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Abstract
Sepsis induces anorexia and muscle wasting secondary to an increase in muscle proteoly-

sis. Melanocyte stimulating hormones (MSH) is a family of peptides that have potent anti-

inflammatory effects. Melanocortin receptor-3 (MC3-R) has been reported as the predomi-

nant anti-inflammatory receptor for melanocortins. The aim of this work was to analyse

whether activation of MC3-R, by administration of its agonist D-Trp(8)-γMSH, is able to

modify the response of skeletal muscle to inflammation induced by lipopolysaccharide

endotoxin (LPS) or TNFα. Adult male rats were injected with 250 μg/kg LPS and/or 500 μg/

kg D-Trp(8)-γMSH 17:00 h and at 8:00 h the following day, and euthanized 4 hours after-

wards. D-Trp(8)-γMSH decreased LPS-induced anorexia and prevented the stimulatory

effect of LPS on hypothalamic IL-1β, COX-2 and CRH as well as on serum ACTH and corti-

costerone. Serum IGF-I and its expression in liver and gastrocnemius were decreased in

rats injected with LPS, but not in those that also received D-Trp(8)-γMSH. However, D-Trp

(8)-γMSH was unable to modify the effect of LPS on IGFBP-3. In the gastrocnemius D-Trp
(8)-γMSH blocked LPS-induced decrease in pAkt, pmTOR, MHC I and MCH II, as well as

the increase in pNF-κB(p65), FoxO1, FoxO3, LC3b, Bnip-3, Gabarap1, atrogin-1, MuRF1

and in LC3a/b lipidation. In L6 myotube cultures, D-Trp(8)-γMSH was able to prevent TNFα-

induced increase of NF-κB(p65) phosphorylation and decrease of Akt phosphorylation as

well as of IGF-I and MHC I expression. These data suggest that MC3-R activation prevents

the effect of endotoxin on skeletal wasting by modifying inflammation, corticosterone and

IGF-I responses and also by directly acting on muscle cells through the TNFα/NF-κB(p65)

pathway.

Introduction
Sepsis, like many other inflammatory conditions, induces cachexia, which increases mortality
and morbidity [1]. Inflammatory cachexia is associated with anorexia, fatigue, and muscle
wasting. Skeletal muscle wasting in sepsis is mainly due to activation of muscle proteolysis,
rather than to a decrease in muscle protein synthesis [2]. The ubiquitin-proteasome proteolytic
pathway is increased in sepsis, and two E3 ubiquitin ligases, muscle ring-finger-1 (MuRF1) and
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atrogin-1, are sensitive markers for muscular atrophy [3, 4]. Recently, autophagy has also been
involved in sepsis-induced muscle wasting [5] Protein kinase B (Akt)/ Forkhead box protein O
(FoxO) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) are cellular
pathways and transcription factors that are clearly involved in muscle atrophy in sepsis and
activate the ubiquitin-proteasome system and autophagy [6, 7].

There are multiple systemic factors responsible for inflammation-induced muscle wasting.
Among the main regulators of muscle mass, inflammatory signalling plays a critical role in reg-
ulating the anabolic/catabolic balance in muscle via activation of the hypothalamic-pituitary-
adrenal axis, through glucocorticoid release [8, 9]. In addition, changes in insulin-like growth
factor I (IGF-I) and in the release of cytokines or other inflammatory mediators have also been
proposed as stressors that can trigger skeletal muscle wasting [7].

Melanocyte stimulating hormones (α, β, and γMSH) are a family of peptide hormones that
regulate skin pigment cells and affect a range of other processes in the body, such as decreasing
inflammation [10]. Peripheral αMSH treatment decreases the acute inflammatory response to
endotoxin and increases survival in experimental models of septic shock [10, 11]. We have pre-
viously reported that systemic αMSH administration blunts skeletal muscle response to endo-
toxin and to chronic arthritis by exerting anti-inflammatory and antiproteolytic activities [12,
13]. The potent anti-inflammatory effects of αMSH have been shown to be mediated through
blockade of NF-κB activation and decreasing the release of pro-inflammatory cytokines [13–
15]. Among the types of αMSH receptors, MC3-R and MC4-R have been shown to have anti-
inflammatory effects [16, 17]. The MC3-R is abundantly distributed in both the brain and in
the periphery, whereas MC4-R is primarily found in the brain [18]. MC3-R activation by its
agonist, γMSH, suppresses cellular and systemic inflammation in response to pro-inflamma-
tory stimuli [19]. In addition, it has been reported that MC3-RKOmice suffer enhanced
anorexia and weight loss with LPS challenge and with tumour growth [20]. Furthermore,
administration of a MC3-R agonist prevents muscle wasting induced by experimental arthritis
by down-regulating atrogenes and autophagy [21].

The aim of this work was to elucidate whether the anti-cachectic effects of αMSH in endo-
toxin-injected rats is mediated by activation of its MC3-R. MC3-R has been reported in skeletal
muscle [18]. Therefore, the possible direct action of a MC3-R agonist on skeletal muscle cells
has also been tested. To this end, we administered D-Trp8-γMSH to adult male rats. The
D-Trp8-γMSH analogue is a potent and selective MC3-R agonist, with a 100-fold selectivity for
the MC3-R relative to the MC4-R [22]. Herein, we show that activation of MC3-R ameliorates
LPS-induced anorexia and muscle proteolysis by decreasing inflammation as well as the
changes in glucocorticoid and IGF-I release, but also through a direct action on muscle cells.

Material and Methods

Animals
Male Wistar rats weighing 200 g were purchased from Harlan (Barcelona, Spain). Rats were
housed 2 per cage, and maintained under standardized conditions of temperature (20–22°C)
and light (lights on from 7:30 am to 7:30 pm). Rats were quarantined for at least 1 week before
any experimental use. The physical conditions of the animals were checked once every 2 days
All efforts were taken to minimize animal suffering. The procedures followed the guidelines
recommended by the EU for the care and use of laboratory animals, and were approved by the
Complutense University Animal Care Committee (approval ID: CEA-UCM 16/12).

Rats were randomly assigned to the following treatment groups of 10 rats and fed ad libi-
tum: (1) control, i.p. injected with 250 μl sterile saline, (2) control + with 500 μg/kg D-Trp(8)-
γMSH (American Peptide, Sunnyvale, CA, USA) dissolved in saline, (3) LPS, i.p. injected with
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250 μg/kg LPS (serotype 055:B5, Sigma Chemical Co.), and (4) LPS + D-Trp(8)-γMSH, which
was simultaneously i.p. injected with both compounds in 250 μl saline. As LPS decreases food
intake, a pair-fed (PF) group was added; it was injected with saline and received the same
amount of food eaten by the group of rats injected with LPS. Rats received treatment at 17:00 h
and at 08:00 h the following day. This LPS administration protocol was shown to decrease lev-
els of IGF-I in serum and liver, and to increase MuRF1 and atrogin-1 in skeletal muscle [23,
24]. None of the animals became ill or died prior to the experimental endpoint. All animals
were euthanized by decapitation at 12:00 h, 19 h after the first, and 4 h after the second LPS
and/or D-Trp(8)-γMSH injection. Trunk blood was collected, allowed to clot, and the serum
was stored at −20°C for IGF-I, insulin-like growth factor-binding protein 3 (IGFBP-3), adreno-
corticotropin hormone (ACTH), corticosterone and nitrite assays. The medial basal hypotha-
lami were dissected as previously described [25], quickly frozen in liquid nitrogen and stored at
-80°C for RNA isolation. Liver and gastrocnemiusmuscle were removed, frozen immediately in
liquid nitrogen, and stored at -80°C for isolation of mRNA or proteins.

Myotube cultures
Myoblasts derived from rat skeletal muscle (L6 cells; ATCC, Manassas, Virginia, USA) were
cultured in 6-well plates containing Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS), 1% penicillin-streptomycin at
37°C under a humidified 5%CO2/95%O2 atmosphere. When myoblasts were approximately
75% confluent, myotube differentiation was initiated by replacing the growth medium with dif-
ferentiation medium: DMEM supplemented with 1% FBS. Differentiation was allowed to con-
tinue for 7 days before experimentation.

Fully differentiated L6 myotubes were treated and incubated for 24 h with recombinant rat
TNFα (PeproTech, Princeton, New Jersey, USA) (10 μg/ml) and/or D-Trp(8)-γMSH (Ameri-
can Peptide, Sunnyvale, CA, USA) (0, 50 and 200 nM) or DMEM alone. At this concentration
(10μg/ml) TNFα induces activation of NF-kB and down-regulation of IGF-I and Akt in C2C12
cells [26]. At the end of the incubation period, total RNA or proteins from cells were extracted.

RNA extraction and real-time PCR
Gastrocnemius or liver (100 mg) was homogenized, and total RNA was extracted using Ultra-
specTM (Biotecx Laboratories Inc. Houston, Texas, USA), following the manufacturer’s proto-
col. Total RNA was extracted from myotube cultures using REAL TOTAL RNA, C.E.
(DURVIZ S.L., Valencia, Spain) according to the protocol supplied by the manufacturer. Total
RNA was dissolved in 0.1% SDS diethylpyrocarbonate-treated water and quantified at 260 nm.
The final concentration of RNA was determined (260 nm) with a BioPhotometer (Eppendorf,
Germany), and the integrity of the RNA was confirmed by agarose gel electrophoresis. First-
strand cDNA synthesis was performed using 1 μg of total RNA with a Quantiscript Reverse
Transcription kit (Qiagen, Valencia, CA, USA).

Real-time PCR for quantification of mRNA was performed on a SmartCycler1 (Cepheid,
Sunnyvale, CA, USA) using a SYBR-Green protocol on the fluorescence temperature cycler.
Each real-time PCR reaction consisted of 10 ng total RNA equivalents,1x Takara SYBR Green
Premix Ex Taq (Takara BIO INC, Otsu, Shiga, Japan), and 300 nM forward and reverse prim-
ers in a reaction volume of 25.5 μl. Primers for real-time PCR (Table 1) were obtained from
Roche (Madrid, Spain). The thermal cycling profile consisted of a pre-incubation step at 95°C
for 10 s followed by 40 cycles of 95°C denaturation steps for 15 s, 60°C annealing steps for 30 s,
and 72°C extension steps for 30 s. Results were expressed relative to the control animals
injected with saline, where the relative mRNA abundance had been arbitrarily set to 1, using
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cycle threshold 2(ΔΔCT) method, with 18S and HPRT as reference genes. PCR products were
separated using agarose gel electrophoresis to confirm the product presence and size.

Western blot
Gastrocnemius and myotubes were homogenized in RIPA buffer (10μl/ mg) with protease
inhibitor cocktail, sodium deoxycolate 12.5 mM, phenylmethane sulfonyl fluoride 100 mM,
sodium orthovanadate 12.5 mM and with phosphatase inhibitors (Sigma-Aldrich, Madrid,
Spain). The homogenate was later centrifuged at 13000 rpm at 4°C for 30 min to remove tissue
debris. Protein concentration was determined using the Bradford protein assay with bovine
serum albumin as standard. The protein extract was boiled for 5 min with a 1:1 volume of
Laemmli loading buffer. Proteins (100 μg from gastrocnemius or 20 μg from myotubes) were
resolved by electrophoresis on 14% polyacrylamide gels under reducing conditions, and then
transferred onto nitrocellulose membranes that were blocked by incubation in 5% non-fat dry
milk, 0.1% Tween (Sigma-Aldrich, Madrid, Spain), in Tris-buffered saline. Ponceau-S staining
was performed to ensure equal transfer prior to blocking. Membranes were probed overnight
at 4°C sequentially with antibodies against pAktSer(473) (1:1000, Cell Signaling Technology,
antibody ID: AB_2315049), Akt (1:2000, Santa Cruz Biotechnology, antibody ID: AB_671714),
p-mammalian target of rapamycin (pmTOR) (1:750, Cell Signaling Technology, antibody ID:
AB_330970), mTOR (1:1000, Cell Signaling Technology, antibody ID: AB_10695460), micro-
tubule-associated protein-1 light chain 3 (LC3A/B (D3U4C) XP1 Rabbit mAb) (1:1000, Cell
Signaling Technology, antibody ID: 12741), pNF-κBp65Ser(536) (1:1000, Cell Signaling Tech-
nology, antibody ID: AB_331284, clon 7F1), pNF-κBp65Ser(276) (1:1000, Santa Cruz Biotech-
nology, antibody ID: AB_1128534), NF-κBp65 (C20) (1:1000, Santa Cruz Biotechnology,
antibody ID: AB_632037, clon C-20), pFoXO1Ser(276) (1:750, Cell Signaling Biotechnology,
antibody ID: AB_10827635), FoXO1 (1:1000, Santa Cruz Biotechnology, antibody ID:
AB_640607), pFoxO3a (1:500, Santa Cruz Biotechnology, antibody ID: AB_653226), FoxO3a
(D19A7) (1:750, Cell Signaling Technology, supplier Catalog no: #12829), atrogin-1 (1:1000,
Santa Cruz Biotechnology, antibody ID: AB_2104267, clon H-300), MuRF1 (1:1000, Santa
Cruz Biotechnology, antibody ID: AB_2287871, clon H-145) and α-tubulin (1:5000, Sigma-

Table 1. Primers for real-time PCR.

Gene Forward Primer (5' to 3') Reverse Primer (5' to 3') Product bp

18S GGTGCATGGCCGTTCTTA TCGTTCGTTATCGGAATTAACC 60

HPRT CTCATGGACTGATTATGGACAGGAC GCAGGTCAGCAAAGAACTTATAGCC 122

COX-2 ACCAACGCTGCCACAACT GGTTGGAACAGCAAGGATTT 118

TNF-α TGAACTTCGGGGTGATCG GGGCTTGTCACTCGAGTTTT 122

IL-1β GCTGTGGCAGCTACCTATGTCTTG AGGTCGTCATCATCCCACGAG 120

CRH CGCAGCCGTTGAATTTCTTG GCGGGACTTCTGTTGAGG 112

IGF-I GCTATGGCTCCAGCATTCG TCCGGAAGCAACACTCATCC 62

IGFBP-3 GGAAAGACGACGTGCATTG GCGTATTTGAGCTCCACGTT 78

LC3b CAGGTTGCCTAGCAGAGGTC TGTCCTATACACCTGACCTGTTTC 67

Bnip-3 CAGAGCGGGGAGGAGAAC GAAGCTGGAACGCTGCTC 80

Gabarap1 TATCCCTCCCACCAGTGCTA AAATAGTCTTCCTCATGGTTGTCC 63

atrogin-1 GAACAGCAAAACCAAAACTCAGTA GCTCCTTAGTACTCCCTTTGTGAA 74

MuRF-1 TGTCTGGAGGTCGTTTCCG ATGCCGGTCCATGATCACTT 58

MHC I CCTGCAGCTCCAAGTTCAGT ATCAGCTGGTCGCATCTTTC 69

MHC IIa CCATATATTTTATCAAATCACATCCAA GGTGATCAGCAGCATTTCG 64

doi:10.1371/journal.pone.0155645.t001
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Aldrich, antibody ID: T5168); with stripping of membranes, using stripping buffer (Restore
Western Blot Stripping Buffer, Thermo-scientific Rockford, Il, USA) before each new antibody.
Membranes were then incubated for 90 min in the appropriate secondary antibody conjugated
to horseradish peroxidase (anti-mouse IgG (Amersham Biosciences, Little Chalfont, UK); anti-
rabbit IgG (GE Healthcare, Madrid, Spain); anti-goat IgG (Santa Cruz Biotechnology), and
peroxidase activity was detected using enhanced chemiluminescent reagent (Amersham Biosci-
ences, Little Chalfont, UK). Band intensities were quantified by densitometry using a PC-Image
VGA24 program for Windows. The density of the protein band in each lane was expressed as
the percentage of the mean density of control rats, after load normalization using α-tubulin.

Serum IGFBP-3 measurement
Serum concentrations of IGFBP-3 were measured by ligand blot. Two μl of serum were diluted
in sample buffer and boiled 2 min at 90°C, loaded onto 1% SDS-12.5% polyacrylamide gels,
and electrophoresed under non-reducing conditions. Proteins were transferred onto nitrocellu-
lose sheets (HybondTM-C extra, Amersham, UK). The membranes were dried and blocked for
1 h with 5% non-fat dry milk and 0.1% Tween (Sigma), in Tris-buffered saline. Membranes
were probed overnight at 4°C with 125I-labelled IGF-I (1.5 x 106 cpm/ml). The nitrocellulose
sheets were then washed, dried and exposed at -80°C to X-ray film (Kodak X-Omat AR, East-
man Kodak, Rochester, NY, USA) and to two intensifying screens for 1–4 days according to
the signal obtained. The film signals were quantified by densitometry using a PC-Image
VGA24 program for Windows. The density of the IGFBP-3 band in each lane was expressed as
the percentage of the mean density of sera from its respective control rats.

Serum IGF-I, ACTH, corticosterone and nitrite measurements
Serum IGF-I was measured using the anti-serum to human IGF-I (UB2-495) from Dr Under-
wood and Dr VanWik, which is distributed by the National Institute of Diabetes and Digestive
and Kidney Diseases (NIDDK) Hormone Distribution Programme through the National Hor-
mone and Pituitary Programme. Levels of IGF-I were expressed in terms of rat IGF-I from
Gropep Ltd. (Adelaide, Australia). The intra-assay coefficient of variation was 8%. All samples
from the same experiment were run in the same assay.

Serum ACTH and corticosterone was analysed by a commercial kit fromMP Biomedicals,
LLC (Orangeburg, NY, USA), following the manufacturer’s protocols.

Nitrite + nitrate concentrations in serum were measured by a modified method of Griess
assay. Serum was deproteinized to reduce turbidity by centrifugation through a 30 kDa molec-
ular weight filter using a Centrifree Micropartition Device with a YM-30 ultrafiltration mem-
brane (Amicon Division, Millipore Corporation, Bedford, TX, USA), at 15000 rpm for 1 h at
37°C for 300 μL samples. One hundred μL of filtrated serum was mixed with 100 μl of vana-
dium chloride and was quickly followed by the addition of the Griess reagents. The determina-
tion was performed after incubation at 37°C for 30 min. The absorbance was measured at 540
nm. Nitrite and nitrate concentrations were calculated using a NaNO2 standard curve.

Statistical analysis
Statistics were computed using the statistics program STATGRAPHICS plus for Windows.
Data are presented as mean ± S.E.M. and differences among experimental groups were ana-
lysed by one-way analysis of variance. Post-hoc comparisons were made by using subsequent
LSD multiple range tests. Statistical significance was set at P< 0.05.

D-trp(8)-γMSH Prevents LPS Effects on Skeletal Muscle

PLOS ONE | DOI:10.1371/journal.pone.0155645 May 13, 2016 5 / 20



Results

Body weight, food intake and liver inflammation
As expected, LPS injection decreased body weight gain compared with control and pair-fed
rats (P<0.01, Fig 1A). Administration of D-Trp(8)-γMSH attenuates LPS-induced decreases in
body weight (P<0.01), where the change in body weight in this group was similar to that of
pair-fed rats. LPS also decreased food intake in both groups of rats, treated with either saline or
D-Trp(8)-γMSH, but the decrease was lower in the rats treated with D-Trp(8)-γMSH (P<0.01,
Fig 1B). LPS increased serum nitrite + nitrate and the expression of COX-2 in the liver
(P<0.01, Fig 1C and 1D) in the rats treated with saline, but not in those treated with D-Trp(8)-

Fig 1. Effect of D-Trp(8)-γMSH (γMSH) treatment (500 μg/kg i.p.) on: body weight gain (A), food intake (B), serum nitrite + nitrate levels (C),
liver COX-2 mRNA (D) and liver TNFαmRNA (E) in control rats or in rats treated with LPS (250 μg/kg i.p.). PF = pair-fed rats. D-Trp(8)-
γMSH treatment decreased the inhibitory effect of LPS administration on body weight and food intake as well as the stimulatory effect of
LPS on serum concentration of nitrites + nitrates, liver TNFα and COX-2 mRNA (P<0.01). Results are expressed as means ± SE for 8–10
rats per group. *P< 0.05 and **P< 0.01, vs. their respective control group. ++P<0.01 vs. LPS-saline, °P<0.05, °°P<0.01 vs. PF. LSD
multiple comparison test, following one-way ANOVA.

doi:10.1371/journal.pone.0155645.g001
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γMSH. Liver TNFαmRNA was also significantly increased by LPS injection (P<0.01 Fig 1E),
and D-Trp(8)-γMSH administration attenuated LPS-induced increase in liver TNFα (P<0.01).

D-Trp(8)-γMSH suppressed LPS-induced hypothalamic inflammation
and activation of the adrenal axis
LPS injection also triggered hypothalamic inflammation in the rats treated with saline, since it
increased hypothalamic interleukin-1β (IL-1β) and COX-2 mRNA (P<0.01, Fig 2A and 2B),
but it was not triggered in those treated with D-Trp(8)-γMSH. Pair-feeding rats did not modify
hypothalamic IL-1β or COX-2 mRNA levels. Hypothalamic corticotrophin releasing hormone

Fig 2. Effect of D-Trp(8)-γMSH (γMSH) (500 μg/kg i.p.) administration on hypothalamic mRNA expression of: IL-1β (A), COX-2 (B) and CRH
(C), and on serum concentrations of ACTH (D) and corticosterone (E) in control (C) and in LPS-injected (250 μg/kg) rats. PF = pair-fed rats.
Each bar represents the mean ± SE for n = 7–10. mRNA expression was quantified using real-time RT-PCR and is presented as the
increase of the mean value in control rats treated with saline. LPS injection increased hypothalamic IL-1β, COX-2 and CRHmRNA levels as
well as serum ACTH and corticosterone levels (P<0.01) in rats injected with saline, but not in rats injected with γMSH. *P< 0.05 and **P<
0.01, vs. their respective control group. +P<0.05, ++P<0.01 vs. LPS-saline, °°P<0.01 vs. PF. LSDmultiple comparison test, following one-
way ANOVA.

doi:10.1371/journal.pone.0155645.g002
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(CRH) mRNA was increased in the rats injected with LPS (P<0.05, Fig 2C), whereas D-Trp
(8)-γMSH treatment blocked the effect of LPS on hypothalamic CRH. Similarly, LPS injection
increased serum concentrations of ACTH and corticosterone (P<0.01, Fig 2D and 2E), and
D-Trp(8)-γMSH administration prevented the stimulatory effect of LPS on these hormones.
Pair-feeding rats increased serum concentration of corticosterone (P<0.05), and tended to
increase hypothalamic CRH mRNA, but this increase was not significant.

IGF-I and IGFBP-3
As shown in Fig 3A–3C, LPS decreased serum concentration of IGF-I (P<0.01) as well as
IGF-I expression in the liver and in gastrocnemius (P<0.05). Pair feeding rats did not modify
circulating IGF-I or its expression in liver or skeletal muscle. D-Trp(8)-γMSH administration
prevented the inhibitory effect of LPS on serum concentrations of IGF-I, where the rats injected
with LPS and D-Trp(8)-γMSH had IGF-I levels similar to those found in their controls or in
pair-fed rats. D-Trp(8)-γMSH administration was also able to prevent the inhibitory effect of
LPS on IGF-I mRNA levels in liver and gastrocnemius. Serum concentration of IGFBP-3 was
decreased by LPS injection in rats that were either treated with saline or D-Trp(8)-γMSH
(P<0.01, Fig 3D). In the rats treated with saline liver IGFBP-3 mRNA was decreased by LPS
(P<0.05, Fig 3E), but muscle IGFBP-3 mRNA was increased by LPS (P<0.01, Fig 3F). The rats
treated with LPS and D-Trp(8)-γMSH had IGFBP-3 mRNA levels in liver and muscle similar
to those of the rats treated with LPS alone. Pair-feeding rats did not modify IGFBP-3 levels.

NF-κB(p65), Akt/mTOR and FoxO signalling pathways
LPS injection increased the phosphorylation of p65 at Ser 536 (P<0.01) and at Ser 276
(P<0.05), in rats treated with saline, but not in those treated with D-Trp(8)-γMSH (Fig 4A–
4C). LPS injection did not modify total Akt (Fig 4E), whereas it decreased phosphorylation of
Akt to levels lower than those of control or pair-fed rats (P<0.01, Fig 4D). D-Trp(8)-γMSH
administration was able to prevent LPS-induced decrease in pAkt (P<0.01). The effects of LPS
and D-Trp(8)-γMSH on mTOR activation (Fig 4F and 4G) were similar to those on Akt. LPS
decreased phospho-mTOR in rats injected with saline (P<0.05), but not in rats injected with
D-Trp(8)-γMSH. Total mTOR was not modified by either of the treatments.

In the rats injected with LPS, FoxO1 and FoxO3 levels in the gastrocnemius were increased
(Fig 5B and 5D), whereas pFoxO1 and pFoxO3 were not significantly modified (Fig 5A and
5C). D-Trp(8)-γMSH treatment also prevented LPS-induced increase in both FoxO1 (P<0.01)
and FoxO3 (P<0.05) levels in the gastrocnemius.

D-Trp(8)-γMSH prevented the increase in autophagic response and in
MuRF1 and atrogin-1 levels in muscle after LPS injection
LPS injection induced gastrocnemius autophagic response, as indicated by the increase in
expression of autophagy marker genes: LC3b, BCL2/adenovirus E1B 19 kDa protein-interact-
ing protein 3 (Bnip-3) and gamma-aminobutyric acid receptor-associated protein (Gabarap1)
(P<0.01, Fig 6A, 6B and 6C), as well as by the increased lipidation of LC3a/b protein. LPS did
not significantly modify the protein LC3a/b I, but it increased the phospholipid-associated
form LC3a/b II (P<0.01, Fig 6D and 6E). D-Trp(8)-γMSH administration prevented LPS-
induced increase in LC3b, Bnip-3 and Gabarap1 mRNA (P<0.01) and in LC3a/b II protein
(P<0.05). Pair feeding rats did not modify LC3b mRNA or phospholipid-associated form of
the protein LC3a/b II, but increased Bnip-3 mRNA.

MuRF1 and atrogin-1 mRNA levels were significantly increased in response to LPS injection
in saline treated rats (P<0.01, Fig 7A and 7B). D-Trp(8)-γMSH administration decreased LPS-
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induced increase in MuRF1 and atrogin-1 mRNA (P<0.01), where MuRF1 and atrogin-1
mRNA levels of these rats were similar to those of pair-fed rats, but higher than those of control
rats treated with D-Trp(8)-γMSH (P<0.05). The protein expressions of MuRF1 and atrogin-1
were also higher after LPS injection (P<0.01, Fig 7C and 7D). Administration of D-Trp(8)-
γMSH prevented the stimulatory effect of LPS on MuRF1 and atrogin-1 (P<0.01). Pair-fed rats
had higher MuRF1 levels than control rats treated with saline (P<0.05).

Fig 3. Effect of D-Trp(8)-γMSH (γMSH) treatment (500 μg/kg i.p.) on: IGF-I and IGFBP-3 levels in serum (A and D) and their mRNA in liver (B and E)
and gastrocnemius (C and F) in control rats or in rats treated with LPS (250 μg/kg). PF = pair-fed rats. γMSH treatment blocked the inhibitory effect of
LPS administration on IGF-I in serum and its mRNA in liver and skeletal muscle. LPS decreased serum IGFBP-3 (P<0.01) and its mRNA in the liver
(P<0.05), whereas IGFBP-3 mRNA was increased in muscle by LPS injection (P<0.01). γMSH treatment was unable to modify the effects of LPS on
IGFBP-3. mRNA expression was quantified using real-time RT-PCR and is presented as the increase of the mean value in control rats treated with
saline. Results are expressed as means ± SE for 6–10 rats per group. *P< 0.05 and **P< 0.01, vs. their respective control group. +P<0.05, +
+P<0.01 vs. LPS-saline, °P<0.05, °°P<0.01 vs. PF. LSDmultiple comparison test, following one-way ANOVA.

doi:10.1371/journal.pone.0155645.g003
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Fig 4. Effect of D-Trp(8)-γMSH (γMSH) treatment (500 μg/kg i.p.) on; phospho-NF-κB(p65)Ser536 (A), phospho-NF-κB(p65)Ser276 (B), NF-κB(p65)
(C), phospho-Akt (D), Akt (E), phospho-mTOR (F) and mTOR (G), in gastrocnemiusmuscle of control rats and rats treated with LPS (250 μg/kg).
PF = pair-fed rats. Proteins were measured byWestern blotting with specific antibodies for total and phosphoprotein and expressed as percentage of
the control rats treated with saline. Representative Western blots are shown at the middle right. Boxes with immunoblots represent spliced images
based on group and treatment order. LPS increased pNF-κB(p65)Ser536 (P<0.01) and pNF-κB(p65)Ser276 (P<0.05), whereas it decreased pAkt
(P<0.01) and pmTOR (P<0.05) in rats treated with saline, but not in those treated with γMSH. Data represent means SE (n = 7–10 rats). *P< 0.05 and
**P< 0.01, vs. their respective control group. +P<0.05, ++P<0.01 vs. LPS-saline, °P<0.05, °°P<0.01 vs. PF. LSDmultiple comparisons test, following
one way ANOVA.

doi:10.1371/journal.pone.0155645.g004

Fig 5. Effect of D-Trp(8)-γMSH (γMSH) treatment (500 μg/kg i.p.) on: phospho-FoxO1 (A), FoxO1 (B), phospho-FoxO3 (C) and FoxO3 (D), in
gastrocnemiusmuscle of control rats and rats treated with LPS (250 μg/kg). PF = pair-fed rats. Proteins were measured byWestern blotting with
specific antibodies for total and phosphoprotein and expressed as percentage of the control rats treated with saline. Representative Western blots
are shown at the right. Boxes with immunoblots represent spliced images based on group and treatment order. Data represent means ± SE
(n = 7–10 rats). *P< 0.05 and **P< 0.01, vs. their respective control group. +P<0.05, ++P<0.01 vs. LPS-saline, °°P<0.01 vs. PF. LSDmultiple
comparisons test, following one way ANOVA.

doi:10.1371/journal.pone.0155645.g005
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Myosin Heavy Chain expression (MHC)
LPS injection decreased MHC types I (P<0.05) and IIa (P<0.01) in rats treated with saline
(P<0.01, Fig 8A and 8B), but not in those treated with D-Trp(8)-γMSH. Control rats treated
with D-Trp(8)-γMSH and pair-fed rats had lower MHC IIa values than those of control rats
treated with saline, but differences were not significant.

D-Trp(8)-γMSH was able to act directly on myotube cells
As shown in Fig 9, some of the effects of LPS on gastrocnemius could be observed in myotubes
incubated with TNFα and D-Trp(8)-γMSH. Incubation with TNFα increased NF-κB(p65)

Fig 6. Effect of D-Trp(8)-γMSH (γMSH) treatment (500 μg/kg i.p.) on; autophagy-related marker LC3b mRNA (A), Bnip-3 (B) and Gabarap1
mRNA (C), on LC3a/b protein I and II (D and E), in gastrocnemiusmuscle of control rats and rats treated with LPS (250 μg/kg). PF = pair-fed rats.
mRNA expression was quantified using real-time RT-PCR and is presented as increase of the mean value in control rats treated with saline.
Proteins were measured byWestern blotting and expressed as percentage of control rats treated with saline. Representative Western blots are
shown at the bottom right. Boxes with immunoblots represent spliced images based on group and treatment order. LPS increased levels of
LC3b, Bnip-3 and Gabarap1 mRNA and LC3a/b II protein (P<0.01) in rats treated with saline, but not in the group that received D-Trp(8)-γMSH.
Results are expressed as means ± SE for 7–10 rats per group. **P< 0.01, vs. their respective control group. +P<0.05, ++P<0.01 vs. LPS-saline,
°P<0.05, °°P<0.01 vs. PF. LSDmultiple comparisons test, following one way ANOVA.

doi:10.1371/journal.pone.0155645.g006
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Ser276 phosphorylation (P<0.01, Fig 9A), and decreased Akt phosphorylation (P<0.05, Fig
9C), whereas addition of D-Trp(8)-γMSH prevented those TNFα effects on myotubes.

IGF-I mRNA levels were decreased by TNFα (P<0.05, Fig 9E), whereas myotubes incubated
with TNFα and 50 or 200 nM D-Trp(8)-γMSH had higher IGF-I expression than those incu-
bated with TNFα alone. MHC I mRNA was also decreased by TNFα (P<0.01, Fig 9F). D-Trp
(8)-γMSH, when added at the concentration of 200 nM, increased MHC I in both the myo-
tubes incubated either with or without TNFα.

Fig 7. Effect of D-Trp(8)-γMSH (γMSH) treatment (500 μg/kg i.p.) on; MuRF1mRNA and protein (A and C), and on atrogin-1 mRNA and protein
(B and D), in gastrocnemiusmuscle of control rats and rats treated with LPS (250 μg/kg). PF = pair-fed rats. mRNA expression was quantified
using real-time RT-PCR and is presented as increase of the mean value in control rats treated with saline. Proteins were measured byWestern
blotting and expressed as percentage of the control rats treated with saline. Representative Western blots are shown at the bottom right. Boxes
with immunoblots represent spliced images based on group and treatment order. LPS increased levels MuRF1 and atrogin-1 proteins (P<0.01) in
the rats treated with saline, but not in the group that received D-Trp(8)-γMSH. MuRF1 and atrogin-1 mRNAs were increased by LPS injection
(P<0.01), and D-Trp(8)-γMSH attenuated these increases (P<0.01). Results are expressed as means ± SE for 7–10 rats per group. *P< 0.05 and
**P< 0.01, vs. their respective control group. ++P<0.01 vs. LPS-saline, °°P<0.01 vs. PF. LSDmultiple comparisons test, following one way
ANOVA.

doi:10.1371/journal.pone.0155645.g007
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Discussion
Administration of D-Trp(8)-γMSH was able to decrease inflammation and to attenuate the
anorexigenic effect of endotoxin as well as the decrease in body weight. We have observed simi-
lar data after systemic administration of αMSH in rats injected with LPS [13]. These data sug-
gest that those αMSH effects are mediated through MC3-R activation. In accordance with our
data, it has been reported that peripheral D-Trp(8)-γMSH administration to normal mice
acutely increases food intake [27], whereas MC3-RKO animals showed enhanced anorexia
after LPS injection [20]. In addition, fasting-induced refeeding was blunted in the MC3-R-/-
mouse [28]. In rats injected with LPS alone the systemic inflammatory response was also asso-
ciated with increased IL-1β and COX-2 expression in the hypothalamus. Increased brain IL-1β
levels have been reported as soon as 4 h after peripheral LPS challenge [29]. Systemic D-Trp
(8)-γMSH administration was also able to decrease hypothalamic inflammation, since its
administration prevented LPS-induced increase in hypothalamic IL-1β and COX-2 expression.
The orexigenic action of D-Trp(8)-γMSH in rats injected with LPS might be related to its anti-
inflammatory effect in the hypothalamus. In this sense, induction of COX-2 plays an important
role in inflammatory anorexia [30, 31]. Therefore, it is possible that the inhibitory effect of
D-Trp(8)-γMSH on LPS-induced anorexia is secondary to the decrease in hypothalamic COX-
2 expression. In contrast to these data, chronic D-Trp(8)-γMSH treatment is unable to modify
the anorexigenic effect of cancer [20]. Similarly, we have observed that chronic administration
of D-Trp(8)-γMSH was unable to prevent both arthritis-induced anorexia and the increase in
hypothalamic COX-2 expression, although D-Trp(8)-γMSH prevented arthritis-induced
increase in hypothalamic IL-1β [21]. All these data suggest that acute MC3-R stimulation
increases food intake by acting on hypothalamic COX-2, whereas this effect disappears with
repeated daily systemic injections of the MC3-R agonist D-Trp(8)-γMSH, as it has previously
been reported in normal mice [27].

Fig 8. Effect of D-Trp(8)-γMSH (γMSH) treatment (500 μg/kg i.p.) on; MCH I (A) and MHC IIa mRNA (B), in
gastrocnemiusmuscle of control rats and rats treated with LPS (250 μg/kg). PF = pair-fed rats. mRNA
expression was quantified using real-time RT-PCR and is presented as the increase of the mean value in
control rats treated with saline. LPS decreased gastrocnemiusMCH I (P<0.05) and MCH II mRNA (P<0.01).
The rats treated with D-Trp(8)-γMSH and LPS had MCH I and MCH II mRNA levels between those of control
rats treated with D-Trp(8)-γMSH and rats treated with LPS alone. Data represent means ± SE (n = 7–9). *P<
0.05 and **P< 0.01, vs. their respective control group. °P<0.05 vs. PF. LSDmultiple comparisons test,
following one way ANOVA.

doi:10.1371/journal.pone.0155645.g008
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Fig 9. Effect of D-Trp(8)-γMSH (0, 50 or 200 nM) on; phospho-NF-κB(p65)Ser276 (A), NF-κB(p65) (B), phospho-Akt (C) Akt (D), IGF-I mRNA (E) and
MHC I mRNA (F) in L6 myotubes cell cultures incubated with TNFα (10 μg/ml) or DMEM. Representative Western blots are shown at the middle right.
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In our data, D-Trp(8)-γMSH administration was able to decrease systemic inflammation,
since it decreased LPS-induced increase in serum nitrites + nitrates as well as liver TNF and
COX-2 expression. The elevated systemic inflammatory status after LPS injections was also
reflected in gastrocnemiusmuscle, because NF-κB(p65) phosphorylation was increased. As we
have reported in arthritic rats [21], D-Trp(8)-γMSH prevented NF-kB(p65) activation by LPS
injection in the gastrocnemius. Furthermore, D-Trp(8)-γMSH is also able to prevent TNFα-
induced NF-κB(p65) activation in myotubes. These data suggest that the anti-inflammatory
effect of D-Trp(8)-γMSH on muscle cells can be exerted directly on skeletal muscle cells and it
is not necessarily secondary to immune cell activation.

As it has previously been reported [6, 13, 32–34], LPS decreased Akt activation, increased
FoxO1 and FoxO3 active protein, whereas the two complementary proteolytic pathways, ubi-
quitin-proteasome and autophagy, seem to be activated. D-Trp(8)-γMSH administration
blocked LPS-induced alterations in Akt/FoxO signalling and downstream gene targets of
FoxO1, FoxO3, atrogin-1, and MuRF1 in gastrocnemiusmuscle. LPS-induced increase in
autophagic marker gene expression and in LC3a/b lipidation was also prevented by D-Trp(8)-
γMSH. Taking into account that Akt/FoxO signalling represents a link between autophagy and
the induction of MuRF1 and atrogin-1 [7], the effect of D-Trp(8)-γMSH on both proteolytic
systems can be secondary to its action on NF-κB and Akt/FoxO signalling.

Administration of D-Trp(8)-γMSH prevented LPS-induced upregulation of the
CRH-ACTH-corticosterone axis. Similarly, chronic D-Trp(8)-γMSH administration is also
able to prevent arthritis-induced increase in ACTH and corticosterone [21]. Negative regula-
tion of corticosterone release by MC3-R has previously been reported. MC3-R deficiency was
found to produce mild hypercorticosteronemia [20, 28]. In addition, administration of γMSH
prevents the stimulatory effect of IL-1β on corticosterone acting through central melanocortin
receptors [35]. All these data suggest that activation of MC3-R prevents inflammation-induced
glucocorticoid release. MC3-R and MC4-R are the only MC-R expressed highly in the brain
[36], and both are activated by αMSH. However, αMSH treatment is unable to modify LPS-
induced activation of the HPA axis [13]. Differences between αMSH and D-Trp(8)-γMSH
effects could be explained by the fact that activation of brain MC4-R, contrary to MC3-R, has
been shown to trigger activation of the hypothalamic-pituitary-adrenal (HPA) axis during
stress [37]. In skeletal muscle glucocorticoids are potent inductors of proteolysis and in synergy
with FoxO1, they directly transactivate MuRF1 and autophagy genes [8, 38, 39]. Furthermore,
inhibition of glucocorticoid action by RU-486, an antagonist of the GC receptor, attenuates
LPS-induced activation of autophagy and the ubiquitin-proteasome pathway and accelerated
muscle proteolysis in sepsis [34]. Therefore, the protective effect of D-Trp(8)-γMSH treatment
on gastrocnemiusmuscle proteolysis can be due, in part, to its effects on the hypothalamus-
pituitary-adrenal axis.

It has been shown that LPS decreases circulating IGF-I and IGFBP-3 as well as their expres-
sion in the liver [23, 40, 41]. However, in the gastrocnemius IGF-I and IGFBP-3 expression are
affected differently by LPS, where muscle IGF-I is decreased by endotoxin [4, 42], and IGFBP-
3 is increased [13]. D-Trp(8)-γMSH treatment was able to prevent the effects of LPS on IGF-I
levels, whereas it was unable to modify the IGFBP-3 response to LPS injections. The effect of
LPS on IGF-I seems to be due, among other mechanisms, to a direct inhibitory action on liver

Boxes with immunoblots represent spliced images based on group and treatment order. TNFα increased NF-κB(p65) phosphorylation (P<0.01) and
decreased Akt phosphorylation (P<0.05), whereas D-Trp(8)-γMSH prevented those effects. IGF-I mRNAwas decreased by TNFα (P<0.05), but not in
the cells cultures with TNFα and D-Trp(8)-γMSH. TNFα also decreased MHC I mRNA (P<0.01) and D-Trp(8)-γMSH attenuated this effect. Data are
expressed as mean ± SE for n = 6–8 wells per group, *P<0.05, **P<0.01 vs their respective myotube group incubated without TNFα, °P<0.05, °
°P<0.01 vs their respective myotube group incubated without D-Trp(8)-γMSH. LSDmultiple comparisons test, following one way ANOVA.

doi:10.1371/journal.pone.0155645.g009
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cells [43], through the induction of COX-2 and iNOS [44, 45]. Taking into account that D-Trp
(8)-γMSH had an anti-inflammatory effect in the liver, it is not surprising that it prevents the
effects of LPS on serum and liver IGF-I levels. In addition to circulating IGF-I, muscle IGF-I also
plays an important role in skeletal muscle physiology. It has been proposed that a deficit in mus-
cle IGF-I is causally related to muscle wasting. In this sense, it has been reported that local IGF-I
attenuates sepsis-induced gastrocnemius atrophy, by increasing muscle protein synthesis and
potentially decreasing proteolysis [46]. Taking into account that LPS increases circulating TNFα
and its expression in skeletal muscle [47], TNFαmay contribute to the inhibitory effect of LPS
on muscle IGF-I mRNA. In addition, an anti-TNFα antibody is able to prevent the LPS-induced
reduction in IGF-I mRNA in rat skeletal muscle [48]. In our data, TNFα decreased MHC and
IGF-I mRNA in L6 myotube cultures. These data are in accordance with those previously
reported by Frost et al. [49]. As observed in vivo, D-Trp(8)-γMSHwas able to prevent the inhibi-
tory effect of TNFα on IGF-I mRNA in cultured myotubes. The effect of D-Trp(8)-γMSH in
blocking the inhibitory of both LPS and TNFα-induced on IGF-I expression in muscle cells can
be due to a direct effect on IGF-I gene. The blocking effect can also be mediated by its anti-
inflammatory effect preventing NF-κB(p65) activation in myotubes or in the gastrocnemius.

In summary, in this article we report that D-Trp(8)-γMSH prevents LPS-induced anorexia,
increased corticosterone levels and decreased IGF-I/Akt/mTOR signalling and muscle proteol-
ysis. Our data also indicate that D-Trp(8)-γMSH exerts these anti-atrophic effects, at least in
part, by inhibiting the LPS- or TNFα-dependent activation of NF-κB(p65) both in vitro and in
vivo. The present study indicates that D-Trp(8)-γMSH is a molecule with potential therapeutic
use for improving anorexia and muscle wasting during sepsis.
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