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ABSTRACT Recent human feeding studies have shown how the baseline taxonomic
composition of the gut microbiome can determine responses to weight loss inter-
ventions. However, the functional determinants underlying this phenomenon remain
unclear. We report a weight loss response analysis on a cohort of 105 individuals
selected from a larger population enrolled in a commercial wellness program, which
included healthy lifestyle coaching. Each individual in the cohort had baseline blood
metabolomics, blood proteomics, clinical labs, dietary questionnaires, stool 16S rRNA
gene sequencing data, and follow-up data on weight change. We generated addi-
tional targeted proteomics data on obesity-associated proteins in blood before and
after intervention, along with baseline stool metagenomic data, for a subset of 25
individuals who showed the most extreme weight change phenotypes. We built
regression models to identify baseline blood, stool, and dietary features associated
with weight loss, independent of age, sex, and baseline body mass index (BMI).
Many features were independently associated with baseline BMI, but few were inde-
pendently associated with weight loss. Baseline diet was not associated with weight
loss, and only one blood analyte was associated with changes in weight. However,
31 baseline stool metagenomic functional features, including complex polysaccha-
ride and protein degradation genes, stress-response genes, respiration-related genes,
and cell wall synthesis genes, along with gut bacterial replication rates, were associ-
ated with weight loss responses after controlling for age, sex, and baseline BMI.
Together, these results provide a set of compelling hypotheses for how commensal
gut microbiota influence weight loss outcomes in humans.

IMPORTANCE Recent human feeding studies have shown how the baseline taxo-
nomic composition of the gut microbiome can determine responses to dietary inter-
ventions, but the exact functional determinants underlying this phenomenon remain
unclear. In this study, we set out to better understand interactions between baseline
BMI, metabolic health, diet, gut microbiome functional profiles, and subsequent
weight changes in a human cohort that underwent a healthy lifestyle intervention.
Overall, our results suggest that the microbiota may influence host weight loss
responses through variable bacterial growth rates, dietary energy harvest efficiency,
and immunomodulation.
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The question of whether or not the ecological composition of the gut microbiome
may causally affect weight loss remains somewhat controversial (1). The composi-

tion and diversity of the gut microbiome have been correlated with body mass index
(BMI) and metabolic health markers and have been shown to modulate weight gain in
mice (2). There are many confounding variables with regard to obesity phenotypes,
including genetics, prior health status, age, physical activity, and diet, which can modu-
late whether or not a person who is nominally “overweight” or “obese” is considered
metabolically healthy (3–6). Recent work by our group has demonstrated that certain
host-microbe metabolic associations are disrupted only in individuals experiencing
severe obesity (BMI $ 35), but not in overweight or mildly obese individuals
(25 , BMI , 35), relative to individuals with a normal weight (BMI , 25) (7). Thus, the
cutoffs used to define obesity may not always match the underlying metabolism- and
microbiome-associated phenotypic heterogeneity in the population.

Whether or not a consistent association between the microbiota and obesity phe-
notypes exists, another important, but unresolved, question is whether or not the
human gut microbiome contributes directly to changes in weight after an intervention,
independent of baseline BMI. While the gut microbiome has been shown to contribute
to weight gain in mice (8, 9), it remains unclear whether similar factors might contrib-
ute to weight loss (10) and whether or not these results would translate well to
humans (11, 12). Recent feeding studies have shed some light on this issue, demon-
strating that humans with higher Prevotella-to-Bacteroides ratios tend to lose signifi-
cantly more weight on a high-fiber diet, particularly individuals with low salivary amy-
lase levels (13, 14). Similarly, high cecal Prevotella levels have also been shown to
improve glucose homeostasis in animal models (15). In humans, it has been shown
that a combination of baseline multi-omics features and microbiome data can predict
postprandial glycemic responses to various foods (16, 17). Thus, while the exact mech-
anisms are unknown, the baseline taxonomic composition of the human gut micro-
biota appears to influence host responses to interventions. However, it is unclear
whether or not associations between the gut microbiome and weight loss phenotypes
are independent of associations between baseline BMI and the microbiome. For exam-
ple, individuals with higher baseline BMIs tend to show larger-magnitude drops in BMI
upon follow-up, which has been referred to as a “regression-to-the-mean” effect (18).
In this study, we set out to understand the possible interactions between baseline BMI,
dietary patterns, metabolic health, and gut microbiome profiles and how these factors
may be associated with changes in weight and metabolic health following personal-
ized, healthy lifestyle interventions.

RESULTS

In this study, we leveraged existing data and biobanked samples from the Arivale
cohort (see Materials and Methods). Briefly, participants enrolled in a commercial be-
havioral coaching program run by the former scientific wellness company Arivale, Inc.,
were paired with a registered dietitian or registered nurse coach. Personalized, tele-
phonic behavioral coaching was provided to each participant on a monthly basis, with
email or text communications between coaching calls. This service included longitudi-
nal “deep phenotyping,” which involved collecting blood and stool for baseline single
nucleotide polymorphism (SNP) genotyping or whole-genome sequencing (blood) and
longitudinal clinical labs (blood), metabolomics (blood), proteomics (blood), and 16S
amplicon sequencing of the gut microbiome (stool), along with lifestyle question-
naires, body weight measurements, and additional activity-tracking data from weara-
ble devices. Arivale participants undergoing these personalized interventions showed
broad improvements across a number of validated health markers, including an aver-
age reduction in BMI (19, 20).

We targeted a subset of the ;5,000 Arivale participants to look specifically at
weight loss phenotypes during this lifestyle intervention period (Fig. 1A). Briefly, there
were 1,252 individuals with blood collected at two time points over the course of a
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year, 239 of whom had a paired stool sample at baseline and longitudinal data on BMI
(Fig. 1A to C). We further subdivided these 239 participants by selecting individuals
who lost .1% of their body weight per month over a 6- to 12-month period (n = 48)
and those who maintained a stable BMI (n = 57) over the same period (Fig. 1B). From
this 105-person cohort, another subset of 25 individuals (15 “weight loss” and 10 with
“no weight loss”) were subselected for additional assays to evaluate whether weight
loss responses were associated with (i) concomitant improvements in protein markers
of metabolic health and (ii) baseline metagenomic functional gene and taxonomic pro-
files (Fig. 1A and C). Biobanked fecal samples from this 25-person cohort were used to
generate shallow shotgun metagenomes (.2 million reads per sample), in order to
obtain gut microbiome functional and taxonomic profiles. Two biobanked plasma sam-
ples (taken before and after intervention) taken from each of these 25 individuals were
used to generate additional proteomic data on a broad set of obesity and cardiometa-
bolic health markers (see Table S1 in the supplemental material).

In the full cohort of 105 individuals there were no significant differences in age and
glucose levels between the “weight loss” and “no weight loss” groups at baseline, but
the “weight loss” group had a significantly higher baseline BMI, lower baseline serum
high-density lipoprotein (HDL) levels, and slightly lower baseline serum adiponectin
levels (Fig. 2A to E). All individuals in the “weight loss” group were considered either
overweight or obese (BMI . 25 and 30, respectively), while half of the “no weight loss”
group were overweight and the other half were considered normal weight (BMI . 25
and , 25, respectively; Fig. 2A). Across the cohort baseline BMI was significantly

FIG 1 Study design and cohorts. Schematic showing number of individuals within the Arivale wellness intervention cohort who match our selection criteria
for data completeness and “weight loss” and “no weight loss” groups (A). In panels A to C, individuals in the “weight loss” group lost .1% of body weight
per month during the program whereas the “no weight loss” group maintained a stable weight, changing less than 0.1%. Distribution of relative weight
change for the 239 candidate individuals, with blue area showing individuals who lost .1% of their body weight per month (n = 48) and red area
showing individuals who showed no change in weight (n = 57) over the same intervention period (B). Baseline and follow-up BMI values (points from the
same individual connected by lines colored by weight loss group: cyan lines denote “weight loss” and red lines denote “no weight loss”) for our “weight
loss” and “no weight loss” cohorts (n = 105) (C). Green dots in panel C denote individuals with additional proteomic and metagenomic data (n = 25).

FIG 2 Baseline metabolic markers in the full cohort (n = 105). Dot plots showing baseline BMI (A), age (B), baseline serum HDL (C), baseline serum
adiponectin (D), and baseline serum glucose (E) in the “weight loss” and “no weight loss” groups. In panels A to E, asterisks denote significance under a
Welch t test and diamonds denote group medians. Correlation matrix showing Pearson’s correlation coefficients between baseline BMI, weight loss, and
clinical markers of metabolic health across the entire cohort (F). Asterisks in panel F denote significance under a Pearson moment-product correlation test.
In panels A to F, ***, P , 0.001; **, P , 0.01; *, P , 0.05.
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correlated with several baseline metabolic health markers, such as adiponectin, HDL,
insulin resistance, and glucose levels (Fig. 2F). We also saw the expected correlation
between weight loss and baseline BMI, where those with higher baseline BMIs tended
to lose more weight (Fig. 2F), which is often termed the “regression-to-the-mean”
effect in weight loss studies (21). Because baseline BMI could potentially mask inde-
pendent measures associated with weight loss via this regression-to-the-mean effect,
we decided to correct all weight loss associations for baseline BMI.

To evaluate whether metabolic health improved in the weight loss group inde-
pendently of baseline BMI, we used a panel of 22 serum protein markers associated
with obesity and metabolic health, measured before and after intervention in our 25-
person subcohort. On average, only individuals in the “weight loss” group showed
broad improvements in seven blood proteomic markers of metabolic health following
the intervention (false-discovery rate [FDR]-corrected analysis of variance [ANOVA]
P , 0.1, Fig. 3A to G). Specifically, the “weight loss” group showed a marked increase
in ADIPOQ (adiponectin) levels, which have previously been negatively associated with
BMI and positively associated with fasting (22). The “weight loss” group also showed
decreased levels of APOE, C5, CRP, LBP, NEGR1, and PRSS3, which have all been posi-
tively associated with obesity, inflammation, and metabolic disorders (Fig. 3B to G)
(22–26). Thus, not only did the “weight loss” group reduce their BMI during the inter-
vention period, but they became metabolically and immunologically healthier as well.

We tested for associations between baseline features and weight loss that were in-
dependent of baseline BMI, age, and sex (Fig. 4A). Although one might expect baseline
phenotypic and dietary factors associated with baseline BMI to have similar associa-
tions with changes in BMI (Fig. 4A), we found that these associations were largely inde-
pendent for blood metabolomics, blood proteomics, 16S genus-level abundances, and
dietary patterns in the 105-person cohort (all Pearson’s coefficients . 0 or nonsignifi-
cant, Fig. 4B to E) and only weakly correlated for metagenome-derived gut microbial
species abundances (Pearson rho = 20.22, Fig. 4F) and functional gene abundances
(Pearson rho = 20.3, Fig. 4G) in the 25-person subcohort. Thus, phenotypic associa-
tions with BMI and weight loss were largely orthogonal (Fig. 4B to G). None of the food
frequency measures collected from this cohort were significantly associated with BMI
or weight loss (Fig. 4D). Sixty baseline blood- and stool-derived features were inde-
pendently associated with baseline BMI in the 105-person cohort, including known
markers of weight loss and weight gain such as leptin and insulin-like growth factor
(Fig. 4B to E) (27, 28). There were no baseline blood metabolites significantly associated
with weight change, independent of baseline BMI (Fig. 4B). Only a single protein (KIT
ligand) out of 268 baseline proteins tested was independently associated with weight
loss resistance (Fig. 4C). The KIT ligand has been reported previously to be associated
with obesity and energy expenditure in mice and humans (18, 29, 30). While 6 baseline

FIG 3 Additional proteomic markers of metabolic health in the subcohort of 25 individuals. Each plot shows blood proteins that changed significantly in
abundance (FDR-corrected P , 0.1 when corrected for baseline BMI) between baseline and follow-up sampling in the “weight loss” group, independent of
baseline BMI (A to G). Dashed line denotes no change in protein abundance over time, blue diamonds denote the means for the two groups, and numbers
in brackets denote how many unique peptide fragments were used to quantify each protein (A to G).
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bacterial genera (16S) were associated with baseline BMI in the 105-person cohort,
none were independently associated with weight loss (Fig. 4E), and this was consistent
with metagenomic species-level results from the 25-person cohort (Fig. 4F). In concord-
ance with a previous study (31), we observed that individuals with higher baseline BMI
showed slightly lower metagenomic gene richness, where an increase in 1 BMI unit
was associated with a loss of approximately 19 genes (P = 0.02, ANOVA corrected for
baseline sex and age). Baseline gene richness was not predictive of future weight loss
success, when adjusting for baseline BMI (ANOVA P = 0.93). However, several of the
2,975 gut bacterial gene clusters included in this analysis showed independent associa-
tions with either BMI (177, FDR-corrected P , 0.05; see Table S3) or weight loss (27,
FDR-corrected P , 0.05; see Table S3) in the 25-person cohort, and a few showed inde-
pendent associations with both baseline BMI and weight loss (4, FDR-corrected
P, 0.05, Fig. 3G and Table S3). Prior work in a larger cohort of several hundred individ-
uals showed how blood analytes could predict glycemic responders during a clinical
weight loss program (5). However, that study did not look at baseline gut microbiomes.

FIG 4 Associations between baseline multi-omic features, BMI, and weight loss. Biplots show t statistic for features’ independent associations with BMI or
weight loss, controlling for age and sex (A). Analyses were run separately for baseline blood metabolites (B), baseline blood proteins (C), baseline dietary
features (D), baseline 16S gut bacterial genera (E), baseline metagenome-derived gut bacterial species (F), and baseline metagenome-derived gut bacterial
functional genes (G). Blue dots denote features significantly associated with BMI only (i.e., independent of weight loss, age, and sex), orange dots denote
features significantly associated with weight loss only (independent of BMI, age, and sex), and red dots denote features independently associated with both BMI
and weight loss (independent of age and sex). In panels B to G, asterisks denote significance under a Pearson correlation test and ⍴ denotes the Pearson
correlation coefficient between the t statistics for BMI and weight loss (***, P , 0.001; **, P , 0.01; *, P , 0.05; ns, P . 0.05). The dashed box around panels F
and G denotes metagenomic results from the subcohort of 25 individuals, while the results in panels B to E are from the larger cohort of 105 individuals.
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Here, we find that the baseline stool metagenomic functional genes show a much
larger number of associations with weight loss phenotypes than baseline gut taxo-
nomic, blood proteomic, blood metabolomic, or dietary features (Fig. 4B to G).

In total, 31 baseline gut microbiome functional genes were associated with weight
loss, independent of baseline BMI (Fig. 5A). Cell wall and lipopolysaccharide (LPS) syn-
thesis were positively associated with weight loss, which suggested that cell division,
biomass production, and Gram-negative bacterial growth potential might be impor-
tant. To explore this further, we calculated baseline bacterial replication rates directly
from metagenome-assembled contigs (32) and found that average replication rates
were indeed significantly higher in the “weight loss” group (ANOVA P = 0.001, cor-
rected for age and baseline BMI), with Gram-negative Bacteroidetes contigs contribut-
ing most to this effect (ANOVA P = 0.002, Fig. 5B). Most contigs could not be annotated
beyond the phylum level, but the fastest-replicating contigs (replication rates . 3)
with genus-level annotations belonged to Prevotella and were observed only in the
weight loss group. Most functional genes were associated with resistance to weight
loss: specifically, functions involved in glycan (e.g., glycosyl hydrolases) and protein ca-
tabolism, response to stress, peptide antibiotic synthesis, and respiration (Fig. 5A).

DISCUSSION

Based on our rather preliminary results from this modest-size cohort, we propose a
tentative set of hypotheses for how human gut commensals modulate the host’s
absorption of calories from the diet and potentially impact intestinal inflammation
(Fig. 5C). Specifically, we know that the gut microbiota help break down complex,
extracellular polysaccharides into simpler sugars that are more readily absorbed by the
host. Indeed, we saw that certain CAZy enzyme classes (e.g., GH13, which includes the
starch-degrading amylases [see Fig. S3 in the supplemental material]) were enriched in
individuals who were resistant to weight loss, independent of baseline BMI. A similar
metagenomic increase in bacterial amylase gene frequency has been associated with
increased weight gain in mice (33). Furthermore, gut bacterial replication rates were
reduced in those who were resistant to weight loss, independent of baseline BMI.
Similarly, prior cross-sectional work identified associations between the gut bacterial
replication rates from a few taxa and BMI (34). We hypothesize that lower commensal

FIG 5 Metagenomic markers of weight loss in a subcohort of 25 individuals. Metagenomic gene cluster abundances significantly associated with weight
loss (independent of baseline BMI, age, and sex), binned into high-level functional categories (A). Average phylum-specific bacterial replication rates
estimated from metagenomes show significant differences across weight loss groups (B). In panel B, “NA” denotes contigs without a phylum-level
classification (i.e., not enough single-copy phylogenetic marker genes within those contigs to obtain a phylum-level classification) and asterisks denote
significance under ANOVAs while correcting for age and baseline BMI (***, P , 0.001; **, P , 0.01). Schematic of the proposed microbiome-mediated
mechanisms involved in weight loss promotion or resistance based on specific metagenomic functions from panel A that were positively or negatively
associated with weight loss (C).
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growth rates may allow the host epithelium to absorb a larger fraction of extracellular
polysaccharide breakdown products in the lumen before they can be transformed into
less-energy-dense fermentation by-products, like short-chain fatty acids (SCFAs), and
bacterial biomass. SCFA production itself can reduce intestinal inflammation (35),
which in turn may help to improve metabolic health and better facilitate weight loss
(36). Concordantly, we saw reduced levels of circulating inflammation-related proteins
in participants who lost weight (Fig. 3A to G). Finally, reduced inflammation could itself
promote fermentative metabolism and redox homeostasis in the gut, minimizing oxic
stress to strict anaerobes and suppressing respiratory pathways that favor facultative
anaerobes (Fig. 3F).

We suggest that dietary energy harvest, host-microbe substrate competition, and
modulation of host inflammation by commensal bacteria may be, in part, responsible
for determining host responses to weight loss interventions, independent of baseline
BMI or metabolic health state. Gut ecosystems optimized for fermentative metabolism
and higher bacterial growth rates appear to be conducive to weight loss. Prior work
has shown that the higher baseline levels of Prevotella can improve weight loss
responses to a standardized high-fiber diet (13), and here we found higher baseline
Bacteroidetes growth rates, driven in part by the genus Prevotella, in individuals who
lost weight in a commercial wellness program, which often involved suggested
increases in dietary fiber and exercise (see Materials and Methods). Recent studies
have suggested that one can predict weight loss outcomes following an intervention
from baseline 16S rRNA gene community profiles (21, 37). However, these weight loss
studies did not correct for baseline BMI, which can act as a significant confounder (e.g.,
Fig. 2F) due to the regression-to-the-mean effect described above (21, 37). The puta-
tive microbiome-centric weight loss mechanisms identified in this study are largely
consistent with prior work in nonhuman animal models and in human observational
studies, indicating that energy harvest, abundances of glycosyl hydrolase genes, and
inflammation are relevant to weight gain and obesity (8, 33, 38, 39).

In summary, our results represent a preliminary set of baseline gut microbiome
functional features that are associated with future changes in weight following an
intervention, independent of baseline BMI (Fig. 5C). It remains to be seen whether
these results will replicate in other cohorts and whether the funneling of dietary
starches and fibers into simple sugars accessible to the host, rather than toward con-
version into SCFAs, does indeed lead to weight loss resistance. In particular, the current
study only looked at baseline dietary patterns and did not track detailed dietary
records throughout the full duration of this personalized intervention study. Future
studies should capture this longitudinal dietary data in order to better delineate
between the influence of dietary variation and baseline gut microbiomes in predicting
weight loss responses. Finally, larger interventional trials are needed in humans to fur-
ther advance our understanding of how our commensal gut microbiota and our life-
style interact to causally contribute to weight loss. By combining these emerging
insights with recently developed models for predicting personalized gut microbiome
metabolic outputs (40, 41), we can begin to engineer the functional capacity of our
microbiota to optimize the outcomes of dietary and lifestyle interventions.

MATERIALS ANDMETHODS
Arivale cohort and subcohort selection criteria. Procedures for this study were run under the

Western Institutional Review Board (WIRB) with Institutional Review Board (IRB) study number 20170658
at the Institute for Systems Biology and 1178906 at Arivale. The research was performed entirely using
deidentified and aggregated data of individuals who had signed a research authorization allowing the
use of their anonymized data in research. Per current U.S. regulations for use of deidentified data,
informed consent was not required. To be eligible to join the program, participants had to be over
18 years of age, not pregnant, and a resident of any U.S. state except New York. The participants ana-
lyzed in this study are the 92% of participants who agreed to research use as of 19 June 2018 and en-
rolled in the program between July 2015 and March 2018.

Of the ;5,000 Arivale participants who agreed to research use of their data, 1,252 had blood draws
at two time points (i.e., a baseline sample and then a follow-up sample at ;6 to 12 months). Of these
1,252 individuals, 239 had follow-up BMI data within the year after the first blood draw and had
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biobanked serum and fecal samples available which were sampled within 30 days of each other. We
removed individuals with zero variance in weight measurements, which results from digital scales when
regular weighing is not performed and the prior weight is reported repeatedly. Relative weight change
was calculated as (follow up weight 2 baseline weight)/months between measurements. The study
cohort was then assembled by selecting all individuals who either lost more than 1% of body weight
per month (n = 48, “weight loss” group) or retained a very stable body weight (gained less than 0.1% of
their body weight, n = 57, “no weight loss” group) during the lifestyle intervention. A subcohort of 25 of
these 105 individuals was selected for additional proteomic and metagenomic assays. Specifically, 15
individuals with the largest declines in weight were used as the “weight loss” group, whereas 10 individ-
uals with the 20 smallest positive weight change values were chosen as the “no weight loss” group (10-
person subset was selected to ensure a balanced representation of sexes across groups).

Arivale behavioral intervention. Participants who enrolled in the yearlong commercial behavioral
coaching program were paired with a registered dietitian or registered nurse coach. Personalized, tele-
phonic behavioral coaching was provided to each participant on a monthly basis, with email or text
communications between coaching calls. Each participant’s clinical and genetic data were available to
them via a web dashboard and mobile app, which they could also use to communicate with their coach
and schedule calls or blood draws. Coaches provided specific recommendations to address out-of-range
clinical results based on clinical practice guidelines, published scientific evidence, or professional society
guidelines. Examples of the evidence behind the coaching recommendations include guidelines from
the American Heart Association or American Diabetes Association (42), comprehensive lifestyle interven-
tions such as those developed for the Diabetes Prevention Program (DPP) (43), nutrition recommenda-
tions such as those based on the DASH dietary pattern (44) or MIND diet (45), and exercise recommen-
dations from the American College of Sports Medicine (46).

Blood collection and multi-omic data generation. Blood draws for all assays were performed by
trained phlebotomists at LabCorp or Quest service centers and were scheduled every 6 months, but
actual collection times varied. Metabolon conducted their Global Metabolomics high-performance liquid
chromatography (HPLC)–mass spectrometry (MS) assays on participant plasma samples. Sample han-
dling, quality control, and data extraction along with biochemical identification, data curation, quantifi-
cation, and data normalizations have been previously described (47). For analysis, the raw metabolomics
data were median scaled within each batch, such that the median value for each metabolite was 1. To
adjust for possible batch effects, further normalization across batches was performed by dividing the
median-scaled value of each metabolite by the corresponding average value for the same metabolite in
quality control samples of the same batch. Missing values for metabolites were imputed to be the mini-
mum observed value for that metabolite. Values for each metabolite were log transformed. Plasma pro-
tein levels were measured using three ProSeek proximity extension assay (PEA) panels (cardiovascular II,
cardiovascular III, and inflammation arrays) from Olink Biosciences (Uppsala, Sweden), processed, and
batch corrected as described previously (47). For analysis, a threshold of less than 5% missing values was
set for each protein, which was passed by 263 different analytes. Missing values for the proteins were
imputed to be the minimum observed value for that protein.

Dietary food frequency questionnaires. Upon sign-up to the Arivale program, individuals filled out
extensive questionnaires online. Consumption frequencies for a set of 39 different food entities were
presented on an ordinal scale ranging from 0 (no consumption) up to 8 (very frequent consumption).
The interpretation of individual consumption levels for each food group can be found in Table S2 in the
supplemental material.

Stool collection and metagenomic data generation. At-home stool collection kits (DNA Genotek;
OMR-200) were shipped directly to participants and then shipped back to DNA Genotek for processing.
Microbial DNA was isolated from 200 ml of homogenized fecal material using the DNeasy PowerSoil Pro
extraction kit (Qiagen, Germany) with bead beating in Qiagen Powerbead Pro plates (catalog no. 19311;
Qiagen, Germany). Extracted DNA was quantified using the Quant-iT PicoGreen double-stranded DNA
(dsDNA) assay kit (Invitrogen, USA), and all samples passed the quality threshold of 1 ng/ml (range, 8 to
101 ng/ml).

16S amplicon sequencing was performed as described previously in reference 7. In brief, the 16S V3-
V4 region was amplified and sequenced with 300-bp paired-end libraries on an Illumina MiSeq. Samples
were demultiplexed using Illumina Basespace (San Diego, CA), yielding the FASTQ files used in this
study.

Shallow shotgun sequencing was performed with the BoosterShot service (Corebiome, USA). In brief,
single-stranded 100-bp libraries were prepared using an optimized proprietary protocol of the provider
(Corebiome, USA) based on the Nextera library prep kit (Illumina, USA) and sequenced on a NovaSeq
(Illumina, USA) to a minimum of 2.6 million (2.6M) reads per sample (mean 3.5M, ranging from 2.6M to
4M). Demultiplexing was performed on Basespace (Illumina, USA), yielding the final FASTQ files.

Anthropometric data. Height, weight, and waist circumference either were measured at the blood
draws (45%) or were self-reported via an online assessment, or through the Fitbit Aria scale. Reference
ranges for anthropometric data were defined by U.S. public health guidelines (48).

SRM of obesity-related proteins. Serum samples were processed following a previously published
protocol that ensured maximum yield of signal (49). We targeted a curated selection of 22 mostly organ-
specific proteins with known genetic variants associated with obesity or metabolic syndrome (Table S1).
Prepared samples, along with spiked-in heavy-isotope-labeled synthetic standard peptides, were quanti-
fied using a triple-quadrupole mass spectrometer (Agilent 6490; Agilent, Santa Clara, CA) with a nano-
spray ion source and Chip Cube nano-HPLC. Three to four transitions were monitored for each target
peptide (see Table S1). Two micrograms of tryptically digested Mars-14 (Agilent, Santa Clara, CA)
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depleted serum was eluted from a high-capacity nano-HPLC chip (160 nl, 150 mm by 75 mm inside di-
ameter [i.d.]; Agilent, Santa Clara, CA) with a 30-min gradient of 3 to 40% acetonitrile as described previ-
ously (49, 50). Raw selective reaction monitoring (SRM) mass spectrometry data were analyzed with the
Skyline targeted proteomics environment (51). Each detected peptide was quantified by the light/heavy
(L/H) ratio of monitored transitions, after adjusting for the volume of the original serum sample.

16S amplicon sequencing data processing. The samples were processed using a customized
open-source pipeline previously described in reference 52. Here, individual samples were processed
using DADA2 in order to yield individual amplicon sequence variants (ASVs). After merging forward and
reverse ASVs, chimeras were removed using the de novo algorithm in DADA2, which removed about
17% of all reads as chimeric. Taxonomic names were assigned using the RDP method and using the
Silva 16S reference database (version 132). Eighty-nine percent of the total reads could be mapped to at
least the genus level this way. The resulting ASV abundance tables, taxonomy assignments, and sample
metadata were finally merged into a single phyloseq object that was used for further analysis (53).

Metagenomics data processing. Trimming and filtering for the raw sequencing data were per-
formed using FASTP v0.20.1 (54). The first five bases on the 59 end were trimmed from each read to
avoid leftover PCR primers, and each read was furthermore trimmed on the 39 by the sliding window
method with a minimum quality threshold of 20. Abundances of species were obtained using KRAKEN
v2.0.9 and BRACKEN v2.6.0 using the default KRAKEN database (55, 56). Contigs were assembled de novo
with MEGAHIT v1.2.9 with a cross-assembly across all samples. Open reading frames (ORFs) in the result-
ing contigs were then identified with PRODIGAL v2.6.3 (57). Reads from each sample were then aligned
to each contig using MINIMAP2 v2.17, and gene abundances for each sample were quantified with the
Expectation-Maximization algorithm from SALMON v3.1.3 (58, 59). The identified ORFs were annotated
using the EGGNOG EMAPPER v2.0.1.

Replication rates were inferred using the iRep approach (32). Here, we first aligned the reads for
each sample to the full assembled contigs using MINIMAP2 v2.17. Coverage profiles were extracted for
all contigs larger than 5,000 bp across bins of a 100-bp width, but only contigs with a minimum length
of 11,000 bp and a mean coverage of 2� were used for the iRep inference. Coverage profiles were
smoothened using a sliding window mean over 50 bins (5,000-bp window width) before calculating the
replication rates using the iRep implementation in mbtools v0.44.14 (https://gibbons-lab.github.io/
mbtools). Taxonomic classifications of individual contigs were obtained using CAT v5.1.2 with the
default database of single-copy marker genes (60).

Statistical analyses. (i) SRM data. Raw SRM abundances from the 25-person cohort were log-trans-
formed, which yielded data that appeared to be normally distributed (as validated by QQ plots). Change
in protein abundance across the intervention was then quantified as the difference of protein abun-
dance after intervention and the baseline abundance, yielding log ratios of postintervention versus
baseline abundances. Associations with weight loss were obtained by linear regression of the obtained
log ratios using the design shown in Fig. 2. Here, assignment to the “weight loss” group was the target
covariate, correcting for baseline BMI, age, and sex. Due to the low sample size in the metagenomics
cohort, we did not fit interaction terms between sex and weight loss groups as this would have led
some coefficients to be estimated from very small cohorts (n , 6). False-discovery rates were controlled
by adjusting P values using the Benjamini-Hochberg correction.

(ii) Metabolomic and proteomic data. For the 105-person cohort, mass spectrometry data from
untargeted metabolomics and proteomics data were log-transformed, as this yielded near-normal distri-
butions on QQ plots. Log-abundance values were then used for linear regressions using the design for-
mula shown in Fig. 3A. For each metabolite and protein, we also performed a regression without the
“weight loss” group and using the baseline BMI as the target covariate to yield the association strength
with BMI. Linear regressions were run using the LIMMA R package without Bayesian shrinkage as this is
specific to gene expression data (61). False-discovery rates were controlled by adjusting P values using
the Benjamini-Hochberg correction. T-values for each association coefficient were calculated as the ratio
of coefficient and estimated coefficient standard deviation obtained from the Fisher matrix of the
regression.

(iii) Diet data. Responses to food frequency questions were extracted from the 105-person cohort
and covered a set of 39 food groups on an ordinal scale ranging from 0 (no consumption) up to 8 (very
frequent consumption). The numeric frequency values were used in univariate regression models with
the food frequency measure as dependent variable and the same independent variables used in the
metabolomic and proteomic data analysis (and shown in Fig. 3A). For each food group we also per-
formed a regression without the “weight loss” group and using the baseline BMI as the target covariate
to yield the association strength with BMI. T-values for each association coefficient were again calculated
as the ratio of coefficient and estimated coefficient standard deviation obtained from the Fisher matrix
of the regression.

(iv) Metagenomic and 16S data. Like 16S genus abundances (105 samples), metagenomic species
abundances (25 samples) and gene abundances (25 samples) were both obtained from sequencing
count data as described above. Each data type was stored as its own phyloseq object. We analyzed both
data types (taxon and gene abundances) using negative binomial regressions, which have been shown
to fit metagenomic and amplicon sequencing data well (62). This again used the design shown in Fig. 2.
However, this time the regressions were performed with negative binomial regression using DESeq2
and using a prior normalization (“poscounts” method in DESeq2) (63). For each microbiome feature (ge-
nus, species, or gene) we also performed a regression without the “weight loss” group and using the
baseline BMI as the target covariate to yield the association strength with BMI. False-discovery rates
were controlled by adjusting P values using the Benjamini-Hochberg correction within each data type.
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Pseudo-T-values were calculated as the ratio of coefficient and estimated coefficient standard error
obtained from DESeq2. For gene richness estimates all samples were first downsampled to 100,000 total
reads with assigned gene clusters. Gene richness was then calculated as the number of observed unique
KO term gene clusters in each sample. Regressions were performed with the formulation shown in
Fig. 4A and using the gene richness as the response variable.

Data availability. Raw metagenomic sequencing data have been deposited on the NCBI Sequence
Read Archive (SRA) under BioProject no. PRJNA748449. SRM data can be found on the GitHub repository
associated with this study (https://github.com/gibbons-lab/weight_loss_2019). The Institute for Systems
Biology manages all Arivale data requests for nonprofit research purposes and will grant access to quali-
fied researchers. Data requests should be sent to A.T.M. (andrew.magis@isbscience.org). The full work-
flow used to process the metagenomic data is provided as a Nextflow pipeline at https://github.com/
Gibbons-Lab/pipelines/tree/master/shallow_shotgun. All analyses can be found in Rmarkdown note-
books, which allow the reproduction of all analyses and figures in this paper (https://github.com/
gibbons-lab/weight_loss_2019). Specialized functions, such as the specific implementation for calculat-
ing replication rates or association analyses, can be found in a dedicated R package along with docu-
mentation at https://github.com/gibbons-lab/mbtools.
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