
Article https://doi.org/10.1038/s41467-024-53827-9

The backpropagation algorithm
implemented on spiking neuromorphic
hardware

Alpha Renner 1,2, Forrest Sheldon 3,4, Anatoly Zlotnik 5, Louis Tao 6,7 &
Andrew Sornborger 8

The capabilities of natural neural systems have inspired both new generations
of machine learning algorithms as well as neuromorphic, very large-scale
integrated circuits capable of fast, low-power information processing. How-
ever, it has been argued that most modern machine learning algorithms are
not neurophysiologically plausible. In particular, the workhorse of modern
deep learning, the backpropagation algorithm, has provendifficult to translate
to neuromorphic hardware. This study presents a neuromorphic, spiking
backpropagation algorithm based on synfire-gated dynamical information
coordination and processing implemented on Intel’s Loihi neuromorphic
research processor. We demonstrate a proof-of-principle three-layer
circuit that learns to classify digits and clothing items from the MNIST
and Fashion MNIST datasets. To our knowledge, this is the first work to
show a Spiking Neural Network implementation of the exact back-
propagation algorithm that is fully on-chip without a computer in the
loop. It is competitive in accuracy with off-chip trained SNNs and achieves
an energy-delay product suitable for edge computing. This implementation
shows a path for using in-memory, massively parallel neuromorphic pro-
cessors for low-power, low-latency implementation of modern deep
learning applications.

Spike-based learning in plastic neuronal networks plays increasingly
key roles in both theoretical neuroscience and neuromorphic com-
puting. The brain learns in part by modifying the synaptic strengths
between neurons and neuronal populations. Classically, back-
propagation (BP)1–3 has been essential for supervised learning in arti-
ficial neural networks (ANNs). Although the question of whether or not
BP operates in the brain is still an outstanding issue4, BP does solve the
problem of how a global objective function can be related to a local

synapticmodification in a network. It seemsclear, however, that if BP is
implemented in the brain, or if one wishes to implement BP in a neu-
romorphic circuit, some amount of dynamical information coordina-
tion is necessary to propagate the correct information to the proper
location such that appropriate local synaptic modification may take
place to enable learning5.

There is growing interest in reformulating classical algorithms
for learning, optimization, and control using event-based

Received: 11 April 2024

Accepted: 22 October 2024

Check for updates

1Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland. 2Forschungszentrum Jülich, Jülich 52428, Germany. 3Physics of
Condensed Matter & Complex Systems (T-4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA. 4London Institute for Mathematical Sciences,
Royal Institution, LondonW1S 4BS, UK. 5Applied Mathematics & Plasma Physics (T-5), Los Alamos National Laboratory, Los Alamos, NM 87545, USA. 6Center
for Bioinformatics,National Laboratory of ProteinEngineering andPlantGenetic Engineering,School of LifeSciences, PekingUniversity, Beijing 100871, China.
7Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China. 8Information Sciences (CCS-3),
Los Alamos National Laboratory, Los Alamos, NM 87545, USA. e-mail: sornborg@lanl.gov

Nature Communications | (2024) 15:9691 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-0724-4169
http://orcid.org/0000-0002-0724-4169
http://orcid.org/0000-0002-0724-4169
http://orcid.org/0000-0002-0724-4169
http://orcid.org/0000-0002-0724-4169
http://orcid.org/0000-0002-7321-8364
http://orcid.org/0000-0002-7321-8364
http://orcid.org/0000-0002-7321-8364
http://orcid.org/0000-0002-7321-8364
http://orcid.org/0000-0002-7321-8364
http://orcid.org/0000-0002-2646-8264
http://orcid.org/0000-0002-2646-8264
http://orcid.org/0000-0002-2646-8264
http://orcid.org/0000-0002-2646-8264
http://orcid.org/0000-0002-2646-8264
http://orcid.org/0000-0003-1802-2438
http://orcid.org/0000-0003-1802-2438
http://orcid.org/0000-0003-1802-2438
http://orcid.org/0000-0003-1802-2438
http://orcid.org/0000-0003-1802-2438
http://orcid.org/0000-0001-8036-6624
http://orcid.org/0000-0001-8036-6624
http://orcid.org/0000-0001-8036-6624
http://orcid.org/0000-0001-8036-6624
http://orcid.org/0000-0001-8036-6624
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53827-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53827-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53827-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53827-9&domain=pdf
mailto:sornborg@lanl.gov
www.nature.com/naturecommunications

information-processing mechanisms. Such spiking neural networks
(SNNs) are inspired by the function of biological neural systems6,
i.e., neuromorphic computing7. The trend is driven by the advent of
flexible computing architectures such as Intel’s neuromorphic
research processor, codenamed Loihi, that enable experimentation
with such algorithms in hardware8.

There is particular interest in deep learning, a central tool in
modern machine learning. Deep learning relies on a layered, feed-
forward network similar to the early layers of the visual cortex, with
threshold nonlinearities at each layer that resemble mean-field
approximations of neuronal integrate-and-fire models. While feed-
forward architectures are readily translated to neuromorphic
hardware9–11, the farmore computationally intensive training of these
networks ‘on-chip’ has proven elusive as the structure of back-
propagation makes the algorithm notoriously difficult to implement
in a neural circuit12,13. Interest in a feasible neural implementation of
backpropagation has gained renewed momentum with the advent of
neuromorphic computational architectures that feature local
synaptic plasticity8,14–16. Because of the well-known difficulties, neu-
romorphic systems have relied to date almost entirely on conven-
tional off-chip learning and used on-chip computing only for
inference9–11. Developing learning systems whose function is realized
exclusively using neuromorphic mechanisms has been a long-
standing challenge.

Backpropagation has been claimed to be biologically implausible
or difficult to implement on spiking chips because of several issues:
(a) Weight transport—usually, synapses in biology and on neuro-

morphic hardware cannot be used bidirectionally; therefore,
separate synapses for the forward and backward pass are
employed. However, correct credit assignment, i.e., knowing how
aweight change affects the error, requires feedback weights to be
the same as feedforward weights17,18;

(b) Backwards computation—forward and backward passes imple-
ment different computations18. The forward pass requires only
weighted summation of the inputs, while the backward pass

operates in the opposite direction and additionally takes into
account the derivative of the activation function;

(c) Gradient storage—error gradients must be computed and stored
separately from activations;

(d) Differentiability—for spiking networks, the issue of non-
differentiability of spikes has been discussed, and solutions have
been proposed19–24; and

(e) Hardware constraints—for the case of neuromorphic hardware,
there are often constraints on plasticity mechanisms, which allow
for adaptation of synaptic weights. On some hardware, no plas-
ticity is offered at all, while in some cases, only specific spike-
timing-dependent plasticity (STDP) rules are allowed. Addition-
ally, in almost all available neuromorphic architectures, informa-
tion must be local, i.e., information is only shared between
synaptically connected neurons, particularly to facilitate
parallelization.

The most commonly used approach to avoiding the above issues
is to use neuromorphic hardware only for inference using fixed
weights obtained by training of an identical network offline and off-
chip9,10,25–29. This approach has recently achieved state-of-the-art
performance11. Hardware-independent ANN-SNN conversion approa-
ches can compete with quantized neural networks also for large
architectures and datasets30,31. However, off-chip, offline training does
not make use of neuromorphic hardware’s full potential and therefore
consumes excessive power. Moreover, to function in most field
applications, an inference algorithm should be able to learn adaptively
after deployment, e.g., to adjust to a particular speaker in speech
recognition, which would enable better autonomy and privacy of edge
computing devices. So far, only last layer training, without back-
propagation and using variants of the delta rule, has been achieved on
spiking hardware32–38. Other on-chip learning approaches use alter-
natives to backpropagation39,40, bio-inspired non-gradient based
methods41, or hybrid systems with a conventional computer in the
loop42–44. Several promising alternative approaches for actual on-chip
spiking backpropagation have been proposed recently45–48, but have
not yet been implemented in hardware.

To avoid the backward computation issue (b) and because neu-
romorphic synapses are not bidirectional, a separate feedback net-
work for the backpropagation of errors has been proposed49–51 (see
Fig. 1). This leads to the weight transport problem (a), which has been
solved by using symmetric learning rules to maintain weight
symmetry50,52,53 or with the Kolen-Pollack algorithm53–55, which leads to
symmetric weights automatically. It has also been found that weights
do not have to be perfectly symmetric because backpropagation can
still be effective with random feedback weights (random feedback
alignment)56. However, symmetry in the sign between forward and
backward weights matters54,57.

The backward computation issue (b) and the gradient storage
issue (c) have been addressed by approaches that separate the func-
tion of the neuron into different compartments anduse structures that
resemble neuronal dendrites for the computation of backward pro-
pagating errors4,46,48,58,59. The differentiability issue (d) has been cir-
cumvented by spiking rate-based approaches10,26,60,61 that use the ReLU
activation function as done in ANNs. The differentiability issue has also
been addressed more generally using surrogate gradient
methods9,19,20,22,23,27,32,62 and methods that use biologically-inspired
STDP and reward modulated STDP mechanisms63–66. For a review of
SNN-based deep learning, see67. For a reviewof backpropagation in the
brain, see4.

In this study, we describe a hardware implementation of the exact
backpropagation algorithm that addresses the issues described above
using a set of mechanisms that have been developed and tested in
simulation by the authors during the past decade, synthesized in our
recent study68 and simplified and adapted here to the features and

Target

Error
Feedback

Feed-forward
Fig. 1 | Overview of conceptual circuit architecture. Feedforward activations of
input (x), hidden (h) and output (o) layers are calculated by a feedforwardmodule.
Errors (e = t −o) are calculated fromtheoutput and the training signal (t). Errors are
backpropagated through a feedback module with the same weights W2 for
synapses betweenh ando, but in the opposite direction (mathematically expressed
as the transpose,WT

2). Local gradients (d1, d2) are gated back into the feedforward
circuit at appropriate times to accomplish potentiation or depression of appro-
priate weights.

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 2

www.nature.com/naturecommunications

constraints of the Loihi chip. These neuronal and network features
include propagation of graded information in a circuit composed of
neural populations using synfire-gated synfire chains (SGSCs)69–72,
controlflowbasedon the interactionof synfire chains70, and regulation
of Hebbian learning using synfire-gating73,74. We simplify our pre-
viously proposed network architecture68 and streamline its function.
We demonstrate our approach using a proof-of-principle imple-
mentationon Loihi8 and examine the performance of the algorithm for
learning and inference of the MNIST75 and Fashion MNIST76 test data
sets. The nBP implementation is competitive in clock time, sparsity,
and power consumption with comparable state-of-the-art algorithms
for the same tasks.

Perhaps most importantly, this forms a missing baseline in the
field against which novel neuromorphic training algorithms can be
assessed.With the proliferationofmachine learning applications in the
public sphere, there is a need for more efficient training options. We
collect many of the current attempts into tables to facilitate further
comparisons and hope this will stimulate other work investigating
what can currently be achievedwith availableneuromorphic hardware.

Results
The binarized nBP model
For the proof of principle implementation on the Loihi hardware, we
simplify and extend our previous architecture68 using several new
algorithmic and hardware-specific mechanisms. Each unit of the
neural network is implemented as a single spiking neuron, using the
current-based leaky integrate-and-fire (CUBA) model (see Equations
(19) and (20) in the Methods section) that is built into Loihi. The time
constants of the CUBA model are set to 1 so that the neurons are
memoryless. Rather than using rate coding, where spikes are coun-
ted over time, we consider neuron spikes at every algorithmic time
step so we can regard our implementation as a binary neural network
(binary in activation, not weights). The network’s feedforward com-
ponent is a classic multilayer perceptron (MLP) with three layers, a
binary activation function, and discrete (8-bit) weights. However, our
approach may be extended to deeper networks and different
encodings. In the following equations, each lowercase letter corre-
sponds to a Boolean vector representing a layer of spiking neurons
on the chip (a spike corresponds to a 1). The inference (forward) pass
through the network is computed as:

o= f ðW 2f ðW 1xÞÞ, ð1Þ

f ðxÞ=Hðx� 0:5Þ, ð2Þ

HðxÞ= 0, x<0,

1, x≥0,

�
ð3Þ

where Wi is the weight matrix of the respective layer, f is a binary
activation function with a threshold of 0.5, and H denotes the Hea-
viside function. The forward pass thus occurs in 3 time steps as
spikes are propagated through layers. The degree to which the
feedforward network’s output (o) deviates from a target value (t) is
quantified by the squared error, E= 1

2 k o� tk2, which we would like
to minimize. Performing backpropagation to achieve this requires
the calculation of weight updates, which depend on the forward
activations, and backward propagated local gradients dl, which
represent the amount by which the loss changes when the activity of
that neuron changes, as:

d2 = ðo� tÞ � f 0ðW 2hÞ, ð4Þ

d1 = sgnðWT
2d2Þ � f 0ðW 1xÞ, ð5Þ

∂E
∂Wl

= dlðal�1ÞT , ð6Þ

Wnew
l =Wold

l � η
∂E
∂Wl

, l = 1, 2: ð7Þ

Here, ∘ denotes a Hadamard product, i.e. the element-wise product of
two vectors, Tdenotes thematrix transpose, sgn(x) is the sign function,
and al denotes the activation of the lth layer, f(Wlal−1), with
a0 = x, a1 =h, a2 =o. Here, η denotes the learning rate and is the only
hyperparameter of the model apart from the weight initialization’.
Denotes the derivative, but because f is a binary thresholding function
(Heaviside), the derivative would be the Dirac delta function, which is
zero everywhere apart from at the threshold. Therefore, we use a
common method77,78 and represent the thresholding function using a
truncated (between 0 and 1) ReLU (Equation (8)) as a surrogate or
straight-through estimator when back-propagating the error. The
derivative of the surrogate is a box function (Equation (9)):

f surrogateðxÞ= minðmaxðx, 0Þ, 1Þ, ð8Þ

f 0ðxÞ=HðxÞ � Hðx� 1Þ: ð9Þ

The three functions (Equations (2), (8) and (9)) are plotted in the inset
in Fig. 2.

When performed for each target (t) in the training set, the model
maybe considered a stochastic gradient descent algorithmwith afixed
step size update for each weight in the direction of the gradient sign.

nBP on Neuromorphic Hardware
On the computational level, Equations (1)–(9) fully describe themodel
exactly as implemented on Loihi, except for the handling of bit pre-
cision constraints that affect integer discreteness and value limits and
ranges. In the following, we describe how these equations are trans-
lated from the computational to the algorithmic neural circuit level,
enabling implementation on neuromorphic hardware. Further details
on the implementation can be found in the Methods section.
a. Hebbian weight update Equation (7) effectively results in the

following weight update per single synapse from presynaptic
index i in layer l − 1 to postsynaptic index j in layer l:

Δwij = � η � al�1, i � dl, j, ð10Þ

where η is the constant learning rate. To accomplish this update,
we use a Hebbian learning rule79 implementable on the on-chip
microcode learning engine (for the exact implementation on
Loihi, see Methods). Hebbian learning means that neurons that
fire together, wire together, i.e., the weight update Δw is
proportional to the product of the simultaneous activity of the
presynaptic (source) and the postsynaptic (target) neurons. In our
case, thismeans that the values of the two factors of Equation (10)
have to be propagated simultaneously, in the same time step, to
the pre- (al−1,i) and postsynaptic (dl,j) neurons. In contrast, the pre-
and postsynaptic neurons are not allowed to fire simultaneously
at any other time. For this purpose, a mechanism to control the
information flow through the network is needed.

b. Gating controls the information flow As an information control
mechanism,we use synfire gating69–71,80. The gating chain, a closed
chain of 12 neurons containing a single spike perpetually sent
around the circle, is the backbone of this flow controlmechanism.
Thegating chain controls informationflow through the controlled
network by selectively boosting layers to bring their neurons
closer to the threshold, thereby making them receptive to input.

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 3

www.nature.com/naturecommunications

By connecting particular layers to the gating neuron that fires in
the respective time steps, we lay out a path that the activity
through the network is allowed to take. For example, to create the
feedforward pass, the input layer x is connected to the first gating
neuron and therefore gated ‘on’ in time step 1, the hidden layer h
is connected to the second gating neuron and gated ‘on’ in time
step 2, and the output layer o is connected to the third gating
neuron and gated ‘on’ in time step 3. A schematic of this path of
the activity canbe found in Fig. 2. To speak in neuroscience terms,
we are using synfire gating to design functional connectivity
through the network anatomy shown in Supplementary Fig. 1.
Using synfire gating, the local gradient dl,j is brought to the
postsynaptic neuron at the same time as the activity al−1,i is
brought back to the presynaptic neuron effecting a weight
update. In addition to bringing activity at the right time to the
right place for Hebbian learning, the gating chain also makes it
possible to calculate and back-propagate the local gradient.

c. Local gradient calculation For the local gradient calculation,
according to Equation (5), the error o − t and the box function
derivative of the surrogate activation function (Equation (9)) are
needed. Because there are no negative (signed) spikes, the local
gradient is calculated and propagated back twice for a Hebbian

weight update in two phases with different signs. The erroro − t is
calculated in time step 4 in a layer that receives excitatory (posi-
tive) input from the output layer o and inhibitory (negative) input
from the target layer t, and vice versa for t − o.
The box function f 0ðxÞ (Equation (9)) has the role of initiating
learning when the presynaptic neuron receives a non-
negative input and of terminating learning when the input
exceeds 1, which is why we call the two conditions ‘start’ and
‘stop’ learning (inspired by the nomenclature of ref. 81). This
inherent feature of backpropagation avoids weight updates
that do not affect the current output as the neuron is
saturated with the current input due to the nonlinearity. This
regulates learning by protecting trained weights mainly used
for other inputs.
To implement these two terms of the box function (Equation (9)),
we use two copies of the output layer that receive the same input
(W2h) as the output layer. Using the above-described gating
mechanism, one of the copies (start learning, o<) is brought
exactly to its firing threshold when it receives the input, which
means that it fires for any activity >0, and the input is not in the
lower saturation region of the ReLU. The other copy (stop
learning, o>) is brought further away from the threshold (to 0),

Fig. 2 | Functional connectivity of the 2-layer backpropagation circuit. Layers
are only shown when gated `on,' and synapses are only shown when their target is
gated on. Plastic connections are all-to-all (fully connected), i.e., all neurons are
connected to all neurons in the next layer. The gating connections from the gating
chain are one-to-all, and all other connections are one-to-one, which means that a
firing pattern is copied directly to the following layer. The names of the neuron
layers are givenon the leftmargin so that the rowcorresponds to layer identity. The
columns correspond to the time steps of the algorithm, which are the same as the

time steps on Loihi. Time steps 5 and 7 are highlighted as in these steps, the sign of
the weight update is inverted (positive), as r = 1 in Equation (23). Supplementary
Table I shows the information contained in each layer in each respective time step
and a detailed step-by-step explanation of the algorithm is given in the Supple-
mentary Methods. The plot in the top left corner illustrates our approach to
approximate the activation function f by a surrogate with the box function as
derivative, fsurr =H(x)H(1 − x), where f 0 is the rectified linear map (ReLU) (see
Equations (2), (8) and (9)).

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 4

www.nature.com/naturecommunications

which means that if it fires, the upper saturation region of the
ReLU has been reached, and learning should cease.

d. Error backpropagation Once the local gradient d2 is calculated
as described in the previous paragraph, it is sent to the output
layer to update W2 in time steps 5 and 9. From there, the local
gradient is propagated back through the weight matricesWT

2 and
�WT

2 . These weight matrices are ‘transposed’ copies of W2, i.e.,
they are connected in the opposite direction. Once propagated
backward, the back-propagated error is combined with the ‘start’
and ‘stop’ learning conditions and then sent to the hidden layer in
steps 7 and 11. All copies of the weight matrices receive the same
update so that they maintain the same weight values.

Algorithm performance
Our implementationof the nBP algorithmonLoihi achieves an average
inference accuracy of 95.7% after 60 epochs (best of 3 runs in any
epoch: 96.3%) on the MNIST test data set, which is comparable with
other shallow, stochastic gradient descent (SGD) trained MLP models
without additional allowances. When multiple spikes were present in
the output layer, the lowest indexed output was accepted. This
occurred in ~2% of cases. The average top-1 accuracy read out from the
last layer (before thresholding) is 97.3% (best of 3 runs: 97.5%). A more
detailed breakdown of the accuracy is included in Supplementary
Table III. The accuracy and loss over epochs are shown in Fig. 3.

In these experiments, the nBP model is distributed over 81 neu-
romorphic cores. Processing of a single sample takes 1.5ms (0.17ms
for inference only) on the neuromorphic cores, including the time
required to send the input spikes from the embedded processor. It
consumes 0.6mJ of energy on the neuromorphic cores (0.59mJ of
which is dynamic energy, i.e. energy used by the neural circuit in
addition to the fixed background energy), resulting in an energy-delay
product of 0.88 μJs. Table 1 and Supplementary Table IV compare our
results with published performance metrics for other neuromorphic
learning architectures also tested on MNIST. Supplementary Table II
shows a breakdown of energy consumption and a comparison of dif-
ferent conditions and against a GPU. Switching off the learning engine
after training reduces the dynamic energy per inference to 0.02mJ,
which reveals that the on-chip learning engine is responsible for most

power consumption. Because the learning circuit is unnecessary for
inference, we also tested a reduced architecture that performs infer-
ence within four time steps using the previously trained weights. This
architecture uses 0.0025mJ of dynamic energy and 0.17ms per
inference.

The nBP algorithm trains the network without explicit sparsity
constraints, yet it exhibits sparsity because of its binary (spiking) nat-
ure. After applying the binary threshold of 0.5 to the MNIST images,
one image is encoded using, on average, 100 spikes in the input layer,
corresponding to a sparsity of 0.25 spikes per neuron per inference.
This leads to a typical number of 110 spikes in the hidden layer
(0.28 spikes per neuron per inference) and one spike in the output
layer (0.1 spikes per neuron per inference). Furthermore, as expected,
the sparsity of the backpropagation layers increases during training:
The error-induced activity from the local gradient layer d1 starts with
0.7 spikes per neuron per sample (during thefirst 1000 samples) and is
essentially switched off in the trained network as the error
approaches 0.

Additionally we evaluated the algorithm on the more challenging
drop-in replacement FashionMNIST76 andobtained an accuracy of 79%
(81.8% top-1 before thresholding) with a network of size 784-400-10
with binarized images after 40 epochs. This is close to the accuracy
(84.4%) of an ANN of this size trained with stochastic gradient descent
on the same dataset (for details, see Methods).

Discussion
As we have demonstrated here, by using a well-defined set of neu-
ronal and neural circuit mechanisms, it is possible to implement the
backpropagation algorithm on contemporary neuromorphic hard-
ware. Previously proposed methods to address the issues outlined in
the Introduction were not on their own able to offer a straightfor-
ward path to implement a variant of the nBP algorithm on current
hardware. In this study, we avoided or solved these previously
encountered issues with neuromorphic backpropagation by com-
bining known solutions with synfire-gated synfire chains (SGSC) as a
dynamical information coordination scheme. The algorithm was
evaluated on the MNIST and FashionMNIST test data set on the Loihi
VLSI hardware.

The five issues (a)–(e) listed in the Introduction were addressed
using the following solutions: (a) The weight transport issue was
avoided via the use of a deterministic, symmetric learning rule for the
parts of the network that implement inference (feed-forward) and
error propagation (feedback) as described by50. This approach is not
biologically plausible because of a lack of developmental mechanisms
to assure the equality of corresponding weights53. It would, however,
withoutmodifications to the architecture be feasible to employweight
decay as described by Kolen and Pollack53 to achieve self-alignment of
the backward weights to the forward weights or to use feedback
alignment to approximately align the feedforward weights to random
feedbackweights56; (b) Thebackward computation issuewas solvedby
using a separate error propagation network through which activation
is routed using an SGSC; (c) The gradient storage issue was solved by
routing activity through the inference and error propagation circuits
within the network in separate stages, thereby preventing the mixing
of inference and error information. Some alternatives would not
require synfire gated routing but are more challenging to implement
on hardware46,48 as also described in a more comprehensive review4;
(d) The differentiability issue was solved by representing the step
activation function by a surrogate in the form of a (truncated) ReLU
activation function with an easily implementable box function deri-
vative; and (e) The hardware constraint issue was solved by the pro-
posed mechanism’s straightforward implementation on Loihi because
it only requires standard integrate-and-fire neurons and Hebbian
learning that is modulated by a single factor which is the same for all
synapses.

Fig. 3 | Accuracy (acc) and loss (mean squared error,mse) over epochs.The plot
shows the mean over three training runs with random weight initialization and
random dataset shuffles during training. Individual runs are shown with dots con-
nected by a finer line. In addition to the accuracy and loss calculated using the last
layer’s spikes, the top-1 accuracy is calculated from the last layer’s membrane
potential. The accuracy calculation was performed off-chip using checkpoints
stored from the on-chip trained network after each half training epoch. Note
separate axis scaling for accuracy (left) and loss (right).

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 5

www.nature.com/naturecommunications

While neural network algorithms on GPUs usually use operations
on dense activation vectors andweightmatrices and, therefore, do not
profit from sparsity, spiking neuromorphic hardware only performs an
additionoperationwhena spike event occurs, i.e., adding theweight to
the input current, as in Equations (19) and (20). This means that the
power consumption directly depends on the number of spikes.
Therefore, sparsity, which refers to the property of a vector to have
mostly zero elements, is essential for neuromorphic algorithms82,83,
and it is also observed in biology84. Consequently, significant effort has
been made to make SNNs sparse to overcome the classical rate-based
approach based on counting spikes83,85–87. The binary encoding used
here could be seen as a limit case of the quantized rate-based
approach, allowing only 0 or 1 spike. Even without regularization to
promote sparse activity, it yields very sparse activation vectors that are
as sparse as most timing codes but only use a single time step. How-
ever, the achievable encoded information per spike is unquestionably
lower. In a sense, we already employ spike timing to route spikes
through the network because the location of a spike in time within the
12 time steps determines if and where it is sent and if the weights are
potentiated or depressed. Using a timing code for activations could be
enabled by having more than one Loihi time step per algorithm time
step. Therefore, the use of SGSCs is not limited to this particular binary
encoding, and in fact, SGSCs were initially designed for a population
rate code.

Similarly, the routing method used in this work is not limited to
backpropagation. It could serve as a general method to route infor-
mation in SNNswhere autonomous activity (without interference from
outside the chip) is needed. That is, our proposed architecture can act

in a similar way as or even in combination with neural state
machines88,89.

Although our implementation of nBP here was focused primarily
on a particular hardware environment, we point out that the synfire-
gated synfire chains and other network and neuronal structures that
we employ could all potentially have relevance to the understanding of
computation in neurophysiological systems. Many of the concepts we
use, such as spike coincidence, were originally inspired by neurophy-
siological experiments69,70,90. Experimental studies have shown recur-
ring sequences of stereotypical neuronal activation in several species
and brain regions91–93 and particularly replay in hippocampus94. Recent
studies also hypothesize95,96 and show97 that a mechanism like gating
by synfire chains may play a role in memory formation. Additional
evidence98 shows that large-scale cortical activity has a stereotypical,
packet-like character that can convey information about the nature of
a stimulus or be ongoing or spontaneous. This apparently
algorithmically-related activity has a very similar form to the SGSC-
controlled information flow found previously69–72. Interestingly, this
type of sequential activation of populations is evoked by the nBP
learning architecture, as seen in the raster plot in Supplementary Fig. 2.

Other algorithmic spiking features, such as the back-propagated
local gradient layer activity decreasing from0.7 spikes per neuron to 0
by the end of training, could be identified and used to generate qua-
litative and quantitative hypotheses concerning network activity in
biological neural systems.

Although our accuracy is similar to early implementations of
binary neural networks in software78, subsequent approaches now
reach 98.5%99 and generally include binarized weights. However,

Table 1 | Review of the MNIST Literature on neuromorphic hardware

Publication Hardware Learning Mode Network Structure Energy per Sam-
ple (mJ)

Latency per Sam-
ple (ms)

Test Accuracy (%)

On-chip backpropagation

Renner et al. (2024)
[This study]

Loihi on-chip nBP 400-400-10a 0.59 1.5 96.3 (97.5b)

On-chip single layer training or BP alternatives

40 Shrestha et al. (2021) Loihi EM-STDP FA/DFA CNN-CNN-100-10 8.4 20 94.7

39 Frenkel et al. (2020) SPOON DRTP CNN-10 0.000366c 0.12 95.3

37 Park et al. (2019) unnamed mod. SD 784-200-200-10 0.000253c 0.01 98.1

102 Chen et al. (2018) unnamed S-STDP 236-20d 0.017 0.16 89

34 Frenkel et al. (2018) ODIN SDSP 256-10 0.000015 - 84.5

101 Lin et al. (2018) Loihi S-STDP 1920-10d 0.553 - 96.4

36 Buhler et al. (2017) unnamed LCA features 256-10 0.000050 0.001c 88

On-chip inference only

Renner et al. (2024)
[This study]

Loihi inference 400-400-10a 0.0025 0.17 96.3 (97.5b)

40 Shrestha et al. (2021) Loihi inference CNN-CNN-100-10 2.47 10 94.7

39 Frenkel et al. (2020) SPOON inference CNN-10 0.000313 0.12 97.5

85 Göltz et al. (2019) BrainScaleS-2 inference 256-246-10 0.0084 0.048 96.9

101 Lin et al. (2018) Loihi inference 1920-10d 0.0128e - 96.4

102 Chen et al. (2018) unnamed inference 784-1024-512-10 0.0017 - 97.9

106 Esser et al. (2015) True North inference CNN (512 neurons) 0.00027 1 92.7

106 Esser et al. (2015) True North inference CNN (3840 neurons) 0.108 1 99.4

107 Stromatias et al. (2015) SpiNNaker inference 784-500-500-10 3.3 11 95

The table includes three relevant classes of literature. Note that the energy-delay productmay be computed from the Energy per Sample and Latency per Sample columns. For a table of simulated
SNN learning algorithms, see Supplementary Table IV. Abbreviations: EM-STDP Error-modulated spike-timing dependent plasticity, DFA Direct feedback alignment, DRTP Direct random target
projection, SD Segregated dendrites, SDSP Spike-driven synaptic plasticity, LCA Locally competitive algorithm.
a400 (20 × 20) corresponds to 784 (28 × 28) after cropping the empty (0-padded) imagemargin of 4 pixels. Including these pixels does not affect accuracy and has aminor effect on inference energy
but roughly doubles energy for training, see Supplementary Table II.
bValue in parentheses is top-1 accuracy read out from last-layer activity (membrane potential) before thresholding.
cCalculated from given values.
dOff-chip preprocessing.
eDynamic energy reported in the Supplementary Material of 82.

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 6

www.nature.com/naturecommunications

networks that achieve such accuracy typically employ a convolutional
structure or multiple larger hidden layers. Additional features such as
dropout, softmax final layers, gain terms, and others could, in princi-
ple, be included in spiking hardware and may also account for this 3%
gap. So, while we show that it is possible to implement back-
propagation on neuromorphic hardware efficiently, several non-trivial
steps are still required to make it usable in practical applications:
1. The algorithm needs to be scaled to deeper networks. While the

present structure is, in principle, scalable to more layers without
considerable adjustments, more investigation is needed to
determine whether gradient information remains intact over
many layers and to what extent additional features, such as
alternatives to batch normalization, may need to be developed.

2. Generalization to convolutional networks is compelling, particu-
larly for image processing applications. The Loihi hardware is
advantageous in this setting because of its weight-sharing
mechanisms.

3. Although our current implementation demonstrates on-chip
learning, we train on the images in an offline fashion by iterating
over the training set in epochs. Further research is required to
develop truly continual learning mechanisms so that additional
samples and classes can be learned without losing previously
trained synaptic weights and without retraining on the whole
dataset.Additionally, the proposed algorithmic methodology can
inform hardware adjustments to promote efficiency for learning
applications. Although it is highly efficient in terms of power
usage, in particular for binary encoding, the Loihi hardware is not
specifically designed for implementing standard deep learning
models, but rather as general-purpose hardware for exploring
different SNN applications82.
This leads to a considerable computational overhead for func-

tions not needed in the proposed model (e.g., neuronal dynamics) or
that could have been realized more efficiently if integrated directly on
the chip instead of using network mechanisms. The proposed model
provides a potential framework to guide future hardware modifica-
tions to facilitate more efficient learning algorithm implementations.
For example, in an upgraded version of the algorithm, relay neurons
could be replaced by presynaptic (eligibility) traces to keep a memory
of the presynaptic activity for the weight update. Furthermore, on the
new version of the Loihi hardware, Loihi 2, graded spikes were
introduced100, which could allow an efficient implementation of the
backpropagation algorithm also for non-binary neural activations.

To our knowledge, this work is the first to show an SNN imple-
mentation of the backpropagation algorithm that is fully on-chip
without a computer in the loop. Other on-chip learning approaches so
far either use feedback alignment40, forward propagation of errors39 or
single layer training32,34,36,101,102. Compared to an equivalent imple-
mentation on a GPU, there is no loss in accuracy but about two orders
of magnitude power savings in the case of small batch sizes, which are
more realistic for edge computing settings. So, this implementation
shows a path for using in-memory, massively parallel neuromorphic
processors for low-power, low-latency implementation of modern
deep learning applications. It can serve as a foundation and baseline
for approaches that approximate backpropagation or implement it
using refined, brain-inspired learning mechanisms, or bespoke cir-
cuitry. Due to its simplicity and explicit representation of all algo-
rithmic elements, novel approaches should at least surpass the given
performance and power metrics. The proposed network model offers
opportunities as a building block that can, e.g., be integrated into
larger SNN architectures that could profit from a trainable on-chip
processing stage.

Methods
In this section,wedescribeour systemon three different levels103. First,
we describe the computational level by fully stating the equations that

result in the intended computation. Second, we describe the spiking
neural network (SNN) algorithm. Third, we describe the details of our
hardware implementation necessary for exact reproducibility.

The binarized backpropagation model
Network Model. The inference (forward) pass through the network is
computed as

o= f ðWNf ðWN�1ð. . . f ðW 1xÞÞÞÞ, ð11Þ

where f is an element-wise nonlinearity and Wi is the weight matrix of
the respective layer. The degree to which the network’s output (o)
deviates from the target values (t) is quantified by the squared error,
E= 1

2 k o� tk2, whichwe aim tominimize. Theweight updates for each
layer are computed recursively by

dl =
ðo� tÞ � f 0ðnlÞ, l =N

WT
l + 1dl + 1 � f 0ðnlÞ, l <N

(
, ð12Þ

∂E
∂Wl + 1

=dl + 1ðdlÞT , ð13Þ

W new
l =Wold

l � η
∂E
∂Wl

, ð14Þ

where nl is the network activity at layer l (i.e., nl =Wlf(Wl−1nl−1)). Here, ’
denotes the derivative, ∘ denotes a Hadamard product, i.e. the
element-wise product of two vectors, T denotes the matrix transpose,
and dl denotes f(Wldl−1), with d0 = x. The parameter η denotes the
learning rate. These general Equations (12)–(14) are realized for two
layers in our implementation as given by Equations (5)–(7) in the
Results section. Below,we relate theseequations to theneuralHebbian
learning mechanism used in the neuromorphic implementa-
tion of nBP.

As the thresholding (Heaviside) activation function is not differ-
entiable, we replace it with a surrogate77,78 rectified linear map (ReLU)
truncated between 0 and 1 (Equation (16)) in the part of the circuit that
affects error backpropagation. The derivative f 0 of the surrogate in
Equation (12) is then a box function, i.e.

f ðxÞ=Hðx� 0:5Þ, ð15Þ

f surrogateðxÞ= minðmaxðx, 0Þ, 1Þ, ð16Þ

f 0ðxÞ=HðxÞ � Hðx� 1Þ, ð17Þ

where H denotes the Heaviside function:

HðxÞ= 0, x<0,

1, x≥0:

�
ð18Þ

The following sectiondescribes howwe implement Equations (11)–(16)
in a spiking neural network.

Weight initialization. Plastic weights are initialized by sampling from a
Gaussian distribution with a mean of 0 and a standard deviation of
1=

ffi
2=ðNfanin +NfanoutÞ

p
(He initialization104). Nfanin denotes the number

of neurons of the presynaptic layer and Nfanout the number of neurons
of the postsynaptic layer.

Input data. The images of the MNIST dataset75 were optionally
cropped by a margin of 4 pixels on each side to remove pixels that
are never active and avoid unused neurons and synapses on the chip.

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 7

www.nature.com/naturecommunications

The pixel values were thresholded with 0.5 to get a black-and-
white image as input to the network. In the case of the
100 − 300 − 10 architecture, the input images were downsampled by
a factor of 2. The dataset was presented in a different random order
in each epoch.

Accuracy calculation. The reported accuracies are calculated on the
MNIST or FMNIST test data set. A sample was counted as correct
when the index of the spiking neuron of the output layer in the
output phase (time step 3 in Fig. 2) is equal to the correct label index
of the presented image. In <1% of cases, there was more than one
spike in the output layer; in that case, the lowest spiking neuron
index was compared.

The neuromorphic backpropagation algorithm
Spiking neuron model. For a generic spiking neuron element, we use
the current-based linear leaky integrate-and-fire model (CUBA). This
model is implemented on Intel’s neuromorphic research processor,
codenamed Loihi8. Time evolution in the CUBAmodel as implemented
on Loihi is described by the discrete-time dynamics with t 2 N, and
time increment Δt ≡ 1:

Viðt + 1Þ=ViðtÞ �
1
τV

V iðtÞ+UiðtÞ+ Iconst, ð19Þ

Uiðt + 1Þ=UiðtÞ �
1
τU

UiðtÞ+
X
j

wijδjðtÞ, ð20Þ

where i identifies the neuron.
The membrane potential V(t) is reset to 0 upon exceeding the

threshold Vthr and remains at its reset value 0 for a refractory period,
Tref. Upon reset, a spike is sent to all connecting synapses. Here, U(t)
represents a neuronal current, and δ represents a time-dependent
spiking input. Iconst is a constant input current.

Parameters and mapping. In our implementation of the back-
propagation algorithm, we take τV = τU = 1, Tref = 0, and Iconst = � 8192
(except in gating neurons, where Iconst = 0). This leads to a mem-
oryless point neuron that spikes whenever its input in the respective
time step exceeds Vthr = 1024. This happens when the neuron
receives synaptic input larger than 0.5 ⋅ Vthr, and in the same time
step, a gating input overcomes the strong inhibition of the Iconst, i.e.,
it is gated ‘on.’ This is how the Heaviside function in Equation (15) is
implemented. For the other activation functions, a different gating
input is applied.

There is a straightforward mapping between the weights and
activations in the spiking neural network (SNN) described in this sec-
tion and the corresponding artificial neural network (ANN) described
in the previous subsection:

wSNN =wANN � V thr, ð21Þ

aSNN =aANN � V thr: ð22Þ

So, a value of Vthr = 1024 allows for a maximal ANN weight of 0.25
because the allowed weights on Loihi are the even integers from
-256 – 254.

Feed-forward pass. The feedforward pass can be seen as an inde-
pendent circuit module that consists of 3 layers: An input layer x with
400 (20 × 20) neurons that spikes according to the binarized MNIST
dataset, a hidden layer h of 400 neurons, and an output layer o of 10
neurons. The three layers are sequentially gated ‘on’ by the gating

chain so that activity travels from the input layer to the hidden layer
through the plastic weight matrixW1 and then from the hidden to the
output layer through the plastic weight matrix W2.

Learning rule. The plastic weights follow the standard Hebbian
learning rule with a global third factor to control the sign. Note,
however, that here, unlike other workwith Hebbian learning rules, due
to the particular activity routed to the layers, the learning rule imple-
ments a supervised mechanism (backpropagation). Here, we give the
discrete update equation as implemented on Loihi:

Δw = 4rðtÞ � xðtÞ � yðtÞ � 2xðtÞ � yðtÞ
= ð2rðtÞ � 1Þ � 2xðtÞyðtÞ, ð23Þ

rðtÞ= 1, if ðtmod TÞ= 5, 7,
0, otherwise :

�
ð24Þ

Above, x, y, and r represent the time series available at the synapse on
the chip. The signals x and y are the pre- and postsynaptic neuron’s
spike trains, i.e., they are equal to 1 in time steps when the respective
neuron fires and 0 otherwise. The signal r is a third factor provided to
all synapses globally. It determines in which phase (potentiation or
depression) the algorithm is in. T denotes the number of phases per
trial, which is 12 in this case. So, r is 0 in all time steps apart from the 5th

and 7th of each iteration, where the potentiation of the weights hap-
pens. This regularly occurring r signal could thus be generated
autonomously using the gating chain.OnLoihi, r is providedusing a so-
called “reinforcement channel". Note that the reinforcement channel
can only provide a global modulatory signal that is the same for all
synapses.

The above learning rule produces a positive weight update in time
steps in which all three factors are 1, i.e., when both pre- and post-
synaptic neurons fire and the reinforcement channel is active. It pro-
duces a negative update when only the pre- and post-synaptic neurons
fire, and the weight stays the same in all other cases.

To achieve the correct weight update according to the back-
propagation algorithm (see Equation (10)), the spiking network has to
be designed in a way that the presynaptic activity al−1,i and the local
gradient dl,j are present in neighboring neurons at the same time step.
Furthermore, the sign of the local gradient has to determine if the
simultaneous activity happens in a time step with active third factor
r or not.

This requires control over the flowof spikes in the network, which
is achieved by a mechanism called synfire gating73,74, which we adapt
and simplify here.

Gating chain. Gating neurons are a separate structure within the
backpropagation circuit and are connected in a ring. That is, the
gating chain is a circular chain of neurons that, once activated,
controls the timing of information processing in the rest of the
network. This allows information routing throughout the network to
be autonomous to realize the benefits of neuromorphic hardware
without the need for control by a classical sequential processor.
Specifically, the neurons in the gating chain are connected to the
relevant layers, allowing them to control when and where informa-
tion is propagated. All layers are inhibited far away from their firing
threshold by default and can only transmit information, i.e., generate
spikes, if their inhibition is neutralized via activation by the gating
chain. Because a neuron only fires if it is gated ‘on’ AND gets suffi-
cient input, such gating corresponds to a logical AND or coincidence
detection with the input.

In our implementation, the gating chain consists of 12 neurons
corresponding to the 12 algorithmic (Loihi) time steps needed to
process one sample. Each neuron is connected to all layers that must

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 8

www.nature.com/naturecommunications

be active in each respective time step. The network layers are con-
nected in the manner shown in Supplementary Fig. 1, but the circuit
structure, which is controlled by the gating chain, results in a func-
tionally connected network as presented in Fig. 2, where the layers are
shown according to the timing of when they become active during one
iteration.

The weight of the standard gating synapses (from one of the
gating neurons to each neuron in a target layer) is
wgate = � Iconst + 0:5V thr, i.e. eachneuron that is gated ‘on’ is brought to
half of its firing threshold, which effectively implements Equation (15).
In four cases, i.e., for the synapses to the start learning layers in time
step 2 (h<) and 3 (o<) and to the backpropagated local gradient layer d1

in time steps 6 and 10, the gating weight iswgate = � Iconst +V thr. In two
cases, i.e., for the synapses to the stop learning layer in time step 2 (h>)
and 3 (o>), the gating weight is wgate = � Iconst. These different gating
inputs lead to step activation functions with different thresholds, as
required for the computations explained in point 3 in the next
paragraph.

Backpropagation network modules. In the previous sections,
we have explained how the weight update happens and how to bring
the relevant values (dl−1 and dl according to Equation (10)) to the
correct place at the correct time. In this section, we discuss
how these values are actually calculated. The signal dl−1, which is the
layer activity from the feedforward pass, does not need to be cal-
culated but only remembered. This is done using a relay layer
with synaptic delays, as explained in point 1 below. The signal d2, the
last layer local gradient, consists of 2 parts according to Equation (5).
The difference between the output and the target o − t (see point 2)
and the box function f 0 must be calculated. We factor the latter into
two terms, a start and stop learning signal (see point 3). The signal d1,
the backpropagated local gradient, also consists of 2 parts, according
to Equation (6). In addition to another ‘start’ and ‘stop’ learning
signal, we need sgnðWT

2d2Þ, whose computation is explained in
point 4.

In the following equation, theweight update is annotatedwith the
number of the paragraph inwhich the calculatingmodule is described:

ΔW2 =η ðo� tÞ
zfflfflffl}|fflfflffl{2:

� f 0ðW2hÞ
zfflfflfflffl}|fflfflfflffl{3:

hT
z}|{1:

,
ð25Þ

ΔW1 =η sgnðWT
2 d2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

4:

� f 0ðW1xÞ|fflfflfflffl{zfflfflfflffl}
3:

xT|{z}
1:

: ð26Þ

1. Relayneurons. Thememoryused to store the activity of the input
and the hidden layer is a single relay layer connected both from
and to the respective layer in a one-to-onemannerwith theproper
delays. The input layer x sends its activity to the relay layermx so
that the activity can be restored in the W1 update phases in time
steps 7 and 11. The hidden layer x sends its activity to the relay
layer mh so that the activity can be restored in the W2 update
phases in time steps 5 and 9.

2. Error calculation. The error calculation requires a representation
of signed quantities, which is not directly possible in a spiking
network because there are no negative spikes. This is achieved
hereby splitting the error evaluation into twoparts, t−o ando− t,
to yield the positive and negative components separately. Simi-
larly, the calculation of back-propagated local gradients, d1, is
performed using a negative copy of the transpose weight matrix,
and it is done in 2 phases for the positive and negative local
gradient, respectively. In the spiking neural network, t − o is
implemented by an excitatory synapse from t and an inhibitory
synapse of the same strength from o, and vice versa for o − t. Like

almost all other nonplastic synapses in the network, the absolute
weight of the synapses is just above the value that makes the
target neuron fire when gated on. However, the difference
between the output and the target is just one part of the local
gradient d2. The other part is the derivative of the activation
function (box function).

3. Start and stop learning conditions. The box function (Equation
(17)) can be split into two conditions: a ‘start’ learning and a ‘stop’
learning condition. These two conditions are calculated in parallel
with the feedforward pass. The feedforward activation
f(x) =H(x −0.5Vthr) corresponding to Equation (1) is an applica-
tion of the spiking threshold to the layer’s input with an offset of
0.5Vthr, which is given by the additional input from the gating
neurons. The first term of the box function (Equation (9)),H(x), is
also an application of the spiking threshold, but this time with an
offset equal to the firing threshold so that any input larger than 0
elicits a spike. We call this first term the ‘start’ learning condition,
and it is represented in h< for the hidden and in o< for the output
layer. The second term of the box function in Equation (9),
− H(x − 1Vthr), is also an application of the spiking threshold, but
this time without an offset so that only an input larger than the
firing threshold elicits a spike. We call this second term the ‘stop’
learning condition, and it is represented in h> and o> for the hid-
den and output layers, respectively. For the W1 update, the two
conditions are combined in a box function layer bh =h< −h> that
then gates the d1 local gradient layer. For theW2 update, the two
conditions are directly applied to the d2 layers because an inter-
mediate bo layer would waste one time step. The function is,
however, the same: the stop learning o> inhibits the d2 layers, and
the ‘start’ learning signal o< gates them. In our implementation,
the two conditions are obtained in parallel with the feedforward
pass, which requires two additional copies of each of the two
weight matrices. To avoid these copies, one could do this com-
putation sequentially, using the synapses and layers of the feed-
forward pass three times per layer with different offsets and then
routing the outputs to their respective destinations. This would,
however, require more time steps.

4. Error backpropagation. Error calculation and gating by the
start learning signal and inhibition by the stop learning signal are
combined in time step 4 to calculate the last layer local gradients
d+
2 and d�

2 . From there, the local gradients are routed into the
output layer and its copies for the last layer weight update. This
happens in 2 phases: The positive local gradient d+

2 is connected
without delay, leading to potentiation of the forward and
backward last layer weight matrices in time step 5. The negative
local gradient is connected with a delay of four time steps so
that it arrives in the depression phase in time step 9. The
opposite delays are used to get a weight update with the
opposite sign for the connections to the oT− layer, which is
connected to the negative copy �WT

2 . See Fig. 2 for a visuali-
zation of this mechanism. Effectively, this leads to the last layer
weight update.

ΔW 2 = ηðHðt� oÞ � f 0ðW 2hÞÞhT

� ηðHðo� tÞ � f 0ðW 2hÞÞhT ,
ð27Þ

where the first term on the right-hand side is non-zero when the
local gradient is positive, corresponding to an update happening
in the potentiation phase, and the second term is nonzero when
the local gradient is negative, corresponding to an update
happening in the depression phase. The functions f and f 0 are as
described in Equations (15) and (9).
The local gradient activation in the output layer does not only
serve the purpose of updating the last layer weights, but it is
also directly used to backpropagate the local gradients.

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 9

www.nature.com/naturecommunications

Propagating the signed local gradients backward through the
network layers requires a positive and negative copy of the
transposed weights, WT

2 and �WT
2 , which are the weight

matrices of the synapses between the output layer o and the
back-propagated local gradient layer d1, and between oT− and
d1, respectively. Here o

T− is an intermediate layer that is created
exclusively for this purpose. The local gradient is propagated
backward in two phases. The part of the local gradient
that leads to potentiation is propagated back in time steps 5
to 7, and the part of the local gradient that leads to depression
of the W1 weights is propagated back in time steps 9 to 11. In
time step 6, the potentiating local gradient is calculated in
layer d1 as

d+
1 =HðWT

2d
+
2 + ð�WT

2 Þd�
2 Þ � bh, ð28Þ

and in timestep 10, the depressing local gradient is calculated in
layer d1 as

d�
1 =Hðð�WT

2 Þd+
2 +WT

2d
�
2 Þ � bh: ð29Þ

Critically, this procedure does not simply separate the weights
by signbutmaintains a complete copyof theweights that is used
to associate appropriate sign information to the back-
propagated local gradient values. Note that here, the Heaviside
activation functionH(x) is used rather than the binary activation
function f =H(x − 0.5 Vthr), so that any positive gradient will
induce an update of the weights. Any positive threshold in this
activation will lead to poor performance by making the learning
insensitive to small gradient values. The transposed weight
copies must be kept in sync with their forward counterparts;
therefore, the updates in the potentiation and depression
phases are applied concurrently to the forward and backward
weights.
So, in total, after each trial, the actual first layer weight update is
the sum of four different parts:

ΔW 1 = ηððHðWT
2d

+
2 + ð�WT

2 Þd�
2 ÞÞ � bhÞxT

� ηððHðð�WT
2 Þd+

2 +WT
2d

�
2 ÞÞ � bhÞxT :

ð30Þ

These four terms are necessary because, e.g., a positive error can
also lead to depression if backpropagated through a negative
weight matrix and vice versa.
Additional details can be found in the Supplementary Methods.

The nBP implementation on Loihi
Partitioning on the chip. To distribute the spike load over cores, neu-
rons of each layer are approximately equally distributedover 96 cores of
a single chip. This distribution is advantageous because only a few layers
are active at each time step, and Loihi processes spikes within a core
sequentially. In total, the network as presented here needs
2Nin+6Nhid+7Nout+12Ngat neurons. With Nin = 400, Nhid = 400, Nout = 10,
and Ngat = 1, these are 3282 neurons and about 200k synapses, most of
which are synapses of the three plastic all-to-all connections between the
input and the hidden layer.

Learning implementation. The learning rule on Loihi is implemented
as given in Equation (23). Because the precision of the plastic weights
on Loihi is maximally 8 bits with a weight range from − 256 – 254, we
can only change the weight in steps of 2 without making the update
non-deterministic. This is necessary for keeping the various copies of
the weights in sync (hence the factor of 2 in Equation (23)). With
Vthr = 1024, this corresponds to a learning rate of η = 2

1024 � 0:002.
The learning rate can be changed by increasing the factor in the
learning rule, which leads to a reduction in usable weight precision,

or by changing the weight exponent (a factor that scales the weight
by powers of 2) or Vthr, which changes the range of possible weights
according to Equations (21) and (22). The range of possible learning
rates is therefore limited and may reduce the achievable accuracy in
this setting. Several learning rates (settings of Vthr) were tested with
the result that the final accuracy is not very sensitive to small chan-
ges. The learning rate that yielded the best accuracy within the
possible range is reported here. In the NxSDK API, the neuron traces
that are used for the learning rule are x0, y0, and r1 for x(t), y(t) and
r(t) in Equation (23) respectively. r1 was used with a decay time
constant of 1 so that it is only active in the respective time step,
effectively corresponding to r0. To provide the r signal, a single
reinforcement channel was used and activated by a regularly firing
spike generator in steps 5 and 7.

Weight initialization. After the He initialization as described in the
model section of the methods, the weights are mapped to Loihi
weights according to Equations (21) and (22). Then, the weights are
truncated to the interval [− 240, 240] and discretized to 8-bit reso-
lution, i.e., steps of 2, by rounding them to the next valid number
towards 0. The truncation was performed to discourage weights close
to the margin of the 8-bit range as the positive and negative weight
copies get out of sync when the negative weight goes to -256while the
positive is limited to 254. This happened rarely with a minor effect on
learning and was corrected every epoch.

Power measurements. All Loihi power measurements are obtained
using NxSDK version 0.9.9 on the Nahuku32 board ncl-ghrd-01. Both
software API and hardware were provided by Intel Labs. All other
probes, including theoutput probes, are deactivated. For the inference
measurements, we use a network consisting only of the three feed-
forward layers with non-plastic weights and the gating chain of four
neurons. The power was measured for the first 10, 000 samples of the
training set for the training measurements and all 10, 000 samples of
the test set for the inference measurements.

ANN simulation
Tensorflow FMNIST baseline. Since there is no accuracy data for the
binarized Fashion MNIST (FMNIST) dataset in the literature, we
conducted experiments using a simple ANN on the regular and
binarized datasets. The network achieved a test accuracy of 84.4% on
the binarized dataset and 88.4% on the regular dataset. The
FMNIST dataset comprises grayscale images of 10 different classes of
clothing items. Based on these results, we conclude that binarizing
the images leads to a reduction in accuracy. However, for the MNIST
dataset, comparisons were made using the regular dataset, as
binarization does not significantly impact the classification of hand-
written digits.

The experiments were implemented in Python 3.8 using Ten-
sorFlow Keras 2.4.0. Like the network on Loihi, we use an archi-
tecture with a single hidden layer (784-400-10). The network was
trained using sparse categorical cross-entropy loss and the stochas-
tic gradient descent (SGD) optimizer with a fixed learning rate of 0.01
for 40 epochs. We report the learning rate that led to the best
accuracy, architecture and optimizer were chosen to match our
network on Loihi. However, the ANN was not quantized or
constrained.

Data availability
No data was collected in this work. The MNIST and Fashion MNIST
datasets used to evaluate the network are publicly available.

Code availability
The source code for the Loihi implementation of the nBP algorithm105

is available on GitHub at https://github.com/lanl/spikingBackprop.

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 10

https://github.com/lanl/spikingBackprop
www.nature.com/naturecommunications

References
1. Linnainmaa, S. The representation of the cumulative rounding

error of an algorithm as a Taylor expansion of the local rounding
errors. BIT Numer. Math. 16, 146–160 (1970).

2. Werbos, P. Beyond Regression:" New Tools for Prediction and
Analysis in theBehavioral Sciences.https://perceptrondemo.com/
assets/PJW_thesis_Beyond_Regression_1974-4b63aa5f.pdf (1974).

3. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning Internal
Representations by Error Propagation. http://www.dtic.mil/docs/
citations/ADA164453 (1985).

4. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G.
Backpropagation and the brain. Nat. Rev. Neurosci. 21,
335–346 (2020).

5. Roelfsema, P. R. & Holtmaat, A. Control of synaptic plasticity
in deep cortical networks. Nat. Rev. Neurosci. 19, 166–180
(2018).

6. Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning
models to understand sensory cortex. Nat. Neurosci. 19,
356–365 (2016).

7. Mead, C. Neuromorphic electronic systems. Proc. IEEE 78,
1629–1636 (1990).

8. Davies, M. et al. Loihi: A neuromorphic manycore processor with
on-chip learning. IEEE Micro. 38, 82–99 (2018).

9. Esser, S. et al. Convolutional networks for fast, energy-efficient
neuromorphic computing. Proc. Natl Acad. Sci. USA 113,
11441–11446 (2016).

10. Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M. & Liu, S.-C. Con-
version of continuous-valued deep networks to efficient event-
driven networks for image classification. Front. NeuroscI. 11,
682 (2017).

11. Severa, W., Vineyard, C. M., Dellana, R., Verzi, S. J. & Aimone, J. B.
Training deep neural networks for binary communication with the
Whetstone method. Nat. Mach. Intell. 1, 86–94 (2019).

12. Grossberg, S. Competitive learning: from interactive activation to
adaptive resonance. In Connectionist Models and Their Implica-
tions: Readings fromCognitive Science. (eds.Waltz, D. & Feldman,
J. A.) 243–283 (Ablex Publishing Corp., Norwood, NJ, USA, 1988).

13. Crick, F. The recent excitement about neural networks. Nature
337, 129–132 (1989).

14. Painkras, E. et al. SpiNNaker: A multi-core system-on-chip for
massively-parallel neural net simulation. In Proc. IEEE 2012 Cus-
tom Integrated Circuits Conference (IEEE, 2012).

15. Schemmel, J. et al. A wafer-scale neuromorphic hardware system
for large-scale neural modeling. In Proc. IEEE 2010 IEEE Interna-
tional Symposium on Circuits and Systems (IEEE, 2010).

16. Qiao, N. et al. A reconfigurable on-line learning spiking neuro-
morphic processor comprising 256 neurons and 128k synapses.
Front. Neurosci. 9, 141 (2015).

17. Grossberg, S. Competitive learning: from interactive activation to
adaptive resonance. Cogn. Sci. 11, 23–63 (1987).

18. Liao, Q., Leibo, J. & Poggio, T. How important is weight symmetry
in backpropagation? In Proc. AAAI Conference on Artificial Intelli-
gence. (IEEE, 2016).

19. Bohte, S. M., Kok, J. N. & La Poutré, H. Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomput-
ing 48, 17–37 (2002).

20. Pfister, J.-P., Toyoizumi, T., Barber, D. & Gerstner, W. Optimal
spike-timing-dependent plasticity for precise action potential fir-
ing in supervised learning. Neural Comput. 18, 1318–1348 (2006).

21. Wu, Y., Deng, L., Li, G., Zhu, J. & Shi, L. Spatio-temporal back-
propagation for training high-performance spiking neural net-
works. Front. Neurosci. 12, 331 (2018).

22. Zenke, F. & Ganguli, S. Superspike: Supervised learning in multi-
layer spiking neural networks.Neural Comput. 30, 1514–1541 (2018).

23. Huh, D. & Sejnowski, T. J. Gradient descent for spiking neural
networks. Adv. Neural Inform. Process. Syst. https://doi.org/10.
48550/arXiv.1706.04698 (2018).

24. Zhang, W. & Li, P. Temporal spike sequence learning via back-
propagation for deep spiking neural networks. Adv. Neural Inform.
Process. Syst. 33, 12022–12033 (2020).

25. Rasmussen, D. Nengodl: Combining deep learning and neuro-
morphicmodellingmethods.Neuroinformatics 17, 611–628 (2019).

26. Sengupta, A., Ye, Y., Wang, R., Liu, C. & Roy, K. Going deeper in
spiking neural networks: VGG and residual architectures. Front.
Neurosci. 13, 95 (2019).

27. Shrestha, S. B. & Orchard, G. Slayer: Spike layer error reassign-
ment in time.Adv. Neural Inform. Process. Syst. https://doi.org/10.
48550/arXiv.1810.08646 (2018).

28. Boeshertz, G., Indiveri, G., Nair, M. & Renner, A. Accuratemapping
of RNNs on neuromorphic hardware with adaptive spiking neu-
rons. Int. Conf. Neuromorphic Syst. https://arxiv.org/pdf/2407.
13534 (2024).

29. Rueckauer, B. et al. Nxtf: An API and compiler for deep spiking
neural networks on intel Loihi. ACM J. Emerg. Technoll. Comput.
Syst. (JETC) 18, 1–22 (2022).

30. Bu, T. et al. Optimal ANN-SNN conversion for high-accuracy and
ultra-low-latency spiking neural networks. In Proc. 10th Interna-
tional Conference on Learning Representations (ICLR, 2022).

31. Wang, Z. et al. Toward high-accuracy and low-latency spiking
neural networks with two-stage optimization. IEEE Transactions on
Neural Networks and Learning Systems (IEEE, 2023).

32. Stewart, K., Orchard, G., Shrestha, S. B. & Neftci, E. On-chip few-
shot learning with surrogate gradient descent on a neuromorphic
processor. In 2020 2nd IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS) 223–227 (IEEE, 2020).

33. DeWolf, T., Jaworski, P. & Eliasmith, C. Nengo and low-power AI
hardware for robust, embeddedneurorobotics. Front. Neurorobot.
https://doi.org/10.3389/fnbot.2020.568359 (2020).

34. Frenkel, C., Lefebvre, M., Legat, J.-D. & Bol, D. A 0.086-mm 212.7-
pj/sop 64k-synapse 256-neuron online-learning digital spiking
neuromorphic processor in 28 nm cmos. IEEE Trans. Biomed. Circ.
Syst. 13, 145–158 (2018).

35. Kim, J. K., Knag, P., Chen, T. & Zhang, Z. A 640m pixel/s 3.65 mw
sparse event-driven neuromorphic object recognition processor
with on-chip learning. In 2015 Symposium on VLSI Circuits (VLSI
Circuits) C50–C51 (IEEE, 2015).

36. Buhler, F. N. et al. A 3.43 tops/w 48.9 pj/pixel 50.1 nj/classification
512 analog neuron sparse coding neural network with on-chip
learning and classification in 40nm cmos. In 2017 Symposium on
VLSI Circuits C30–C31 (IEEE, 2017).

37. Park, J., Lee, J. & Jeon, D. 7.6 a 65nm 236.5 nj/classification neu-
romorphic processor with 7.5% energy overhead on-chip learning
using direct spike-only feedback. In 2019 IEEE International Solid-
State Circuits Conference-(ISSCC) 140–142 (IEEE, 2019).

38. Nandakumar, S. et al. Experimental demonstration of supervised
learning in spiking neural networks with phase-change memory
synapses. Sci. Rep. 10, 1–11 (2020).

39. Frenkel, C., Legat, J.-D. & Bol, D. A 28 nm convolutional neuro-
morphic processor enabling online learning with spike-based
retinas. In 2020 IEEE International Symposium on Circuits and
Systems (ISCAS) (IEEE, 2020).

40. Shrestha, A., Fang, H., Rider, D., Mei, Z. & Qui, Q. In-hardware
learning of multilayer spiking neural networks on a neuromorphic
processor. In 2021 58th ACM/ESDA/IEEE Design Automation
Conference (DAC) (IEEE, 2021).

41. Imam, N. & Cleland, T. A. Rapid online learning and robust recall
in a neuromorphic olfactory circuit. Nat. Mach. Intell. 2, 181–191
(2020).

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 11

https://perceptrondemo.com/assets/PJW_thesis_Beyond_Regression_1974-4b63aa5f.pdf
https://perceptrondemo.com/assets/PJW_thesis_Beyond_Regression_1974-4b63aa5f.pdf
http://www.dtic.mil/docs/citations/ADA164453
http://www.dtic.mil/docs/citations/ADA164453
https://doi.org/10.48550/arXiv.1706.04698
https://doi.org/10.48550/arXiv.1706.04698
https://doi.org/10.48550/arXiv.1810.08646
https://doi.org/10.48550/arXiv.1810.08646
https://arxiv.org/pdf/2407.13534
https://arxiv.org/pdf/2407.13534
https://doi.org/10.3389/fnbot.2020.568359
www.nature.com/naturecommunications

42. Friedmann, S. et al. Demonstrating hybrid learning in a flexible
neuromorphic hardware system. IEEE Trans. Biomed. Circuits
Systems 11, 128–142 (2016).

43. Nandakumar, S. et al. Mixed-precision deep learning based on
computational memory. Front. Neurosci. 14, 406 (2020).

44. Pehle, C., Blessing, L., Arnold, E., Müller, E. & Schemmel, J. Event-
based backpropagation for analog neuromorphic hardware. arXiv
https://doi.org/10.48550/arXiv.2302.07141 (2023).

45. Payvand, M., Fouda, M. E., Kurdahi, F., Eltawil, A. M. & Neftci, E. O.
On-chip error-triggered learning of multi-layer memristive spiking
neural networks. IEEE J. Emerg. Selected Topics Circuits Syst. 10,
522–535 (2020).

46. Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A. & Naud, R.
Burst-dependent synaptic plasticity can coordinate learning in
hierarchical circuits. Nat. Neurosci. 24, 1010–1019 (2021).

47. Bellec, G. et al. A solution to the learning dilemma for recurrent
networks of spiking neurons. Nat. Commun. 11, 3625 (2020).

48. Sacramento, J., Costa, R. P., Bengio, Y. & Senn, W. Dendritic cor-
tical microcircuits approximate the backpropagation algorithm.
Adv. Neural Inform. Process. Syst. https://doi.org/10.48550/arXiv.
1810.11393 (2018).

49. Stork, D. G. Is backpropagation biologically plausible? In Interna-
tional Joint Conference on Neural Networks, 241–246 (IEEE
Washington, DC, 1989).

50. Zipser, D. & Rumelhart, D. The neurobiological significance of the
new learning models. In Computational Neuroscience (ed.
Schwartz, E. L.) 192—200 (The MIT Press, 1990).

51. Lee, D.-H., Zhang, S., Fischer, A. & Bengio, Y. Difference target
propagation. In Machine Learning and Knowledge Discovery in
Databases (ed. Appice, A. et all.) 498–515 (Springer International
Publishing, Cham, 2015).

52. O’Reilly, R. C. Biologically plausible error-driven learning using
local activation differences: The generalized recirculation algo-
rithm. Neural Comput. 8, 895–938 (1996).

53. Kolen, J. &Pollack, J. Backpropagationwithoutweight transport. In
Proc. 1994 IEEE International Conference on Neural Networks
(ICNN’94) 1375–1380 (IEEE, 1994).

54. Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T. & Tweed, D. B.
Deep learning without weight transport. In Advances in Neural
Information Processing Systems, (ed.Wallach, H. et al.) 32 (Curran
Associates, Inc., 2019).

55. Boone, R., Zhang, W. & Li, P. Efficient biologically-plausible train-
ing of spiking neural networks with precise timing. In International
Conference on Neuromorphic Systems 2021, ICONS 2021 (Asso-
ciation for Computing Machinery, NY, 2021).

56. Lillicrap, T. P., Cownden, D., Tweed, D. B. &Akerman, C. J. Random
synaptic feedback weights support error backpropagation for
deep learning. Nat. Commun. 7, 1–10 (2016).

57. Liao, Q., Leibo, J. Z. & Poggio, T. How important is weight
symmetry in backpropagation? In Proc. Thirtieth AAAI Con-
ference on Artificial Intelligence, AAAI’16, 1837–1844 (AAAI
Press, 2016).

58. Richards, B. A. & Lillicrap, T. P. Dendritic solutions to the
credit assignment problem. Curr. Opin. Neurobiol. 54,
28–36 (2019).

59. Max, K. et al. Learning efficient backprojections across cortical
hierarchies in real time. Nat. Mach. Intell. https://doi.org/10.
48550/arXiv.2212.1024 (2024).

60. O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T. & Pfeiffer, M. Real-
time classification and sensor fusion with a spiking deep belief
network. Front. Neurosci. 7, 178 (2013).

61. Kim, R., Li, Y. & Sejnowski, T. J. Simple framework for constructing
functional spiking recurrent neural networks. Proc. Natl Acad. Sci.
USA 116, 22811–22820 (2019).

62. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in
spiking neural networks. IEEE Signal Process. Mag. 36, 61–63 (2019).

63. Izhikevich, E. M. Solving the distal reward problem through link-
age of STDP and dopamine signaling. Cerebral Cortex 17,
2443–2452 (2007).

64. Sporea, I. & Grüning, A. Supervised learning in multilayer spiking
neural networks. Neural Comput. 25, 473–509 (2013).

65. Legenstein, R., Pecevski, D. & Maass, W. A learning theory for
reward-modulated spike-timing-dependent plasticity with appli-
cation to biofeedback. PLoS Comput. Biol. 4, e1000180 (2008).

66. Frémaux, N. & Gerstner, W. Neuromodulated spike-timing-
dependent plasticity, and theory of three-factor learning rules.
Front. Neural Circ. 9, 85 (2015).

67. Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. &
Maida, A. Deep learning in spiking neural networks. Neural
Netwk.111, 47–63 (2019).

68. Sornborger, A., Tao, L., Snyder, J. & Zlotnik, A. A pulse-gated,
neural implementation of the backpropagation algorithm. In Proc.
7th Annual Neuro-inspired Computational Elements Workshop 10
(ACM, 2019).

69. Sornborger, A., Wang, Z. & Tao, L. A mechanism for graded,
dynamically routable current propagation in pulse-gated synfire
chains and implications for information coding. J. Comput. Neu-
rosci. 39, 181–95 (2015).

70. Wang, Z., Sornborger, A. & Tao, L. Graded, dynamically routable
information processing with synfire-gated synfire chains. PLoS
Comp. Biol. 12, 6 (2016).

71. Wang, C., Xiao, Z., Wang, Z., Sornborger, A. T. & Tao, L. A Fokker-
Planck approach to graded information propagation in pulse-
gated feedforward neuronal networks. arXiv https://doi.org/10.
48550/arXiv.1512.00520 (2015).

72. Xiao, Z.,Wang, B., Sornborger, A. & Tao, L. Mutual information and
information gating in synfire chains. Entropy 20, 102 (2018).

73. Shao, Y., Sornborger, A. & Tao, L. A pulse-gated, predictive neural
circuit. In Proc. 50thAsilomar Conference on Signals, Systems and
Computers, 1051–1055 (Pacific Grove, CA, 2016).

74. Shao, Y., Wang, B., Sornborger, A. T. & Tao, L. A mechanism for
synaptic copy between neural circuits. Neural Comput. 31,
1964–1984 (2019).

75. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based
learning applied to document recognition. Proc. IEEE 86,
2278–2324 (1998).

76. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms. arXiv
https://doi.org/10.48550/arXiv:1708.07747 (2017).

77. Bengio, Y., Léonard, N. & Courville, A. Estimating or propagating
gradients through stochastic neurons for conditional computa-
tion. arXiv https://doi.org/10.48550/arXiv:1308.3432 (2013).

78. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y.
Binarized neural networks. In Adv. Neural Inform. Process. Syst.
4107–4115 (Barcelona, 2016).

79. Hebb, D. The Organization of Behavior: A Neuropsychological
Approach Vol. 378 (John Wiley & Sons, 1949).

80. Sornborger, A. & Tao, L. Exact, dynamically routable current pro-
pagation in pulse-gated synfire chains. arXiv https://doi.org/10.
48550/arXiv:1410.1115 (2014).

81. Senn, W. & Fusi, S. Learning only when necessary: better mem-
ories of correlated patterns in networks with bounded synapses.
Neural Comput. 17, 2106–2138 (2005).

82. Davies, M. et al. Advancing Neuromorphic Computing with Loihi: A
Survey of Results and Outlook (IEEE, 2021).

83. Stöckl, C. & Maass, W. Optimized spiking neurons can classify
images with high accuracy through temporal coding with two
spikes. Nat. Mach. Intell. 3, 230–238 (2021).

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 12

https://doi.org/10.48550/arXiv.2302.07141
https://doi.org/10.48550/arXiv.1810.11393
https://doi.org/10.48550/arXiv.1810.11393
https://doi.org/10.48550/arXiv.2212.1024
https://doi.org/10.48550/arXiv.2212.1024
https://doi.org/10.48550/arXiv.1512.00520
https://doi.org/10.48550/arXiv.1512.00520
https://doi.org/10.48550/arXiv:1708.07747
https://doi.org/10.48550/arXiv:1308.3432
https://doi.org/10.48550/arXiv:1410.1115
https://doi.org/10.48550/arXiv:1410.1115
www.nature.com/naturecommunications

84. Baddeley, R. et al. Responses of neurons in primary and inferior
temporal visual cortices to natural scenes.Proc. R. Soc. B. Biol. Sci.
264, 1775–1783 (1997).

85. Göltz, J. et al. Fast and energy-efficient neuromorphic deep
learningwithfirst-spike times.Nat. Mach. Intell. 3, 823–835 (2021).

86. Comsa, I.M. et al. Temporal coding in spikingneural networkswith
alpha synaptic function. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP)
8529–8533 (IEEE, 2020).

87. Rueckauer, B. & Liu, S.-C. Conversion of analog to spiking neural
networks using sparse temporal coding. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 1–5 (IEEE, Florence,
Italy, 2018).

88. Neftci, E. et al. Synthesizing cognition in neuromorphic electronic
systems. Proc. Natl Acad. Sci. 110, E3468–E3476 (2013).

89. Baumgartner, S. et al. Visual pattern recognition with on on-chip
learning: towards a fully neuromorphic approach. In Proc. IEEE
International Symposium on Circuits and Systems (ISCAS)
(IEEE, 2020).

90. Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike synchroni-
zation and ratemodulation differentially involved inmotor cortical
function. Science 278, 1950–1953 (1997).

91. Abeles, M., Bergman, H., Margalit, E. & Vaadia, E. Spatiotemporal
firing patterns in the frontal cortex of behaving monkeys. J. Neu-
rophysiol. 70, 1629–1638 (1993).

92. Hahnloser, R. H., Kozhevnikov, A. A. & Fee, M. S. An ultra-sparse
code underlies the generation of neural sequences in a songbird.
Nature 419, 65–70 (2002).

93. Ikegaya, Y. et al. Synfire chains and cortical songs: temporal
modules of cortical activity. Science 304, 559–564 (2004).

94. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural
sequences in hippocampal place cells during the awake state.
Nature 440, 680–683 (2006).

95. Rajan, K., Harvey, C. D. & Tank, D. W. Recurrent networkmodels of
sequence seneration and memory. Neuron 90, 128–142 (2016).

96. Pang, R. & Fairhall, A. L. Fast and flexible sequence induction in
spiking neural networks via rapid excitability changes. Elife 8,
e44324 (2019).

97. Malvache, A., Reichinnek, S., Villette, V., Haimerl, C. & Cossart, R.
Awake hippocampal reactivations project onto orthogonal neu-
ronal assemblies. Science 353, 1280–1283 (2016).

98. Luczak, A., McNaughton, B. L. & Harris, K. D. Packet-based com-
munication in the cortex. Nat. Rev. Neurosci. 16, 745–755 (2015).

99. Simons, T. & Lee, D.-J. A review of binarized neural networks.
Electronics 8, 661 (2019).

100. Orchard, G. et al. Efficient neuromorphic signal processing with
Loihi 2. In 2021 IEEE Workshop on Signal Processing Systems
(SiPS), 254–259 (IEEE, 2021).

101. Lin, C.-K. et al. Programming spiking neural networks on Intel’s
Loihi. Computer 51, 52–61 (2018).

102. Chen, G. K., Kumar, R., Sumbul, H. E., Knag, P. C. & Krishnamurthy,
R. K. A 4096-neuron 1m-synapse 3.8-pj/sop spiking neural net-
work with on-chip STDP learning and sparse weights in 10 nm
FinFET CMOS. IEEE J. Solid State Circ. 54, 992–1002 (2018).

103. Marr, D. & Poggio, T. From understanding computation to under-
standing neural circuitry. Tech. Rep. http://hdl.handle.net/1721.1/
5782 (1976).

104. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers:
surpassing human-level performance on imagenet classification.
In Proc. IEEE international conference on computer vision,
1026–1034 (IEEE, 2015).

105. Sornborger, A. & Renner, A. Neuromorphic backpropagation
algorithm software. Comput. Softw. https://doi.org/10.11578/dc.
20220509.6 (2022).

106. Esser, S. K., Appuswamy, R.,Merolla, P., Arthur, J. V.&Modha, D. S.
Backpropagation for energy-efficient neuromorphic computing.
Adv. Neural InforM. Proc. Syst. 28, 1117–1125 (2015).

107. Stromatias, E. et al. Scalable energy-efficient, low-latency imple-
mentations of trained spiking deep belief networks on spinnaker.
In 2015 International Joint Conference onNeural Networks (IJCNN),
1–8 (IEEE, 2015).

Acknowledgements
This work was carried out at Los Alamos National Laboratory under the
auspices of the National Nuclear Security Administration of the U.S.
Department of Energy under Contract No. 89233218CNA000001—
SEEK: Scoping neuromorphic architecture impact enabling advanced
sensing capabilities (A.Z.). Additional funding was provided by the
LANL ASC Beyond Moore’s Law program (A.T.S.), the ASCR/CRCNS
program - Neural Signatures of Learning in the What and Where
Pathways (A.T.S.), and by LDRD Reserve Project 20180737ER - Neuro-
morphic Implementation of the Backpropagation Algorithm (A.T.S.,
A.R.). L.T. acknowledges support from the Natural Science Foundation
of China Grant No. 91232715. L.T. was partially supported by the
STI2030-Major Projects (No. 2022ZD0204600) and the Natural
Science Foundation of China through Grant No. 31771147. L.T. and A.R.
thank the Los Alamos National Laboratory for its hospitality. A.R.
acknowledges support from the Swiss National Science Foundation
(SNSF) grant Ambizione PZOOP2 168183 ELMA and the University of
Zurich postdoc grant FK-21-136. F.S. carried out work under the kind
support of the Center for Nonlinear Studies fellowship and final pre-
parations at the London Institute for Mathematical Sciences. The
authors thank Intel Labs for providing support and access to the Loihi
API and hardware.

Author contributions
The authors contributed equally to the methodology presented here.
Alpha Renner adapted and implemented the algorithm on Intel’s Loihi
chip. Alpha Renner, Forrest Sheldon, and Anatoly Zlotnik formalized
neuromorphic information-processing mechanisms, implemented the
algorithm in simulation and hardware, and developed figures. All
authors wrote the manuscript, with Renner, Sheldon, and Zlotnik doing
the bulk of the writing. Andrew Sornborger and Anatoly Zlotnik super-
vised the research, and Sornborger and Louis Tao developed the con-
cepts and algorithmic basis of the neuromorphic backpropagation
algorithm and circuit structure. Sornborger and Tao conceived of the
overall project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-53827-9.

Correspondence and requests for materials should be addressed to
Andrew Sornborger.

Peer review informationNatureCommunications thanks JamesAimone,
Anthony Maida and Richard Boone reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 13

http://hdl.handle.net/1721.1/5782
http://hdl.handle.net/1721.1/5782
https://doi.org/10.11578/dc.20220509.6
https://doi.org/10.11578/dc.20220509.6
https://doi.org/10.1038/s41467-024-53827-9
http://www.nature.com/reprints
www.nature.com/naturecommunications

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-53827-9

Nature Communications | (2024) 15:9691 14

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	The backpropagation algorithm implemented on spiking neuromorphic hardware
	Results
	The binarized nBP model
	nBP on Neuromorphic Hardware
	Algorithm performance

	Discussion
	Methods
	The binarized backpropagation model
	Network Model
	Weight initialization
	Input data
	Accuracy calculation

	The neuromorphic backpropagation algorithm
	Spiking neuron model
	Parameters and mapping
	Feed-forward pass
	Learning rule
	Gating chain
	Backpropagation network modules

	The nBP implementation on Loihi
	Partitioning on the chip
	Learning implementation
	Weight initialization
	Power measurements

	ANN simulation
	Tensorflow FMNIST baseline

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

