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Abstract
Background: Aplastic anemia (AA) is a bone marrow failure syndrome mostly characterized by
an immune-mediated destruction of marrow hematopoietic progenitor/stem cells. The resulting
hypocellularity limits a detailed analysis of the cellular immune response. To overcome this
technical problem we performed a microarray analysis of CD3+ T-cells derived from bone marrow
aspirates and peripheral blood samples of newly diagnosed AA patients and healthy volunteers.
Two AA patients were additionally analyzed after achieving a partial remission following
immunosuppression. The regulation of selected candidate genes was confirmed by real-time RT-
PCR.

Results: Among more than 22.200 transcripts, 583 genes were differentially expressed in the bone
marrow of AA patients compared to healthy controls. Dysregulated genes are involved in T-cell
mediated cytotoxicity, immune response of Th1 differentiated T-cells, and major regulators of
immune function. In hematological remission the expression levels of several candidate genes tend
to normalize, such as immune regulators and genes involved in proinflammatory immune response.

Conclusion: Our study suggests a pivotal role of Th1/Tc1 differentiated T-cells in immune-
mediated marrow destruction of AA patients. Most importantly, immune regulatory genes could
be identified, which are likely involved in the recovery of hematopoiesis and may help to design new
therapeutic strategies in bone marrow failure syndromes.

Background
Acquired aplastic anemia (AA) is a rare bone marrow fail-
ure state characterized by marrow hypocellularity and low

peripheral blood cell counts [1]. Although the exact path-
ogenic mechanism is still unknown, beside a primary
stem cell defect [2] and a disturbed microenvironment
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[3], pre-/clinical data suggest an immune-mediated
destruction of marrow progenitor/stem cells [1,4]. Similar
to other autoimmune diseases, antigen-specific T cells
could be expanded from the bone marrow of AA patients
and likely mediate organ-specific cytotoxicity to hemat-
opoietic stem cells and progenitor cells [5]. In addition, it
has been reported that the bone marrow of AA patients
contains increased numbers of apoptotic cells [6] and that
hematopoietic stem cells of AA patients express Fas anti-
gen [7]. Peripheral blood and bone marrow T-cells show
signs of activation [8], secrete high levels of interferon-
gamma (IFN-γ) and tumor-necrosis factor alpha (TNF-α).
These two cytokines may suppress the proliferation of
early and late hematopoietic progenitor cells and initiate
apoptosis by induction of Fas on CD34+ stem cells [9,10].
Most recently, some groups reported a polarization of
CD4+ T-cells towards a type-1 immune response that leads
to activation of cytotoxic CD8+ T-cells with destruction of
marrow stem cells [11]. However, genes important for the
recruitment of effector T-cells to the bone marrow as tar-
get organ of autoimmunity and regulatory molecules
directing their differentiation have not been identified so
far. Therefore, we performed a microarray study compar-
ing gene expression profiles of circulating and marrow-
derived T-cells at initial presentation and after hematolog-
ical recovery in order to elucidate more details of the
mechanism resulting in severe bone marrow failure.

Results
Microarray analysis
Comparative gene expression profiling was performed in
severe aplastic anemia (SAA) patients and healthy con-
trols by analyzing pooled CD3+ T-cells isolated from
peripheral blood (PB) and bone marrow (BM) samples
(Table 1). Each oligonucleotide microarray (Affymetrix
HG_U133A) contained 22.218 human probesets and in
our experiments discovered between 48.1% and 53.7%

"present calls" as calculated by the statistical detection
algorithm of Affymetrix. In general, "present calls" of
approximately 50% provide confidential results. Scaled
factors which were used to normalize the arrays to an aver-
age intensity ranged from 0.915 to 1.544 showing the
high reproducibility of the experimental procedure. Fur-
thermore, the hybridisation was monitored by the usage
of hybridisation controls comparing total RNA amount
and final signal intensity on the array (r > 0.99). Taken
together, our data reached a highly acceptable quality
level for further analysis.

To eliminate genes which may be individually regulated
independent of disease we focused in our study only on
genes coregulated in both of the analyzed SAA pools
(pool I and IIa) in comparison to the normal controls
(pool III), each separately for PB and BM samples. The
potentially disease-specific (dys-)regulation comprised a
wide variety of genes belonging to different functional
classes, such as immune response, proliferation/cell
growth, biosynthesis/metabolism, signal transduction
and apoptosis (Figure 1). The most interesting genes are
summarized below, whereas the entire data set is available
at the GEO database [12] under the accession number
GSE3807.

Gene expression profiles of T-cells from SAA patients at 
initial diagnosis
The circulating T-cells isolated from the PB samples of
SAA patients exhibited a broadly normal gene expression
profile with dysregulation of only 42 genes (35 up- and 7
downregulated) in both of the analyzed SAA pools. In
contrast, in comparison to the control pool T-cells iso-
lated from BM aspirations showed a dysregulation of 583
genes (125 up- and 458 downregulated), which were
coregulated in both SAA pools. Among the regulated
genes identified in circulating T-cells some were also dif-

Table 1: Patients' characteristics.

patient age/sex diagnosis PNH-clone source of 
sample

pre-therapy 
sample

post-therapy 
sample

pool

1 19/F SAA n PB
BM

y
y

n
n

I
I

2 57/M vSAA n PB
BM

y
y

n
n

I
I

3 40/F SAA n PB
BM

y
y

n
n

I
I

4 70/F SAA n PB
BM

y
y

n
n

I
I

5 64/M SAA n PB
BM

y
y

y
y

IIa/IIb
IIa/IIb

6 70/F vSAA n PB
BM

y
y

y
y

IIa/IIb
IIa/IIb

Abbreviations: F = female; M = male; (v)SAA = (very) severe aplastic anemia; n = no; y = yes; PB = peripheral blood; BM = bone marrow; I = pool I 
at initial presentation (n = 4); IIa = pool II at initial presentation (n = 2); IIb = pool II in hematological remission (n = 2). Disease classification was 
performed according to the International Study of Aplastic Anemia and Agranulocytosis [45].
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ferentially expressed in BM-derived T-lymphocytes (i.e.
IRS2, BASP1, EGR1, Lyn) and other molecules were only
regulated in PB samples (i.e. IL6R, TNFAIP3, BCL3). Dif-
ferentially expressed genes, which were exclusively found
in BM-infiltrating T-cells, were classified into several func-
tional categories (Figure 1). These genes included mole-
cules involved in immune responses and their regulation
with the following fold changes for SAA pool I and IIa,
respectively: PF-4 (-157-fold; -188-fold), CD26 (+2.2-
fold; +2.1-fold), Ncf-1 (-3.9-fold; -2.2-fold), CCR2 (+2.7-
fold; +2.7-fold), CX3CR1 (+4.3-fold; +2.9-fold) and other
chemokine receptors and ligands. Many cytokines/growth
factors and their receptors, which play an important role
in inflammation and endogenous response to infections,
were found to be dysregulated like IL-1α (-25.9-fold; -
40.3-fold), IRAK3 (-5.9; -88-fold), LTβ (+2.2-fold; +2.2-
fold), Toll-like receptor 2 (-10.4-fold; -5.0-fold) and
CIAS1 (-23.5-fold; -6.3-fold). Furthermore molecules
important for the regulation of proliferation and cell
cycling were dysregulated (i.e., SOCS2, JAG1, VEGF,
SKIL). Finally, several transcription factors were found to
be differentially expressed in SAA patients (i.e., STAT1,
STAT5B and IRF2).

To obtain more information, we also set a minimum fold
change of 1.5 revealing an upregulation of genes in BM-

derived CD3+ T-cells from SAA patients playing an impor-
tant role in the regulation of apoptosis, like TRADD (+1.8-
fold; +1.8-fold), TRAF5 (+1.8-fold; +1.8-fold), perforin-1
(+2.2-fold; +1.7-fold), granzyme H (+2.9-fold; +1.8-fold)
and granzyme B (+2.6-fold; +1.5-fold).

In order to examine whether the obtained differential
gene expression profiles in the analyzed SAA patients sim-
ply reflect an over- or under-representation of T-cell sub-
populations, the differential gene expression pattern
identified in circulating T-cells of SAA patients (pool I and
IIa of the PB) were compared with gene expression pro-
files of effector memory versus naive CD4+ and CD8+ T-
cell populations generated from normal donors [13,14].
The comparative analysis of effector memory and naïve
CD4+ (effector memory and naïve CD8+ T-cells, respec-
tively) shows that 301 genes (n = 1360, respectively) are
statistically singificantly regulated in one of the analyzed
subpopulations (p < 0.05, student's t-test). Interestingly,
only 5 (n = 8, respectively) of these genes exhibited a sim-
ilar expression pattern in the circulating CD3+ T-cells of
the SAA patient pools (Figure 2).

Results of differential transcriptome analysis in bone marrow-derived CD3+ T-cells of SAA patientsFigure 1
Results of differential transcriptome analysis in bone marrow-derived CD3+ T-cells of SAA patients. Genome-
wide gene expression profiles of CD3+ T-cells derived from bone marrow aspirations of SAA patients and healthy volunteers 
were comparatively analyzed. The diagram summarizes the number of differentially expressed genes (> 2-fold) assigned to dif-
ferent functional classes.
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Gene expression profiles of CD3+ T-cells from AA patients 
in remission
Gene expression profiles (Figure 3) were performed of
CD3+ T-cells isolated from PB and BM samples of 2 SAA
patients after achieving a hematological remission follow-
ing immunosuppressive therapy (pool IIb). Data were
analyzed with statistical tools as described in the method
part and directly compared to their respective gene expres-
sion profile at initial presentation (pool IIa). In order to
provide a better overview, we performed a hierarchical
cluster analysis including genes that tend to normalize
with respect to the gene expression levels detected in the
normal control pools (Figure 4a). In total, we identified
60 of 583 regulated genes in the BM samples of the ana-
lyzed SAA patients turning to nearly normal gene expres-
sion levels after successful immunotherapy. This category

mainly included genes involved in the regulation of
immune response like Ncf1. In the PB samples of the SAA
pool only one of 42 regulated genes (MT1E) tended to
expression levels close to the normal control pool, but its
function in the immune system is unknown.

Furthermore, the comparison of the gene expression pro-
files (pool IIa vs IIb) revealed a group of several genes with
a very high difference (> 4-fold) in the expression level
before and after successful immunotherapy (Figure 4b).
Most of these genes are important during inflammation
and regulation of immune response, such as platelet-fac-
tor 4 (PF4), proteoglycan 2 und 3 (PRG2, PRG3), IL-1α,
IRAK3, osteopontin (SPP1), receptor for Fc fragment of
IgE (FCER1A) or RNASE3. The fold changes of regulated
candidate genes are summarized in Table 2.

Gene expression profile analysis of normal T-cell subpopulations in comparison to differentially expressed genes in CD3+ T-cells of SAA patientsFigure 2
Gene expression profile analysis of normal T-cell subpopulations in comparison to differentially expressed 
genes in CD3+ T-cells of SAA patients. The gene expression data of effector memory T-cell populations were compared 
separately for each of 3 normal donors with the mean gene expression level of the respective naive T-cell populations [13, 14]. 
Significantly regulated genes (p < 0.05, student's t-test) were further analyzed in comparison to the differential gene expression 
pattern of SAA patients (pool I and pool IIa of the PB). Number of commonly and differentially expressed genes is shown for 
effector memory versus naïve CD4+ T-cells in comparison to circulating CD3+ T-cells of SAA patients (part A) and also for 
the respective CD8+ T-cell subpopulations (part B).
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Validation of microarray data by real-time RT-PCR
To confirm the microarray results, quantitative real-time
RT-PCR of selected candidate genes was performed using
the original patient sample pools (pool I, IIa) and patient
6 in hematological remission. Because of limited amounts
of pooled RNA, 4 genes were selected for quantification of
gene expression using a new pool of normal BM samples.
Even with this new sample pool the regulation of gene
expression could be confirmed for the 4 analyzed genes
(Figure 5). For example, separate microarray experiments
revealed an increased expression for CD26 in pools I and
IIa (2.17-fold; 2.07-fold), which could be confirmed by
real-time RT-PCR (2.2-fold; 3.5-fold). In general, real-
time RT-PCR results correlated well with the differential
gene expression data of the microarray experiments.

Discussion
In acquired aplastic anemia, the evidence of an autoim-
mune pathogenesis is mostly indirect and the characteri-
zation of the underlying immune response is incomplete
mainly due to technical difficulties resulting from the dis-
ease-specific hypocellularity. However, there is growing

evidence that AA results from autoaggressive destruction
of hematopoietic stem cells and progenitors mediated by
T-cells recognizing inciting target antigens [1]. Several
groups have identified clonal T-cell expansion [15-17],
proinflammatory cytokine production [9] and T-cell
mediated cytotoxicity to CD34+ stem cells [5,7] support-
ing an antigen-driven T-cell response. Most recently, we
could characterize the antigen-binding sites of clonally
expanded T-cells in SAA patients and identified the emer-
gence of new T-cell clones after successful immunosup-
pression [18], suggesting a regulatory T-cell population
contributing to the recovery of hematopoiesis. In this
study, we applied microarray technology to characterize
the immune response of the T-cell system in SAA. The
design of our experiments differed from most recently
reported transcript profiles of AA patients [19] in the fol-
lowing important issues: (a) The untreated patients
included in this study were diagnosed as SAA with similar
clinical characteristics, HLA background, response to ther-
apy and without an expanded PNH clone. (b) Gene pro-
files of CD3+ T-cells from PB and BM samples of the same
SAA patients and healthy controls were compared, as the

Gene expression profiles of bone marrow-derived CD3+ T-cells of SAA patients at initial presentation and after hematological recoveryFigure 3
Gene expression profiles of bone marrow-derived CD3+ T-cells of SAA patients at initial presentation and 
after hematological recovery. Hierarchical clustering analysis of gene expression patterns in CD3+ T-cells of 2 independ-
ent SAA patient pools at initial presentation (I and IIa) and in hematological remission (pool IIb) following immunosuppressive 
therapy were performed with respect to the expression profile of pooled CD3+ T-cells from healthy volunteers.

 

control pool

pool I

pool IIa

pool IIb

control pool

pool I

pool IIa

pool IIb

Table 2: Regulation of selected genes expressed in BM-derived T-cells of SAA patients.

probeset ID Symbol name fold changes vs. control pool
pool I pool IIa pool IIb

207075_at CIAS1 cold autoinflammatory syndrome 1 - 23.49 - 6.29 - 2.12
210118_s_at IL-1 A interleukin-1, alpha - 25.90 - 40.28 - 3.49
220034_at IRAK3 interleukin-1 receptor-associated kinase 3 - 5.91 - 88.03 - 2.18
204961_s_at NCF1 neutrophil cytosolic factor 1 - 3.87 - 2.23 - 1.32
206390_x_at PF4 platelet factor 4 - 156.82 - 187.53 - 11.81
211743_s_at PRG2 proteoglycan 2 - 236.22 - 78.96 - 2.55
204924_at TLR2 toll-like receptor 2 - 10.43 - 5.04 - 2.22

Abbreviations: I = pool I at initial presentation (n = 4); IIa = pool II at initial presentation (n = 2); IIb = pool II in hematological remission (n = 2).
Page 5 of 11
(page number not for citation purposes)



BMC Genomics 2006, 7:263 http://www.biomedcentral.com/1471-2164/7/263

Page 6 of 11
(page number not for citation purposes)

Changed gene expression pattern following immunotherapyFigure 4
Changed gene expression pattern following immunotherapy. Panel A: Hierarchical clustering analysis includes genes 
that tend to normalize after immunotherapy with respect to their gene expression levels detected in the normal control pools. 
In the SAA patient pool of bone-marrow derived T-cells 60 of 583 regulated genes turned to nearly normal gene expression 
levels after successful immunosuppression. Panel B: The comparison of the gene expression profiles from bone marrow-
derived T-cells of the SAA pool before and after immunotherapy revealed several genes exhibiting a very high difference (> 4-
fold) in their expression level.
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pathological T-cell response is expected in the bone mar-
row as target organ of AA. (c) Furthermore, the gene pro-
files of SAA patients were comparatively analyzed with
respect to normal gene expression before and after suc-
cessful immunotherapy in order to identify candidate
genes relevant for the recovery of hematopoiesis.

As expected the gene profiles of CD3+ T-cells isolated
from PB samples differed significantly from the expres-
sion pattern found in BM-derived T-cells of SAA patients.
The number of differentially expressed genes in circulat-
ing T-cells of SAA patients compared to healthy controls
was surprisingly low: Only 42 genes were differentially
expressed in peripheral T-cells of the patients pools. Inter-
estingly among these genes, a negative regulator of
cytokine response, the zinc finger protein TNFAIP3, was
upregulated. The induction of TNFAIP3 may result from
cellular counterregulation in response to high serum lev-
els of TNF and IL-1 [20], as this molecule specifically
inhibits the respective signal transduction pathways [21].
Two important multifunctional regulators of hematopoi-

esis, MIP1α [22] and Skil [23], were regulated in both
peripheral and marrow-derived T-cells at initial diagnosis.
Whereas MIP1α exerts potentially suppressive effects on
the early myelopoiesis in AA [24,25], Skil functions as
negative regulator of TGFβ signaling [25] and its induc-
tion may also represent a counterregulatory event.

In comparison to normal controls, marrow-derived CD3+
T-cells showed a large scale of differentially expressed
genes indicating that T-cell dysregulation in the BM as tar-
get organ is a critical part of the pathological immune
response. The regulation of 483 genes also demonstrates
that the bone marrow failure results from a rather com-
plex genetic program involving chemokines, cytokines,
growth factors, and their receptors. We could identify the
induction of several molecules playing key roles in the
regulation of Th1 immune responses, such as CCR2 and
CX3CR1 [26,27], which are also important in other
autoimmune diseases such as multiple sclerosis [28,29],
and CD26, a surface-bound ectopeptidase expressed at
high levels on Th1 differentiated T-cells [30,31]. The

Validation of microarray results by real-time PCRFigure 5
Validation of microarray results by real-time PCR. Selected genes (CXCL4, PRG2, CD26, CX3CR1) with differential 
gene expression in the analyzed SAA and control pools were quantified by Taqman RT-PCR in 2 independent experiments. 
Relative mRNA expression levels were normalized with respect to RPS9 gene expression as internal control. Results are 
shown as mean fold-change value of the respective gene expression in the control pool. Slanted bars: Microarray result; black 
bar: respective real-time RT-PCR result. Panel A shows upregulated genes. Panel B demonstrates downregulated genes.
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microarray study identified several genes like CD26, PF4
and Ncf1 with distinct immunregulatory functions. As
these candidate genes were responding to successful
immunotherapy, they might play a key role in the
immunpathogenesis of AA and recovery of hematopoiesis
after immunosuppression: Specific blocking of CD26,
which was upregulated at initial diagnosis and normal-
ized in hematological remission, suppresses the prolifera-
tion of autoreactive T-cells with upregulation of TGF-β1
and downregulation of TNF-α [32]; furthermore CD26
favors cytotoxic effector functions in CD8+ T-cells [33].
Specific binding of the chemokine PF4, which was ini-
tially enourmosly downregulated and almost normalized
after immunotherapy, prevents the release of IL-2 and
IFN-γ in activated T-cells and may especially suppress
autoreactive T cells in the presence of proinflammatory
cytokines [34]. Ncf1, a gene important for oxidative burst
formation, regulates the severity of other autoimmune
diseases and modulates (in-)directly the level of T-cell
dependent autoimmune responses [35]. Taken together,
these candidate genes might be highly relevant for the
autoreactive T-cell attack in AA and the induction of
peripheral tolerance with recovery of the hematopoiesis
following immunotherapy.

In contrast to Zeng et al. [19] we could not identify an
upregulation of several other chemokines/-receptors (i.e.,
CCL14, MIP2α, MIP3α, CXCL1 and CXCL12), which play
a role in other autoimmune diseases. Also inconsistent
with already reported transcript profiles [19] we identifed
a downregulation of several molecules involved in innate
immune responses, such as Toll-like receptor 2, IL-1
receptor-associated kinase (IRAK3), IL-1 and its receptor
in our SAA patient pools. The dysregulation of innate
immunity in SAA patients may result in increased proin-
flammatory cytokine production towards bacterial chal-
lenge as observed in IRAK3-/- mice [36]. In accordance to
earlier reports [37,38] we could identify a downregulation
of IL-1α/β in BM-derived T-cells at initial presentation
with normalization of the expression level for IL-1α after
hematological recovery. Interestingly, the administration
of IL-1 accelerates hematopoietic reconstitution after
chemotherapy induced myelosuppression in vivo [37]
underlining its potential role in marrow failure syn-
dromes. Additionally, the gene expression level of an
important regulator of NFκB-dependent proinflamma-
tory signals, CIAS1, was regulated enormously in the pre-
and post-therapeutic SAA pools. Interestingly, mutations
of CIAS1 cause several autoimmune inflammatory syn-
dromes [39,40] and its downregulation in SAA patients
may contribute to the immunpathology of AA by aug-
mentation of proinflammatory signals. As weakly regu-
lated molecules may also have important influence on
disease development, we additionally analyzed the gene
expression profiles for a minimum fold change of 1.5 and

could reveal an upregulation of several genes related to
cell-mediated cytotoxicity and apoptosis, such as perforin-
1, granzyme H and B [41]. The involvement of cytotoxic
granules in the induction of target cell apoptosis has
already been shown in AA [42] and other autoimmune
disorders [43]. Interestingly, TRAF and TRADD, two medi-
ators of the TNFR familiy for cell activation, survival and
antiapoptotic function [44] were upregulated in BM-
derived T-cells and may be protective for the effector pop-
ulation in the presence of high TNFα levels.

Conclusion
In summary, our microarray study revealed a Th1/Tc1
phenotype in bone marrow-derived T-cells of SAA
patients at initial presentation. Whereas the potential
mechanism for the recruitment of effector T-cell to the
bone marrow remained unclear, we could identify several
regulators highly relevant for the immunpathogenesis of
AA and likely contributing to the recovery of hematopoi-
esis. Especially the identified regulators of proinflamma-
tory cytokine signaling (IRAK3, CIAS) and molecules with
distinct immunregulatory properties in controlling auto-
reactive T-cells (CD26, PF4, Ncf1) may represent potential
targets for the design of new therapeutic strategies.

Methods
Patients and controls
Six patients with newly diagnosed severe aplastic anemia
(SAA) were included in the study after written informed
consent to protocols approved by the Institutional Review
Board of the Medizinische Hochschule Hannover. Bone
marrow (BM) and peripheral blood (PB) samples were
obtained before (n = 6) and after achieving a hematolog-
ical remission (n = 2) following immunosuppressive ther-
apy with antithymocyte globulin and cyclosporin A
(Table 1). The diagnosis of SAA was established by PB
counts and BM biopsy as recommended by the Interna-
tional Study of Aplastic Anemia and Agranulocytosis [45];
severitiy was classified according to the criteria of Camitta
et al. [46]. Control samples from healthy volunteers were
obtained after informed consent according to the institu-
tional guidelines.

Isolation of CD3+ T cells, RNA preparation and sample 
pooling
Mononucleated cells of PB and BM were separated by
Ficoll-Hypaque sedimentation (Biochrom AG, Berlin,
Germany). CD3+ T-cells were positively selected using
anti-CD3+ microbeads (Miltenyi-Biotec, Gladbach, Ger-
many) according to the manufacturer's instructions. The
purity of the isolated CD3+ T-cells was controlled by FACS
analysis and was higher than 96% with comparable
CD4+/CD8+ ratios. The residual contaminating cell popu-
lations varied in the isolations from the different donors
and represented natural killer cells (1%–2%), dendritic
Page 8 of 11
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cells (< 1%), B cells (< 1%), and monocytes (< 1%). Sub-
sequently, total cellular RNA was extracted using TRIzol
reagent (Invitrogen, Carlsbad, CA). One µg of total RNA
of each preparation, respectively, was pooled seperately
for PB and BM as follows: Patients 1–4 prior to therapy
(pool I), patients 5 and 6 prior to therapy (pool IIa),
patients 5 and 6 after therapy in hematological remission
(pool IIb) and healthy donors 1–3 (pool III).

Affymetrix GeneChip assay
Integrity and quality of total RNA isolated from CD3+ T-
cells were checked using Agilent Technologies 2100 Bio-
analyser (Agilent Technologies, Germany). To obtain
biotinylated cRNA for hybridization a one-cycle target
labeling assay was performed. Therefore double-stranded
cDNA was synthesized from 2 or 4 µg of pooled total RNA
(pools as described above) using T7-oligo(dT)-primers
(Eurogentec, Belgium). After clean-up of the ds-cDNA an
in vitro transcription assay was performed in the presence
of biotinylated nucleotides. The amplified and bioti-
nylated cRNA was cleaned up using RNeasy Kit (Qiagen,
Germany) and its yield was determined by spectrophoto-
metric analysis. For each GeneChip to be analysed, 10 µg
cRNA and additional biotinylated hybridization controls
(BioB, BioC, BioD, and Cre) were fragmented and hybrid-
ized to an identical lot of HG_U133A GeneChip Arrays
(Affymetrix, Santa Clara, CA) for 16 h at 45°C. Afterwards
the GeneChips were washed and stained with PE-strepta-
vidin in the Fluidic Station 400 and were read out in the
Agilent GeneArray Scanner 2500. All reactions were per-
formed using standard protocols and equipment supplied
by the manufacturer.

Data analysis
Gene expression levels were determined using the Affyme-
trix Microarray Suite 5.0, MicroDB 3.0 and Affymetrix
Data Mining Tool 3.0. For normalization, all array exper-
iments were scaled to a target intensity of 150, otherwise
using the default values of the Microarray suite as previ-
ously described [47]. Filtering of the results was per-
formed as follows: Genes were considered to be regulated
if their fold change was greater/less than or equal to 2. The
statistical parameter for a significant change was less than
0.01 [p-value for changes called increased (I)] or greater
than 0.99 [p-value for changes called decreased (D)]. In
addition, the signal difference of the respective gene
should be greater than 100.

Furthermore, microarray analyses were performed com-
paring the differential gene expression pattern of SAA
patients (pool I and pool IIa of the PB) with profiles of
naive and effector memory CD4+ and CD8+ T-cell popula-
tions generated from 3 different healthy donors, respec-
tively. For this purpose data available at the EBI Array
Express database [13,14] were normalized using the

Affymetrix Microarray Suite 5.0 [47]. The normalized data
were further analyzed using Affymetrix Assist comparing
the expression data of the effector memory T-cell popula-
tion separately for each donor with the mean gene expres-
sion level of the respective naive T-cell populations. Genes
were considered to be regulated if their fold change was
greater/less than or equal to 2. The statistical parameter
for a significant change was p < 0.05 applying the stu-
dent's t-test.

Quantitative real-time RT-PCR
Real-time RT-PCR was performed to confirm expression
levels of RNA transcripts in pool I, pool IIa, patient 6 after
therapy in hematological remission and 2 additional
healthy donors. cDNA was synthesized from total RNA
using oligo-dT primers and M-MLV polymerase (Invitro-
gen, Carlsbad, CA) following the manufacturer's recom-
mendations. For relative quantification, RPS9 mRNA
served as an external control. The reactions were per-
formed by the ABI PRISM 7000 cycler (Applied Biosys-
tems, Foster City, CA) using SYBR Green PCR Kit
(Stratagene, La Jolla, CA) with sequence-specific oligonu-
cleotide primers. A threshold was set in the linear part of
the amplification curve, and the number of cycles needed
to reach it was calculated for every gene. This threshold
cycle was used to quantify mRNA levels of the target genes
in the analyzed samples with RPS9 normalization.

Authors' contributions
AF design of the study, patient sampling, data analysis,
writing the ms

RG analysis of the gene expression arrays

JKH performing real-time RT-PCR, data analysis, prepera-
tion of tables/figures

SP performing gene expression arrays

WP sample preparation, T-cell isolation

PI data analysis

JG assisting in sample preparation

MPK data analysis

AG design of the study

JB providing array facility, data analysis

Acknowledgements
The authors thank Tanja Toepfer for excellent technical assistance.
Page 9 of 11
(page number not for citation purposes)



BMC Genomics 2006, 7:263 http://www.biomedcentral.com/1471-2164/7/263
References
1. Young NS, Maciejewski JP: The pathophysiology of aquired

aplastic anemia.  N Eng J Med 1997, 336:1365-1372.
2. Marsh JC, Chang J, Testa NG, Hows JM, Dexter TM: The hemat-

opoietic defect in aplastic anemia assessed by long-term
marrow culture.  Blood 1990, 76(9):1748-1757.

3. Gordon MY: Stem cells and the microenvironment in aplastic
anaemia.  Br J Haematol 1994, 86(1):190-192.

4. Frickhofen N, Kaltwasser JP, Schrezenmeier H, Ragavachar A, Vogt
HG, Herrmann F, Freund M, Meusers P, Salama A, Heimpel H: Treat-
ment of aplastic anemia with antilymphocyte globulin and
methylprednisolone with or without cyclosporine.  N Engl J
Med 1991, 324:1297-1304.

5. Nakao S, Takami A, Takamatsu H, Zeng W, Sugimori N, Yamazaki H,
Miura Y, Ueda M, Shiobara S, Yoshioka T, Kaneshige T, Yasukawa M,
Matsuda T: Isolation of a T cell clone showing HLA-
DRB1*0405-restricted cytotoxicity for hematopoietic cells
in a patient with aplastic anemia.  Blood 1997, 89:3691-3699.

6. Philpot NJ, Scopes J, Marsh JCW, Gordon Smith EC, Gibson FM:
Increased apoptosis in aplastic anemia bone marrow pro-
genitor cells: Possible pathophysiologic significance.  Exp
Hematol 1995, 23:1642-1648.

7. Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS: Increased
expression of Fas antigen on bone marrow CD34+ cells of
patients with aplastic anemia.  Br J Haematol 1995, 91:245-252.

8. Maciejewski JP, Hibbs JR, Anderson S, Katevas P, Young NS: Bone
marrow and peripheral blood lymphocyte phenotype in
patients with bone marrow failure.  Exp Hematol 1994,
22:1102-1110.

9. Maciejewski JP, Selleri C, Anderson S, Young NS: Fas antigen
expression on CD34+ human marrow cells is induced by
interferon gamma and tumor necrosis factor alpha and
potentiates cytokine mediated hematopoietic suppression
in vitro.  Blood 1995, 85:3183-3190.

10. Nagafuji K, Shibuya T, Harada M, Mizuno S, Takenaka K, Miyamoto T,
Okamura T, Gondo H, Niho Y: Functional expression of Fas
antigen (CD95) on hematopoietic progenitor cells.  Blood
1995, 86:883-889.

11. Giannakoulas NC, Karakantza M, Theodorou GL, Pagoni M, Galano-
poulos A, Kakagianni T, Kouraklis-Symeonidis A, Matsouka P, Maniatis
A, Zoumbos NC: Clinical relevance of balance between type 1
and type 2 immune responses of lymphocyte subpopulations
in aplastic anemia patients.  Br J Haematol 2004, 124:97-105.

12.  [http://www.ncbi.nlm.nih.gov/geo/]. accession number GSE3807
13.  [http://www.ebi.ac.uk/arrayexpress]. accession number E-MEXP-750
14.  [http://www.ebi.ac.uk/arrayexpress]. accession number E-TABM-40
15. Zeng W, Nakao S, Takamatsu H, Yachie A, Takami A, Kondo Y, Sug-

imori N, Yamazaki H, Miura Y, Shiobara S, Matsuda T: Characteri-
zation of T-cell repertoire of the bone marrow in immune-
mediated aplastic anemia: Evidence for the involvement of
antigen-driven T-cell response in cyclosporine-dependent
aplastic anemia.  Blood 1999, 93(9):3008-3016.

16. Zeng W, Maciejewski JP, Chen G, Young NS: Limited heterogene-
ity of T cell receptor BV usage in aplastic anemia.  J Clin Invest
2001, 108(5):765-773.

17. Risitano AM, Kook H, Zeng W, Chen G, Young NS, Maciejewski JP:
Oligoclonal and polyclonal CD4 and CD8 lymphocytes in
aplastic anemia and paroxysmal nocturnal hemoglobinuria
measured by V beta CDR3 spectratyping and flow cytome-
try.  Blood 2002, 100(1):178-183.

18. Piao W, Grosse J, Czwalinna A, Ivanyi P, Ganser A, Franzke A: Anti-
gen-recognition sites of micromanipulated T cells in patients
with acquired aplastic anemia.  Exp Hematol 2005,
33(7):804-810.

19. Zeng W, Kajigaya S, Chen G, Risitano AM, Nunez O, Young NS:
Transcript profile of CD4+ and CD8+ T cells from the bone
marrow of acquired aplastic anemia patients.  Exp Hematol
2004, 32(9):806-814.

20. Jattela M, Mouritzen H, Elling F, Bastholm L: A20 zinc finger pro-
tein inhibits TNF and IL-1 signaling.  J Immunol 1996,
156(3):1166-1173.

21. Grey ST, Arvelo MB, Hasenkamp W, Bach FH, Ferran C: A20 inhib-
its cytokine-induced apoptosis and nuclear factor kappaB-
dependent gene activation in islets.  J Exp Med 1999,
190(8):1135-1146.

22. Avalos BR, Bartynski KJ, Elder PJ, Kotur MS, Burton WG, Wilkie NM:
The active monomeric form of macrophage inflammatory
protein-1 alpha interacts with high- and low-affinity classes of
receptors on human hematopoietic cells.  Blood 1994,
84(6):1790-1801.

23. Hsu HC, Tsai WH, Chen LY, Hsu ML, Ing-Tiau Kuo B, Ho CH, Lin
CK, Wang SY: Production of hematopoietic regulatory
cytokines by peripheral blood mononuclear cells in patients
with aplastic anemia.  Exp Hematol 1996, 24(1):31-36.

24. Broxmeyer HE, Cooper S, Hangoc G, Gao JL, Murphy PM: Domi-
nant myelopoietic effector functions mediated by chemok-
ine receptor CCR1.  J Exp Med 1999, 189(12):1987-1992.

25. Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K: Negative feed-
back regulation of TGF-beta signaling by the SnoN oncopro-
tein.  Science 1999, 286(5440):771-774.

26. Charo IF, Peters W: Chemokine receptor 2 (CCR2) in athero-
sclerosis, infectious diseases, and regulation of T-cell polari-
zation.  Microcirculation 2003, 10(3–4):259-264.

27. Fraticelli P, Sironi M, Bianchi G, D'Ambrosio D, Albanesi C, Stoppac-
ciaro A, Chieppa M, Allavena P, Ruco L, Girolomoni G, Sinigaglia F,
Vecchi A, Mantovani A: Fractalkine (CX3CL1) as an amplifica-
tion circuits of polarized Th1 resonses.  J Clin Invest 2001,
107(9):1173-1181.

28. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H,
Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin
A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R,
Steinman L: Gene-microarray analysis of multiple sclerosis
lesions yields new targets validated in autoimmune enceph-
alomyelitis.  Nat Med 2002, 8(5):500-508.

29. Jee Y, Yoon WK, Okura Y, Tanuma N, Matsumoto Y: Upregulation
of monocyte chemotactic protein-1 and CC chemokine
receptor 2 in the central nervous system is closely associated
with relapse of autoimmune encephalomyelitis in Lewis rats.
J Neuroimmunol 2002, 128(1–2):49-57.

30. Dang NH, Morimoto C: CD26: An expanding role in immune
regulation and cancer.  Histol Histopathol 2002, 17(4):1213-1226.

31. Willheim M, Ebner C, Baier K, Kern W, Schrattbauer K, Thien R,
Kraft D, Breiteneder H, Reinisch W, Scheiner O: Cell surface char-
acterization of T lymphocytes and allergen-specific T cell
clones – correlation of CD26 expression with Th1 subsets.  J
Allergy Clin Immunol 1997, 100:348-255.

32. Steinbrecher A, Reinhold D, Quigley L, Gado A, Tresser N, Izikson L,
Born I, Faust J, Neubert K, Martin R, Ansorge S, Brocke S: Targeting
dipeptidyl peptidase (CD26) suppresses autoimmune
encephalomyelitis and up-regulates TGF-beta1 secretion in
vivo.  J Immunol 2001, 166(3):2041-2048.

33. Fleischer B, Sturm E, De-Vries JE, Spits H: Triggering of cytotoxic
T lymphocytes and NK cells via the Tp103 pathway is
dependent on the expression of the T cell receptor/CD3
complex.  J Immunol 1988, 141:1103-1107.

34. Fleischer J, Grage-Griebenow E, Kasper B, Heine H, Ernst M, Brandt
E, Flad HD, Petersen F: Platelet factor 4 inhibits proliferation
and cytokine release of activated human T cells.  J Immunol
2002, 169(2):770-777.

35. Hultqvist M, Olofsson P, Holmberg J, Backstrom BT, Tordsson J, Hol-
mdahl R: Enhanced autoimmunity, arthritis and encephalo-
myelitis in mice with a reduced oxidative burst due to a
mutation in the Ncf1 gene.  Proc Natl Acad Sci USA 2004,
101(34):12646-12651.

36. Kobayashi K, Hernandez LD, Galan JE, Janeway CA, Medzhitov R, Fla-
vell RA: IRAK-M is a negative regulator of Toll-like receptor
signalling.  Cell 2002, 101:191-202.

37. Fibbe WE, Willemze R: The role of interleukin-1 in hematopoi-
esis.  Acta Haematol 1991, 86(3):148-154.

38. Nakao S, Matsushima K, Young N: Decreased interleukin-1 pro-
duction in aplastic anemia.  Br J Haematol 1989, 71(3):431-436.

39. Anderson JP, Mueller JL, Rosengren S, Boyle DL, Schaner P, Cannon
SB, Goodyear CS, Hoffman HM: Structural, expression and evo-
lutionary analysis of mouse CIAS1.  Gene 2004, 338(1):25-34.

40. Porksen G, Lohse P, Rosen-Wolff A, Heyden S, Forster T, Wendisch
J, Heubner G, Bernuth H, Sallmann S, Gahr M, Roesler J: Periodic
fever, mild arthralgias, and reversible moderate and severe
organ inflammation associated with the V198M mutation in
the CIAS1 gene in three German patients – expanding phe-
notype of CIAS1 related autoinflammatory syndrome.  Eur J
Haematol 2004, 73(2):123-127.
Page 10 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2224124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2224124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2224124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8011528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8011528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2017225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2017225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2017225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9160674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9160674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9160674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8542959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8542959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8542959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7577642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7577642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7577642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7925777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7925777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7925777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7538820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7538820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7538820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7542501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7542501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14675414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14675414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14675414
http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/arrayexpress
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10216097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10216097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10216097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11544283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11544283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12070025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12070025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12070025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15963856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15963856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15963856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15345281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8557994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8557994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10523611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7521690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7521690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7521690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8536789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8536789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8536789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10377195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10377195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10377195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10531062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10531062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10531062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12851643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12851643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12851643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11342581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11342581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12098510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12098510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12371149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12371149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9314347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9314347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9314347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11160254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11160254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11160254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2840462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2840462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2840462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12097379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12097379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15310853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15310853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15310853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1785229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1785229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2784689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2784689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15302403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15302403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15245511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15245511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15245511


BMC Genomics 2006, 7:263 http://www.biomedcentral.com/1471-2164/7/263
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

41. Chinnaiyan AM, Hanna WL, Orth K, Duan H, Poirier GG, Froelich CJ,
Dixit VM: Cytotoxic T-cell-derived granzyme B activates the
apoptotic protease ICE-LAP3.  Curr Biol 1996, 6(7):897-899.

42. Xu JL, Nagasaka T, Nakashima N: Involvement of cytotoxic gran-
ules in the apoptosis of aplastic anaemia.  Br J Haematol 2003,
20(5):850-852.

43. Gulan G, Ravlic-Gulan J, Strbo N, Sotosek V, Nemec B, Matovinovic
D, Rubinic D, Podack ER, Rukavina D: Systemic and local expres-
sion of perforin in lymphocyte subsets in acute and chronic
rheumatoid arthritis.  J Rheumatol 2003, 30(4):660-670.

44. Park YC, Ye H, Hsia C, Segal D, Rich RL, Liou HC, Myszka DG, Wu
H: A novel mechanism of TRAF signaling revealed by struc-
tural and functional analyses of the TRADD-TRAF2 interac-
tion.  Cell 2000, 101(7):777-787.

45. Kaufman DW, Kelly J, Levy M, Shapiro S: Drugs in the aetiology of
agranulocytosis and aplastic anaemia.  Eur J Haematol 1996,
60:23-30.

46. Camitta BM, Thomas ED, Nathan DG, Gale RP, Kopecky KJ, Rappe-
port JM, Santos G, Gordon-Smith EC, Storb R: A prospective study
of androgens and bone marrow transplantation for treat-
ment of severe aplastic anemia.  Blood 1979, 53:504-514.

47. Bruder D, Probst-Kepper M, Westendorf AM, Geffers R, Beissert S,
Loser K, von Boehmer H, Buer J, Hansen W: Neuropilin-1: A sur-
face marker of regulatory T cells.  Eur J Immunol 2004,
34(3):623-630.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8805307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8805307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12672182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12672182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12672182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10892748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10892748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10892748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14991591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14991591
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Microarray analysis
	Gene expression profiles of T-cells from SAA patients at initial diagnosis
	Gene expression profiles of CD3+ T-cells from AA patients in remission
	Validation of microarray data by real-time RT-PCR

	Discussion
	Conclusion
	Methods
	Patients and controls
	Isolation of CD3+ T cells, RNA preparation and sample pooling
	Affymetrix GeneChip assay
	Data analysis
	Quantitative real-time RT-PCR

	Authors' contributions
	Acknowledgements
	References

