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Abstract

The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated
Einstein’s relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of
thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems,
equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own ‘‘effective’’ temperature. With mixed
timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical
nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study
experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a
rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from
a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein’s relation holds in the former and is
violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute
it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental
measurements confirm the development of spatial correlations in the system when the density is increased.
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Introduction

Several fundamental results of statistical mechanics are obtained

under the crucial assumption of thermal equilibrium. A celebrated

example of the power of the equilibrium hypothesis is given by the

theoretical treatment of Brownian motion developed by Einstein at

the beginning of the 20th century [1]. Such a hypothesis imposes

symmetry under time-reversal and offers crucial shortcuts in

computations. For instance, in calculating the self-diffusion

coefficient, thermal equilibrium provides a simple expression for

the osmotic pressure of suspended particles. Later, in Langevin’s

approach, the simplification comes from the energy equipartition

which determines straightforwardly the mean kinetic energy of

Brownian particles. The subsequent evolution of the linear

response theory has been entirely based upon equilibrium which

is the root of the celebrated Fluctuation-Dissipation Theorem

(FDT) [2]. This theorem states that whenever an equilibrium

system with Hamiltonian H, at temperature T, is perturbed in such

a way that its Hamiltonian changes into Hz H(t), with

H(t)~A(t)|B(t) (B being a state function of the system,

coupled with the external force A(t)), then the mean linear

response for the average time evolution of an observable O(t)
reads

dO(t)

dA(s)
~

1

kBT
SO(t)

d

ds
B(s)T, ð1Þ

where SOT is the average of the unperturbed system, O is the

perturbed one and kB is the Boltzmann’s constant. If the system is

invariant for time-translations, in Eq. (1) the times t and s may be

replaced by t{s and 0, respectively. The FDT is a powerful tool

which allows the computation of the effect of small external forces,

for instance all transport coefficients, while ignoring such forces. If,

for instance, the system is perturbed by an impulse F (t) at time 0,

with F (t)~mdv(0)d(t) (which in the Hamiltonian appears coupled

with {x(t)) applied to a particle of mass m, position x(t) and

velocity v(t), the FDT reads

dv(t)

mdv(0)
~

1

kBT
Sv(t)v(0)T: ð2Þ

Eq. (2), time-integrated in ½0,?), returns Einstein’s relation

between diffusivity and mobility.

Recently, it has been shown that even in out-of-equilibrium

systems a relation between response and spontaneous fluctuations

still exists [3,4] which takes a more complicated form than the one

at equilibrium. An important instance is represented by spin and

structural glasses which, cooled below the glass transition

temperature, display an extremely slow relaxation called aging

[5]. A fundamental observation is that, in some cases, timescales of

relevant degrees of freedom are separated into almost perfectly

isolated classes, i.e. very fast and very slow evolutions, and an
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appropriate description of the system can be formulated by

introducing the concept of ‘‘effective’’ temperature [6]. For

instance, in several models, it has been shown that the FDT, Eq.

(1), can be considered as a good approximation, by replacing T

with an effective time-dependent temperature Teff (t,s) which, for

large times, assumes a thermodynamic meaning [7]. Experimental

verifications of this scenario have been reported [8,9]. For driven

systems, like fluids under shear, the effective temperature scenario

is expected to hold for slow energy flows, namely for slight stirring

(which corresponds to the large time limit of glassy models). In

particular, this is the case of weakly shaken ‘‘glassy’’ granular

media, with density close to jamming [10,11].

Often in nonequilibrium systems the different timescales are not

clearly separated and the picture in terms of effective temperature

does not hold. Instances of this entanglement of scales appear in

climate and turbulence [3], as well as among the so-called active

fluids. They include compounds of actine filaments, swarms of

bacteria, bird flocks or fish schools, assemblies of micro-electro-

mechanical systems, collective human dynamics (pedestrians,

traffic and so on) [12,13]. The validity of the concept of effective

temperature in active matter is under intense debate, with positive

[14,15] and negative [16,17] answers. Several general approaches

to the FDT in nonequilibrium systems have been proposed

recently [3,18,19]. Some of these stress the relevance of the

unperturbed statistical distribution in phase space which, as a rule,

includes both non-Gibbsian contributions and dynamical cou-

plings with usually no role in the FDT at equilibrium. Others,

connecting the FDT to entropy production and to the so-called

dynamical activity, give more importance to the statistical distribution

in path space and its simmetries under time-reversal [19]. The

formulation of the FDT used in this paper [3], called Generalized

FDT (GFDT), for the sake of simplicity here expressed in terms of

an impulsive force and velocity measurement, reads.

dv(t)

dv(0)
~{Sv(t)

L ln P(v,:::)

Lv

����
t~0

T, ð3Þ

where P(v,:::) is the unperturbed steady state distribution in the

whole phase space, involving all the relevant variables, that is not

only the perturbed particle but all the surrounding particles of the

fluid. It is clear that at equilibrium, where P(v,:::)!e{H(v,:::)=(kBT),

the impulsive form of Einstein’s relation, Eq. (2), is recovered.

Results and Discussion

A paradigmatic case in which Eq. (3) can be tested is that of

strongly fluidized granular media [20] for which the overall effect

of the energy injection mechanism and the presence of energy

exchanges on different space- or time-scales can induce complex

behaviors. In such systems, interactions among particles are

dissipative due to the energy loss during the collisions and an

external source is necessary in order to sustain a fluid stationary

state. A strict analogy with simple Brownian motion was shown in

a previous work analysing the rotational motion of a torsion

oscillator immersed in a dense granular fluid [21]. By measuring

noise and susceptibility in the system, the authors found that an

effective description can be obtained within the equilibrium

formalism and showed that the shaken granular medium acts as a

‘‘thermal’’ bath satisfying the FDT. Here, we consider a new

experiment, described in Figure

further details), where a rotating wheel performs granular

Brownian motion immersed in a shaken granular media [22]

and is weakly perturbed by the impulsive action of a small motor.

The motor is switched on for a very short lapse of time, and exerts

– at an arbitrary time set to 0 – a variation of the wheel’s angular

velocity dv(0). We explore the range of low and medium densities

(up to a maximum of 15% of packing fraction) in order to assess

multiscale regimes not considered previously [21].

Linear Response
The measurements of interest in our experiment are the

response of the angular velocity v of the wheel to the perturbation,

R(t):dv(t)=dv(0), and the time-correlations of the unperturbed

signal v(t), in primis the classical auto-correlation

C(t) ~Sv(t)v(0)T. In Fig. 2, for different values of the gas

density, we show the results for R(t) superimposed to C(t)=C(0).
In the dilute limit, panel (a), correlations and response functions

are very close, so that R(t)&C(t)=C(0) with slight departures

which we ascribe to the large noise of the response signal. This

observation, even more compelling in the inset of Fig.

a parametric plot R vs C, is equivalent to verifying Einstein’s

relation, Eq. (2). Note that, normalizing the response function, the

measurement of a proportionality factor 1=C(0)~1=Sv2T is

inevitable even if equipartition is not satisfied (indeed, ISv2TvTg

because of inelastic collisions, where I is the momentum of inertia

of the wheel and Tg is the granular kinetic temperature). The fact

that a Brownian particle suspended in a dilute granular fluid

behaves as if it were at equilibrium has been observed before [23]:

the separation of scales guaranteed by diluteness allows the

Figure 1. Experimental setup. A sketch of the setup illustrates the
essential components. A wheel rotating around a fixed axis is
suspended in a cylindrical cell containing steel spheres. The cell is
shaken in order to fluidize the material and obtain a granular gas. The
wheel performs a Brownian-like dynamics, randomly excited by
collisions with the spheres. A small motor is coupled to the wheel
axis, in order to apply an external impulsive perturbation. An angular
encoder reads the angular velocity of the wheel. Statistical properties of
the velocities of the spheres are collected through a fast camera, placed
above the system. A detailed description is presented in Methods
section.
doi:10.1371/journal.pone.0093720.g001
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granular gas to be considered almost independent upon the

dynamics of the wheel; such a decoupling implies that each

inelastic collision of the wheel with a gas particle may be

understood as an elastic collision with different effective masses.

For higher values of the gas density, panels (b) and (c) of Fig.

the scenario changes considerably. Here, the dynamics of the

tracer and of the gas have to be considered coupled, leading to

significant deviations between response and correlation functions.

Einstein’s relation is no more satisfied at packing fractions greater

or equal to 10%. The comparison between panels (b) and (c) of

Figure

violation increases with the packing fraction.

The GFDT discussed above, Eq. (3), accounts for all the

observations of Fig.

R(t)~{Sv(t)
L ln P(v,fvig)

Lv

����
t~0

T: ð4Þ

The static properties of the system are fully described by the

joint probability density function (PDF) P(v,fvig) of v and of the

gas particle velocities vi , with i~1, . . . ,N. In Figure 3, we show

the PDF Pv(v) of the angular velocity of the rotator for different

gas densities. It corresponds to the marginalized

Pv(v)~
Ð

dv1 . . . dvNP(v,fvig) of the joint PDF. The determi-

nation of the complete joint PDF is out of the scope of our

experimental apparatus. However, steps in this direction are

discussed at the end of the paper. Deviations from a Gaussian, in

the PDF of the rotator’s angular velocity, appear at all densities.

Such discrepancies include a slightly enhanced peak at small

velocity, due to the presence of dry friction [24], as well as tails

slightly larger than Gaussian at high velocities, whose origin is

likely to be the inelasticity of collisions. A good fit of Pv(v) may be

obtained in the form of.

{ ln Pv(v)~av2zbjvjzcv4zconst: ð5Þ

The parameters of the fits in the three cases are a~0:00727,

b~0:00976,c~{9:10{7 for N~280; a~0:0165,b~0:0249,

c~{6:10{6 for N~560; a~0:024,b~0:058,c~{1:5:10{5

for N~840. Units for a, b and c are 1=s2, 1=s and 1=s4

respectively. Negative values for coefficient c are of course non-

physical at very high velocities, however they give reason of a good

fit in the observable range; one may imagine that further

corrections at higher order (irrelevant in this study) are present.

Assuming a factorization among v and fvig, i.e.

P(v,fvig)~Pv(v)Pv(fvig), one has.

L ln Pv(v)

Lv
~

L ln P(v,fvig)
Lv

, ð6Þ

that used with (5) for the GFDT gives RG(t)~
2aC(t)zbC1(t)z4cC2(t), with C1 (t)~Sv(t)sign½v(0)�T and

C2(t)~Sv(t)v3(0)T. The non-Gaussian form of the PDF clearly

modifies the relation between response and correlation. However,

as already observed in molecular dynamics simulations [25], it

may happen that the ‘‘extra’’ correlators C1(t) and C2(t) coming

from non-Gaussianity do not deviate substantially (once normal-

ized to be 1 at the origin, t~0) from the velocity-velocity

correlation function C(t)=C(0). Our experiment shows clearly, see

Fig.

cases (dilute and more dense) the correction induced only by non-

Gaussian terms is very small, i.e. RG(t)&C(t)=C(0). The first

implication of this is that our experiment is in agreement with the

GFDT in the dilute case (Fig.

Figure 2. Response and autocorrelation. Response function R(t) (black circles), rescaled velocity autocorrelation C(t)=C(0) (red squares), and
GFDT response with the factorization assumption, Eq. (6), RG(t)~2aC(t)zbC1(t)z4cC2(t) (green diamonds) for N~280 (a), N~560 (b) and N~840
(c), that is packing fractions 5%, 10% and 15%, respectively. In the inset the parametric plot R,RG vs C, in the region where C is positive and
monotonously decreasing, is plotted in log-log scale. In the densest cases, R(t) and C(t) behave very differently and Einstein’s relation is significantly
violated.
doi:10.1371/journal.pone.0093720.g002

Figure 3. Velocity distributions. PDF of the rotator’s angular
velocity rescaled by v0~

ffiffiffiffiffiffiffiffiffiffiffi
Sv2T

p
for low (black circles, v0~7:7 rad/s)

and high (blue squares, v0~4:1 rad/s) densities. The red dashed line
shows a Gaussian fit for comparison.
doi:10.1371/journal.pone.0093720.g003
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the breakdown of Einstein’s relation can only be imputed to the

failure of assumption (6) in the more dense cases (Fig.

Coupling with the Fluid
The emergence of the relevance of coupling between wheel and

fluid, going from the dilute case to the dense one, already appears

in the study of autocorrelations functions. At low packing fraction,

the shape of C(t) is dominated by a single exponential decay with

an almost negligible negative part which displays a power law

decay at large times. The presence of a time interval with C(t)v0
and the final power law decay become more and more important

as the density is increased. In Figure jC(t)j=C(0) in

log-log scale for different densities. At each density a time t� exists

where C(t) change sign, from C(t)w0 to C(t)v0, well evident in

Fig.

is reminiscent of backscattering phenomenon and characterizes

also equilibrium molecular fluids with memory effects arising at

high density. The slow final decay *t{a with a&1 is analogous to

the phenomenon of long-time tails whose existence is acknowl-

edged in granular systems [26] and is due to the coupling of the

tracer’s density with the fluid’s shear flow [27]. Both the negative

region and the power-law decay become more and more relevant

as the density is increased.

Both these features imply the existence of more than one time-

scale. In a molecular fluid at equilibrium, however, even when

C(t) shows such a non-trivial behavior, particles velocities remain

statistically independent as a consequence of P*e{H=(kBT), so that

Eq. (6) holds and Einstein’s relation remains satisfied. Out of

equilibrium, on the other side, the coupling between rotator and

particles, suggested by the multiscale behavior, induce velocity

correlations among different degrees of freedom [28]. Such an

entangled joint PDF can no more be replaced by the marginalized

Pv(v), in Eq. (4): its ultimate consequence is the breakdown of

Einstein’s relation. In our experiment the presence of slowly-

decaying correlations is present at all values of the density.

However, we point out that such correlations intensify with the

increase of density. As a consequence, it is plausible that the

observed violation of Einstein’s relation is due to the appearance of

internal correlations that becomes important when the density is

increased. This hypotesis is also supported by the study, discussed

in the following, of rotator-gas correlations.

In order to find an explicit form for the correlation functions

appearing in the GFDT, Eq. (4), it is necessary to understand the

role of the relevant degrees of freedom coupled with v. In certain

cases, it has been shown that the dominant contribution of this

coupling consists in a ‘‘hydrodynamic’’ velocity field (related to gas

particles surrounding the wheel) [25,28,29]. The correlation

between the rotator and such a local velocity field implies a

correction to Eq. (6) and, therefore, to Einstein’s relation; the

physical meaning is the emergence in the dynamics of the rotator

of another timescale related to the typical relaxation time of the

local field fluctuations. In Fig.

the dense regime of such a coupling by plotting the cross-

correlation SV(t)v(0)T, where V(t)~
1

N

XN

i~1
Vi(t) and

Vi(t)~ri(t)|vi(t)=½r(t)2� is the angular velocity of particle i at

position ri relative to the center of rotation. The same

measurement (properly rescaled) reveals a much less evident

coupling in the dilute configuration. This is a strong evidence that

correlations between v and vi are relevant and, therefore, Eq. (6)

does not hold. The fair coincidence in time of the maximum of the

cross-correlation with the region of maximum violation of

Einstein’s relation (*0:05 seconds) corroborates our argument.

The attempt to fit responses and correlations through a simple

model [28] with two linearly coupled stochastic variables (v and

V) had negative results: the behavior of our experiment is rather

complex and it is difficult even providing a conjecture for the

functional shape of P(v,V). Indeed, the slow decay of autocor-

relations at large times is a phenomenon which is incompatible

with a simple linear model. There is the need of a more refined

kinetic theory, possibly in terms of perturbative expansions, such

as the Mode Coupling Theory [30], and tailored to our two-

component system (wheel and granular gas) characterised by two

different, yet coupled, kinetic temperatures.

Methods

The granular medium, made of N non-magnetic steel beads,

diameter 4 mm and mass m~0:27 g, is housed in a polymethyl-

methacrylate (PMMA) cylinder (diameter 90 mm) with a conical-

shaped floor. A fixed holder encloses a miniaturized angular

encoder (model AEDA-3300 by Avago Technologies). The

encoder, which also supports the rotator (see below), provides

high resolution measurements (up to 80,000 division/revolution at

the maximum rate of 20 kHz) of the rotator position. The encoder

is used at one half of its maximum sensitivity that corresponds to a

resolution of 0:00016 rads, with an acquisition rate of 200 samples

per second. The cylinder is vibrated by an electrodynamic shaker

Figure 4. Long tails. Absolute value of autocorrelations in log-log
scale (symbols denote positive values) for different densities.
doi:10.1371/journal.pone.0093720.g004

Figure 5. Coupling with the gas. Correlation between the angular
velocity of the probe v(t) and the average angular velocity of the fluid
V(t) (see text for definition) for the most dilute and the most dense
experiments.
doi:10.1371/journal.pone.0093720.g005
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(model V450 by LDS Test & Measurement) fed by a sinusoidal

excitation. An accelerometer measures the actual acceleration

induced to the system. A high-speed camera (EoSens CL by

Mikrotron) tracks single beads at 200 frames per second, in order

to measure their velocity: uncertainty in the determination of the

centre of mass of spheres is estimated to be *0:05 mm [22]. A

PMMA rectangular parallelepiped, termed ‘‘wheel’’ in the paper,

of height h~15 mm and rectangular base with dimensions 34|6

mm2 is suspended, by a rod through a small hole in the top face, to

the angular encoder that records the wheel’s angle. The

momentum of inertia of the free rotator (cylinder plus rod) is

Irot~353 g mm2. The setup is similar to that used in Ref. [22]

with the addition of a miniaturized dc motor (model 108–105 from

Precision Microdrives) connected, through a couple of gears, to the

rotation axis of the wheel. We have not measured the total

momentum of inertia IwIrot of the rotator coupled to the motor.

The motor is driven by sharp rectangular electrical pulses

provided by the acquisition board (model NI USB-6353 from

National Instruments) through a simple voltage buffer circuit. The

effect of the pulses is to perturb the rotator’s velocity that is the

variable taken in consideration here. We use 2 ms long and 5 V

high pulses provided to the motor every second. We have verified

that both the response and correlation functions take less than one

second to go to zero, i.e. all perturbations can be considered

independent. We have also directly checked the linear response

regime. In order to have clean response measurements, we

performed 70 hours long experiments. The acquisition rate of the

system is set at 200 Hz. We use three different gas densities (*5%,

*10% and *15% of the total volume) varying the number of

beads (N~280, 560 and 840, respectively). By a careful particle

tracking procedure [22] we can measure one of the horizontal

components (on the plane) of the particles’ velocity v, which gives

access to the so-called granular temperature Tg~mSv2T. Our

choice to employ a wheel which is free to rotate around a fixed

(vertical) axis, instead of a torsion oscillator [21], is only motivated

by simplicity of realization. Of course, such different choice is

irrelevant for the regime of linear response.

At the currently used maximum acceleration (24:3 in units of

gravity acceleration), the typical horizontal velocity v0~
ffiffiffiffiffiffiffiffiffiffiffiffi
Tg=m

p

of particles goes from &145 mm/s at the maximum density

(N~840) to &250 mm/s at the minimum one (N~280).

Estimates of the particle-particle mean free path give &40 mm

for the more dilute experiment and &14 mm for the more dense

one. The estimate for the mean free time for particle-particle

collisions goes from &0:1 to &0:17 seconds, for the more dense

and the more dilute experiment respectively. The mean free time

of the rotator (which does not distinguish between different

particles) is &0:011 seconds in the most dilute experiment and

&0:007 seconds in the most dense one.
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26. Orpe AV, Kudrolli A (2007) Velocity correlations in dense granular flows

observed with internal imaging. Phys Rev Lett 98: 238001.

27. Fiege A, Aspelmeier T, Zippelius A (2009) Long-time tails and cage effect

indriven granular fluids. Phys Rev Lett 102: 098001.

28. Sarracino A, Villamaina D, Gradenigo G, Puglisi A (2010) Irreversible dynamics

of a massive intruder in dense granular fluids. Europhys. Lett. 92: 34001.

29. Villamaina D, Baldassarri A, Puglisi A, Vulpiani A (2009) The fluctuation-

dissipation relation: how does one compare correlation functions and responses?.

J. Stat. Mech. P07024.

30. Keys AS, Abate AR, Glotzer SC, Durian DC (2007) Measurement of growing

dynamical length scales and prediction of the jamming transition in a granular

material. Nature Physics 3: 260–264.

Nonequilibrium Brownian Motion beyond the Effective Temperature

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e93720


