clearly suggests the reliability of the
proposed method, despite the small number of subjects included in the study.

4.5. Future Perspectives

The neuroimaging approaches presented in this work, unifying novel ecological
multimodal resting-state recordings of brain activity and multivariate data-driven analysis
of the signals acquired, could support early AD diagnosis, potentially improving treatment
efficacy and decreasing societal economic effort. In fact, the actual measurement does not
require specifically trained personnel, and the algorithm, once implemented, can be easily
used by clinicians.

5. Conclusions

In this study, NC was evaluated in AD and HC by means of multimodal EEG-fNIRS
recordings performed at rest. Six metrics of global NC of theta, alpha and beta band power
envelopes with HbO and HbR changes were extracted by using whole-head high-density
EEG recordings, frontal and prefrontal cortex fNIRS measures and a GLM approach. Uni-
variate analysis of the six NC features showed a statistically significant decrease in the
coupling between theta and HbO and between alpha and HbR. Importantly, no signifi-
cant effects were found when analyzing the average power of the signals of standalone
modalities. A linear, multivariate and data-driven approach to the classification of AD and
HC from the six NC metrics delivered a high classification performance with AUC = 0.905.
Moreover, the procedure provided negative loadings for all the features, suggesting a
general neurovascular un-coupling in AD. Although such an approach should be tested
by taking into account other similar pathologies that can affect NC in order to provide a
differential diagnosis, the findings indeed demonstrated the capabilities of resting-state
EEG-fNIRS to assess NC in ecological ambulatory settings and corroborated the hypoth-
esis of NC disruption in AD, paving the way to the employment of such neuroimaging
approaches to support early AD diagnosis.
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Abbreviations

Abbreviation Meaning
AD Alzheimer’s Disease
AUC Area Under the Curve
BOLD Blood Oxygen Level-Dependent
CBF Cerebral Blood Flow
CMRO2 Cerebral Metabolic Rate of Oxygen
CV Cross-Validation
CVR Cerebrovascular Reactivity
DPF Differential Pathlength Factor
EEG Electroencephalography
fMRI functional Magnetic Resonance Imaging
fNIRS functional Near-Infrared Spectroscopy
GLM General Linear Model
HbO Oxy-hemoglobin
HbR Deoxy-hemoglobin
HC Healthy Controls
HRF Hemodynamic Response Function
ICA Independent Component Analysis
MMSE Mini Mental State Examination
NC Neurovascular Coupling
OEF Oxygen Extraction Fraction
PCA Principal Component Analysis
PMT Photomultiplier Tube
ROC Receiver Operating Characteristic
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