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Abstract

Study Design: Narrative review.

Objectives: There is growing interest in the use of biomedical informatics and data analytics tools in spine surgery. Yet despite
the rapid growth in research on these topics, few analytic tools have been implemented in routine spine practice. The purpose of
this review is to provide a health information technology (HIT) roadmap to help translate data assets and analytics tools into
measurable advances in spine surgical care.

Methods: We conducted a narrative review of PubMed and Google Scholar to identify publications discussing data assets,
analytical approaches, and implementation strategies relevant to spine surgery practice.

Results: A variety of data assets are available for spine research, ranging from commonly used datasets, such as administrative
billing data, to emerging resources, such as mobile health and biobanks. Both regression and machine learning techniques are
valuable for analyzing these assets, and researchers should recognize the particular strengths and weaknesses of each approach.
Few studies have focused on the implementation of HIT, and a variety of methods exist to help translate analytic tools into
clinically useful interventions. Finally, a number of HIT-related challenges must be recognized and addressed, including stakeholder
acceptance, regulatory oversight, and ethical considerations.

Conclusions: Biomedical informatics has the potential to support the development of new HIT that can improve spine surgery
quality and outcomes. By understanding the development life-cycle that includes identifying an appropriate data asset, selecting an
analytic approach, and leveraging an effective implementation strategy, spine researchers can translate this potential into mea-
surable advances in patient care.
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Introduction

Spine surgery has a proud history of applying rigorous research

and technological innovations to advance the care of patients

with complex spine disease. Historically, many technological

advances came from biomedical engineering, which has contrib-

uted to improved imaging modalities, implant technology, and

fusion biologics. However, there is increasing acknowledgment

that spine surgeons still face substantial uncertainty related to

basic treatment questions, such as the likelihood of surgical

success and chance of postoperative complications.1 This recog-

nition has increased the focus on using data science to transform

spine surgery practice. Supporting this mission, there has been

explosive growth in healthcare data – an estimated 16,000 exa-

bytes in 2018.2 The increased availability of data assets has

expanded opportunities to use biomedical informatics tools to

improve virtually all aspects of spine care, including: diagnosis

and imaging classification; treatment selection and risk predic-

tion; perioperative management; and administrative tasks.3,4

Nonetheless, data science has not yet transformed spine sur-

gery in theway it has some areas ofmedicine and society.Despite

the increasing availability of large data assets and advanced com-

puting power, we remain far from the goal set by the Institute of

Medicine in 2007 to have 90% of clinical decisions supported by

accurate, timely clinical information by the year 2020.5 To nar-

row this divide, spine surgeons must understand how key deci-

sions related to dataset selection, analytic techniques, and

implementation strategy influence the clinical impact of health

information technology (HIT).6 Recognizing these important

considerations (Figure 1), this review will provide a HIT road-

map to help realize the potential of data assets and biomedical

informatics tools to improve spine surgery practice.

Types of Data Assets

An overview of data assets available for spine surgery infor-

matics research is shown in Table 1.

Administrative Datasets

Administrative datasets based on billing claims have been used

frequently in spine surgery research, likely due to their wide-

spread availability, relatively low cost, structured data, and

population-level coverage.20-22 These datasets have provided

important insights into the effectiveness of policy interven-

tions,23 surgical costs,8 and population-level trends.8,7 How-

ever, diagnoses from billing codes are often imprecise and

lack imaging data,24 limiting the ability to evaluate clinical

outcomes. For example, billing data have limited ability to

distinguish key surgical variables, such as the number of levels

treated or the use of minimally invasive techniques, confound-

ing comparative effectiveness research efforts. Although tech-

nically complex, linking administrative and clinical registry

data can help overcome some of these limitations and broaden

potential applications.9

Spine Surgical Registries

Spine surgery registries are experiencing increasing growth and

attention. A 2015 systematic review identified 25 registries

representing 14 countries.25 Among the most recent, the Amer-

ican Spine Registry has emerged as a successor to the Quality

Outcomes Database with the goal of unifying neurosurgery and

orthopedic registries efforts.25,26 Other registries, such as the

International Spine Study Group and European Spine Study

group, have focused on particular spine populations, such as

deformity.27-29 These registries offer advantages over claims

data, including data quality control, detailed patient character-

istics, and inclusion of patient-reported outcomes.25,10,30 These

attributes have generated substantial enthusiasm among both

surgeons and hospital administrators.31 Nonetheless, few regis-

tries capture imaging data, and standards for processing and

storing these data are lacking. Additionally, considering main-

tenance fees and the need for a full-time employee for data

review, establishing a multicenter registry can cost millions

Figure 1. A diagram depicting the process of developing and implementing new health information technology in spine surgery. EHR indicates
electronic health record.
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of dollars.30,32,33 Finally, most registries are not designed to

collect real-time patient data. Linking registries with electronic

health records (EHR) and mobile health data offers an oppor-

tunity to decrease their cost and expand potential uses.34,35

Electronic Health Records

EHRs represent an expansive and underutilized source of spine

surgery data. Currently, at least 98% of hospitals have adopted

an EHR system, creating vast quantities of patient data,

updated in real time.36 The EHR offers spine surgeons valuable

opportunities to both develop and implement informatics tools.

While many surgeons are familiar with using the EHR for

simple research tasks (e.g. identifying patients by procedure

code), its full potential has largely been untapped. For example,

automated workflows are capable of populating quality

improvement registries,35,37 though such pipelines are not rou-

tine. Additionally, multidimensional EHR data can be used in

real-time to support evidence-based decision-making. For

example, a model predicting surgical complications evaluated

285 clinical, demographic, administrative, and laboratory vari-

ables to develop a prediction tool that processes EHR data in

real-time to provide risk predictions at the point-of-care.38 In

spine surgery specifically, the use of real-time EHR analytics to

support decision-making has been less common, though there

have been notable successes, such as clinical decision-support

for guiding appropriate spine imaging.39,40 Challenges to

leveraging insights from the EHR include the frequent use of

unstructured data (e.g. clinic notes), non-random missing data,

and inconsistent data quality.41,42 Additionally, generating

multicenter datasets is often challenging because many EHRs,

even from major vendors, store data in unique, institution-

specific ways. Nonetheless, with continued efforts in areas

such as natural language processing,43 opportunities to replace

manual chart abstraction with sophisticated EHR queries con-

tinue to expand and are likely to assume a growing role in spine

surgery research and quality improvement. Likewise, broad

adherence to interoperability standards will facilitate the imple-

mentation of analytic pathways and clinical decision support

across health systems.44

Mobile Data

Mobile health (mHealth) is at the vanguard of biomedical infor-

matics, with both researchers and “Big Tech” companies vying

to capitalize on the increasing use of smartphones and wearable

technology.45 By its nature, mHealth removes many barriers of

having patients complete outcomes questionnaires, and in this

way, might pave the way for seamlessly collecting population-

based physical outcomes data. Indeed, there is expanding evi-

dence for the role of mHealth in postoperative monitoring after

spine surgery, 17,46,47 and there are increasingly available com-

mercial applications intended to aid post-discharge patient sur-

veillance.48-50 Particularly notable, one study used a mobile

Table 1. A summary of the Strengths, Limitations, and Ideal Uses for Data Assets used in Spine Surgery Biomedical Informatics Research.

Data asset Strengths Limitations Uses

Administrative
(claims) data

& Large sample size
& Inexpensive
& Clinical and cost data
& Population coverage
& Structured data

& Unreliable data accuracy
& Limited breadth of data (e.g. no

lab or imaging data)
& Delayed availability (due to

coding and processing)

& Population-level outcome trends7

& Health policy and cost analysis8

& Linkage with clinical registries9

Spine surgery
registries

& Relatively large sample size
& High quality, “real world” data
& Condition-specific data collection (e.g.

patient-reported outcomes, imaging)
& Structured data

& Expensive to establish and
maintain

& Narrow clinical focus and data
collection

& Delayed data availability

& Quality improvement programs10

& Comparative effectiveness
studies11

& Hypothesis generation for clinical
trials12

Electronic
Health
Records

& Real-time data acquisition
& Wide breadth of data (e.g. clinical,

imaging, free-text)
& Inexpensive to access
& Large sample size

& Inconsistent data quality
& Often lack patient-reported

outcomes
& May lack generalizability
& Unstructured data

& Real-time safety alerts13

& Integration with clinical registries14

& Quality and outcomes research15

Mobile data & Real-time, real-world data collection
& Detailed physical function data
& Rapid data acquisition

& Limited availability
& Socioeconomic barriers to use
& Uncertain patient acceptance
& Interpreting clinical importance

can be challenging
& Interoperability and data storage

& Physical function assessments16

& Real-world data acquisition17

& Physiologic data collection
& Low patient burden

Biobanks & Individualized
& Biological detail

& Expensive
& Limited availability
& Patient privacy concerns

& Precision medicine (e.g. risk
prediction, drug targeting)18

& Linkage with EHR/registry data19

Greenberg et al 3
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application to aid postoperative monitoring for over 1,600

enhanced recovery after surgery patients. More generally,

mHealth used in spine surgery has shown success in collecting

patient-reported outcome measures,51 decreasing surgical can-

cellations,52 monitoring postoperative recovery,17,46 and guiding

postoperative rehabilitation.53 In other fields, mHealth applica-

tions have also been used to support behavioral modification

related to factors that may impact spine surgery outcomes (e.g.

cardiovascular disease, medication compliance).54,55 Despite

such promises, there remain important obstacles to more wide-

spread use of mHealth. Several studies have shown that only a

minority of patients use such applications regularly,17,51 and

despite promising reports, rigorous evidence demonstrating

improved outcomes or decreased cost is lacking.56 For example,

despite increasing use of mobile sensor data to study activity

measures, such as step count,57,58 there is sparse evidence

demonstrating the extent to which such real-time measures reli-

ably capture physical function or quality of life.58 Additional

barriers to expanding mHealth include patient reservations

related to privacy protection and technology familiarity, socio-

economic disparities in access,59,60 and uncertainties related to

data and evidence quality.61 Finally, there remains an ongoing

need to integrate mHealth technology with existing EHR sys-

tems, which is often a complicated and costly endeavor.62 As

these barriers are overcome, spine surgery practice will benefit

from new efficiencies and care pathways, while researchers will

derive new insights from high-frequency, real-world data

collection.

Biobanks

Genomic, proteomic, and metabolomic (i.e., ‘omic’) data assets

serve an essential role in tailoring treatment selection and out-

come prediction to individual patient characteristics. Biobanks

have been slow to take hold in spine surgery. Current spine-

related biobanks focus on tumor samples, such as the Chor-

doma foundation biobank, and spinal cord injury.63-65

However, novel insights regarding osteoarthritis from the UK

Biobank demonstrate that other areas of spine surgery, partic-

ularly degenerative disease, could benefit from these pooled

resources.66 To maximize their impact, ‘omic’ data should be

integrated with more complete clinical information. Given the

substantial resources required, more widespread adoption of

spine surgery biobanks will require support from funding bod-

ies and innovative solutions from data scientists, such as link-

ing biochemical data with clinical EHR platforms.67

Analytical Techniques

As important as selecting an appropriate dataset is the analy-

tical approach used to investigate those data. While some

authors describe a continuum between fully human-guided and

machine-guided statistical techniques,68 we will distinguish

traditional regression techniques from newer machine-guided

approaches.4 Each of these analytical techniques contains mul-

tiple nuances and variations, including approaches to handling

clustered and longitudinal data. Detailed reviews are available

on such topics.4,69-71 Our goal is to provide an overview of the

key advantages and weaknesses of each approach, along with

the applications each is best suited to address (Table 2).

Regression Models

Regression models – including linear, logistic, and proportional

hazards regression – are the traditional workhorse of statistical

modeling. Regression models are generally designed to evalu-

ate categorical and linear predictors, but techniques also exist

for modeling non-linearity, including restricted splines and

fractional polynomials.72 While several approaches exist to

help automate variable selection and prevent overfitting,73,74

variable selection and other modeling choices – such as inter-

action testing – remain heavily influenced by expert knowl-

edge.72 While regression models are effective at risk

prediction, they are particularly valuable for testing the statis-

tical significance of observed variations, including surgical

costs, clinical outcome, and health policy interventions.11,75,76

Finally, regression results are generally easy to interpret, facil-

itating the identification of clinically relevant relationships and

possibly enhancing surgeon acceptance of risk predictions.72

Table 2. Strengths, Weaknesses, and Ideal Use of Regression Versus Machine Learning Techniques.

Regression models Machine learning

Strengths � Familiar to researchers and clinical spine surgeons
� High model transparency
� Established techniques to test statistical significance of
observed differences

� Able to model complex patterns and unstructured data
� Not bound by pre-existing assumptions
� Superior predictive power (in some circumstances)

Weaknesses � Assumptions of linearity and additivity
� Difficulty modeling unstructured data
� Decreased predictive power (in some circumstances)

� Decreased model transparency
� Higher sample size requirements
� Less familiar to spine surgeon researchers

Ideal Use � Risk models using structured data
� Conducting inference related to treatment outcome
and cost

� Evaluating policy interventions

� Modeling high volumes of unstructured data (e.g. real-time EHR
output, mobile health data)

� Interpreting imaging data, mobile activity sensors

4 Global Spine Journal
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Machine Learning

Machine learning refers to the intersection of statistics and

computer science dedicated to using computing power to make

predictions by recognizing patterns within data.71 Most appli-

cations of machine learning familiar to spine surgeons would

be categorized as supervised learning, which involves training

a model to predict a known outcome (e.g., postoperative com-

plications, a fracture on CT).71,77 By comparison, unsupervised

learning involves using computers to detect new patterns in

data, such as defining disease categories without preexisting

constraints. Due to their advantages detecting novel classifica-

tions within high dimensional data, unsupervised approaches

are likely to assume a dominant role in the future, though at

present remain relatively uncommon in spine surgery and clin-

ical medicine.

While variable interactions and spline transformations can

extend regression techniques, they are largely bound by

assumptions related to linearity and additivity (i.e., predictor

variables have an additive effect on the outcome). By compar-

ison, machine learning can accommodate much more complex

patterns and unstructured data that may more accurately reflect

spine surgery practice.71 A variety of machine learning tech-

niques, including random forests, support vector machines, and

convolutional neural networks have been developed for this

purpose.78 Yet machine learning approaches have important

shortcomings, including a lack of interpretability (i.e., the

“black box” problem) or clinical applicability, and higher sam-

ple size requirements.79,80 Advances in “interpretable machine

learning” have helped address some of these shortcomings but

still do not fully replicate an inherently interpretable modeling

structure.81

Selecting an Analytical Approach

Overall, regression techniques are better suited to making

inferences (e.g. are outcomes from fusion better than decom-

pression), given their greater transparency and well-defined

approaches for determining statistical significance. Machine

learning may offer advantages when engaging in prediction,

though such gains are far from certain.82 Benefits of machine

learning are likely to be most pronounced when dealing with

complex datasets, and large sample sizes (e.g. thousands of

cases) are often needed to yield stable predictions.68,80 These

limitations, combined with the relatively simple nature of many

clinical datasets, likely explain the fact that machine learning

approaches have often shown modest if any advantages com-

pared to regression in many spine clinical prediction studies.83-

86 Consequently, investigations using machine learning for

clinical predictions should demonstrate sufficient improve-

ments in predictive performance to justify the loss of

interpretability.

By comparison, machine learning has shown greater success

when dealing with complex data assets, such as high volume

EHR data, mobile sensors, and imaging analysis.4,87 For exam-

ple, machine learning approaches have been used to aid

preoperative planning in deformity surgery,88,89 and also to

classify gait abnormalities based on mobile sensor data.90,91

Likewise, machine learning approaches have proven effective

at analyzing high-volumes of EHR data in real-time to aid

postoperative risk predictions at the point-of-care.92 Other

innovative efforts, such as integrating high-volume clinical and

imaging data with expert opinion to improve patient classifi-

cation in spondylolisthesis, are ongoing.93

Future Perspectives

While regression techniques remain a mainstay in spine sur-

gery research, there are a variety of approaches that have

received scant attention and may open new analytic opportu-

nities in the future. For example, multilevel models are well-

suited to modeling hierarchical data (e.g. distinguishing patient

vs. surgeon effects) as well as longitudinal trends (e.g. post-

operative recovery trajectory).94,95 Likewise, spine surgeons

should consider making use of emerging techniques like gen-

eralized additive models, which allow substantial flexibility in

modeling complex relationships while preserving interpretabil-

ity.96 Finally, as large data assets continue to expand, so too

will the role for machine learning techniques, particularly

unsupervised approaches that may identify novel phenotypes

of complex disease.97 Therefore, the emerging challenge for

spine researchers is learning how best to deploy these powerful

resources.

Implementation and Evaluation

Rigorous analytics applied to appropriate data assets serve as

the foundation for effective HIT, such as clinical decision sup-

port predicting postoperative complications or tools to help

select osteotomy sites for planning deformity correction. How-

ever, to effectively impact spine surgical practice, new HIT

must be adopted by diverse stakeholders within complex

healthcare systems. These challenges may be particularly pro-

minent in spine surgery, where surgeon preference and institu-

tional traditions remain important influences on management

practices. Many of the concepts relevant to implementing HIT

may be unfamiliar to spine surgeons, but identifying how and

when such approaches can be used is key to moving biomedical

informatics from the research setting into clinical practice.

Human-centered Design

Human-centered design (HCD) and evaluation refers to an itera-

tive process that involves users throughout the design lifecycle to

ensure that new HIT meets the needs and preferences of end-

users.98,99 After an initial HIT prototype is developed based on

user-specified requirements,98 formal usability and usefulness

testing should be completed in a simulated environment prior

to clinical implementation.100 A number of mixed methods

approaches can be employed to assess usability, such as the

think-aloud technique, which elicits users’ thoughts and feelings

as they use the new technology.101 This think-aloud approach

Greenberg et al 5
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has been used to evaluate a virtual reality vertebroplasty simu-

lator and a novel outcome assessment tool for spine trauma,

identifying potential problems and suggestions for improve-

ment.102,103 Another approach, cognitive walkthroughs, involves

a trained evaluator analyzing the cognitive processes required to

use new HIT, thereby identifying potential discrepancies

between designers’ and users’ understanding of a task.104 This

technique was used to evaluate a dashboard for presenting pre-

dicted patient-reported outcomes to spine surgery patients.98

Alternatively, heuristic evaluation uses human-computer inter-

action experts to identify usability problems based on estab-

lished heuristic principles that may be missed with user

testing.104,105 This approach was used in combination with cog-

nitive walkthrough to optimize the patient-reported outcome

dashboard noted above.106 After completing these types of eva-

luations, field testing in clinical settings can reveal real-world

problems not identified in a laboratory environment.107,108 An

exhaustive discussion of the HCD process is beyond the scope of

this review, and many of the approaches involved, particularly

the mixed methods techniques, may be unfamiliar to most spine

surgeons. Consequently, surgeons seeking to implement new

HIT should seek out methods experts to assist in this process.

Sociotechnical Analysis

Sociotechnical analysis provides a conceptual framework to

evaluate the interconnected organizational, human, and techni-

cal elements impacting the adoption of HIT.109 Sociotechnical

analysis focuses on the following aspects of implementation:

the hardware and computing infrastructure; clinical content;

human-computer interface; people; clinical workflow and com-

munication; organizational policies, procedures, and culture;

and system measurement and monitoring after implementa-

tion.110 In doing so, this approach provides a foundation for

studying key implementation measures, such as barriers and

context.111 Sociotechnical analysis is typically pursued through

qualitative interviews with stakeholders, though surveys and

EHR interrogation can also be used.112 This approach has

rarely been used in spine research, though one study conducted

a sociotechnical analysis to evaluate clinical video telehealth

for spinal cord injury patients.113 There have also been limited

successes using this approach to inform the implementation of

clinical decision support in other surgical populations, such as

patients with traumatic brain injury and patients requiring

orthopedic imaging.114,115 Spine surgeons developing new HIT

should consider conducting a sociotechnical analysis to

improve the likelihood that their intervention will be success-

fully integrated into clinical practice.

EHR Log Analysis

Traditional approaches to understanding how clinicians inter-

act with HIT include interviews, surveys, and direct observa-

tion.116 While informative, such methods are labor and

resource intensive and may not capture the full variability in

care processes. Addressing these short-comings, EHR log

analysis evaluates the time users spend performing different

EHR-related tasks.116 This technique can be used to assess

usage behaviors and clinical workflow, describe HIT demands,

and evaluate the impact of HIT on care processes.116 This

technique has been used to study time demands by surgical

residents and currently represents an untapped opportunity for

spine surgeons to collaborate with informatics experts to eval-

uate clinical practices and new HIT interventions.117,118

Implementation Trials

The most rigorous approach for evaluating new HIT is an

implementation trial, which typically assumes a cluster-

randomized design.119 These studies are often designed to eval-

uate effectiveness outcomes, such as a trial for a machine

learning-derived early warning system for intraoperative hypo-

tension.13 However, focusing only on effectiveness creates a

missed opportunity to study key implementation outcomes,

such as context, barriers, and facilitators.120 Implementation

trials for spine disease have evaluated the role of mobile

phone-based postoperative rehabilitation and an online appli-

cation for managing low back pain, providing high-level evi-

dence of the effectiveness of these interventions.53,121 While

labor and resource intensive, for high-stakes HIT interven-

tions—including those that may warrant reimbursement from

payers—implementation trials remain the gold standard for

demonstrating an impact on health outcomes and care delivery.

Challenges and the Path Forward

Realizing the potential of biomedical informatics to transform

spine surgery will involve navigating a variety of challenges and

considerations, which are summarized in Figure 2. Among the

most important challenges spine surgeons should consider are:

Click Fatigue

With the increasing adoption of EHRs, spine surgeons, like

most physicians, are inundated with alerts, more than half of

which are overridden.122 To reduce click fatigue, researchers

should focus on identifying when data analytics tools are most

likely to impact clinical outcomes.123,124 Likewise, adoption of

HIT interventions will be enhanced by focusing on design stra-

tegies that reduce the cognitive workload demanded of busy

spine surgeons.125

Model Maintenance

Like any medical device, successful predictive models must be

maintained over time and across different healthcare settings,

adding to their long-term costs.126 Counterintuitively, the more

effectively a model impacts practice and improves outcomes, the

more its performance may diminish over time with changing

conditions.127 Similarly, changing practice patterns and patient

characteristics often lead to a decay in model performance over

time.128 Furthermore, many predictive models suffer from poor

portability across institutions,41 as was found in a model
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predicting infections after spine surgery.129 More efficient sys-

tems for sharing, testing, and updating prediction models across

institutions are needed in spine surgery and medicine more

broadly, particularly to make these tools accessible to smaller

institutions with limited information technology resources.130

Regulation and Oversight

As HIT interventions assume increasingly prominent roles in

spine surgery practice, the role of government regulation must

be defined. A recent review found that nearly half of healthcare

applications did not describe their content source,131 and sev-

eral popular healthcare applications have been removed for

poor clinical accuracy.62 Given the high-risk nature of spine

surgery, surgeons seeking to broadly implement new HIT (e.g.

to guide patient selection) should proactively consider enga-

ging with regulatory bodies to preserve innovation while ensur-

ing the rigor of HIT interventions.

Stakeholder Acceptance

To increase acceptance of HIT among spine surgeons,

researchers must address doubts related to the quality of their

underlying evidence and how these interventions interact with

existing clinical practices.62 Soliciting diverse surgeon feed-

back early in HIT development is therefore key to decreasing

conflict between established practices and new interventions.

Finally, data analytics tools should augment rather than replace

clinical experience, and explicitly incorporating surgeon judg-

ment into predictive models may enhance stakeholder

acceptance.132

Ethical Challenges

Relying on purely data-driven, particularly machine-based pre-

dictions to guide spine surgery decision-making has the potential

to accentuate disparities based on race and socioeconomic status.

Specifically, models built to mimic human decision-makingmay

reinforce known disparities in treatment access and outcomes.133

Furthermore, data assets may not contain adequate representa-

tions of minority groups, leading to decreased predictive perfor-

mance in those populations.133,134 Recognizing these potential

challenges will allow spine surgeons to maximize the ethical use

of HIT.

Conclusions

The growth in HIT has provided access to data and computing

resources previously unattainable in spine surgery, which has

contributed to a rapid rise in informatics research. Like nearly

all technology, biomedical informatics in spine surgery is sub-

ject to the “hype cycle model” described by Gartner Inc., sum-

marizing the path toward sustained use of new innovations.135

At present, we are likely experiencing the peak of inflated

expectations. To truncate the trough of disillusionment associ-

ated with unmet expectations, spine surgery researchers should

recognize the strengths and limitations of diverse data assets

and analytic tools, while also leveraging effective HIT imple-

mentation strategies. Through navigating these complex con-

siderations, spine research may move toward a plateau of

productivity, where new HIT innovations produce meaningful

advances in spine surgery quality and outcomes.
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