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Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints. Though

the current RA therapeutics such as disease-modifying antirheumatic drugs (DMARDs),

nonsteroidal anti-inflammatory drugs (NSAIDs) and biologics can halt the progression of the

disease, none of these would either dramatically reduce or cure RA. So, the identification of

potential therapeutic targets and new therapies for RA are active areas of research. Several

studies have discovered the involvement of cytokines in the pathogenesis of this disease.

These cytokines induce signal transduction pathways in RA synovial fibroblasts (RASF).

These pathways share many signal transducers and their interacting proteins, resulting in

the formation of a signaling network. In order to understand the involvement of this network

in RA pathogenesis, it is essential to identify the key transducers and their interacting pro-

teins that are part of this network. In this study, based on a detailed literature survey, we

have identified a list of 12 cytokines that induce signal transduction pathways in RASF. For

these cytokines, we have built a signaling network using the protein-protein interaction (PPI)

data that was obtained from public repositories such as HPRD, BioGRID, MINT, IntAct and

STRING. By combining the network centrality measures with the gene expression data from

the RA related microarrays that are available in the open source Gene Expression Omnibus

(GEO) database, we have identified 24 key proteins of this signaling network. Two of these

24 are already drug targets for RA, and of the remaining, 12 have direct PPI links to some of

the current drug targets of RA. Therefore, these key proteins seem to be crucial in the patho-

genesis of RA and hence might be treated as potential drug targets.

Introduction

RA is a debilitating chronic inflammatory synovial joint disease that affects about 1% of the

world’s population [1]. The disease usually affects the small joints of the hands and feet. The

etiology of the disease is unknown. The chronic inflammation causes invasion of synovial

membrane toward articular bone which results in the formation of a layer of granulation tis-

sue, called pannus. Further, the inflammation would induce irreversible damage of the
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synovium, which leads to dysfunction of the joints [1–2]. The current RA therapeutics can

suppress inflammation and the damage of cartilage and bone but cannot cure the disease. Fur-

ther, hepatotoxicity, cardiotoxicity and gastrointestinal effects are the clinical side effects of

some of these treatments [3–5]. The lack of a clear understanding of the pathogenesis of the

disease remains an obstacle for discovering effective treatments for RA.

Along with RASF, various immune cells, such as B cells, T cells, mast cells, macrophages,

dendritic cells and natural killer (NK) cells are activated in RA [6]. Many of these cells produce

cytokines, which are involved in the pathogenesis of the disease. Some of these cytokines are

pro-inflammatory while others are anti-inflammatory. In RA, cytokines induce autoimmunity,

chronic inflammation and eventual joint damage. Many cytokines such as tumor necrosis fac-

tor (TNF), interferon gamma (IFNγ), several interleukins—IL-1β, IL-4, IL-6, IL-7, IL-12, IL-

13, IL-15, IL-18, IL-23 and transforming growth factor beta (TGFβ) are expressed in the syno-

vial tissues [1]. Also, the cytokine levels in the synovial tissues are altered at various stages of

the disease. For instance, in early RA the levels of IL-13 and IL-4 are elevated, whereas in the

later stages they are present at low levels [7]. Some of these cytokines act in a synergistic fash-

ion to augment inflammation. For instance, IL-17, IL-1β and TNF synergistically activate

synovial fibroblasts leading to the production of inflammatory mediators [8]. Several of these

cytokines induce signal transduction pathways in RASF, which lead to the activation of their

respective transcription factors. The activated transcription factors induce the expression of

the genes that encode inflammatory mediators such as C-X-C motif ligands—CXCL8, CXCL9,

CXCL10, CXCL11, CXCL12 and C-C motif ligand 5 (CCL5)—and articular cartilage degrad-

ing enzymes such as matrix metalloproteinases MMP1 and MMP3 [9–33].

RA is a complex phenotype that can be caused by a combination of genetic and environ-

mental stresses on complex biological networks [34–35]. The pro- and anti-inflammatory

cytokines form one such complex network. The cytokines interact with one another via their

signal transduction pathways. Many signal transducers are shared by these pathways, thus

forming a network. However, which of these signal transducers can be targeted for the effective

treatment of RA has not been fully established. Building the cytokine network and identifying

the key molecules in it would be a major step toward the holistic understanding of the cytokine

pathways in RA. The cytokine network can be built using protein-protein interaction (PPI)

data that is available in the public repositories such as the human protein reference database

(HPRD), the biological general repository for interaction datasets (BioGRID), the molecular

interaction (MINT), IntAct, STRING and a tissue-specific human protein interaction dataset

called CRG [36–41]. By combining network analysis methods and the RA gene expression pro-

filing data that is present in the GEO database, we can come up with strategies for identifying

certain key molecules that are part of the cytokine signaling network. In earlier studies, some

efforts have been made to identify key molecules in complex diseases like tuberculosis and can-

cer using network analysis methods [42–43]. However, such studies are limited in RA. In

order to fill this gap, we had earlier created a cytokine signaling network based on literature

curation and evaluated the activity of the cytokine signaling pathways using gene expression

profiling data [44]. Further, Hwang et al. have emphasized the use of existing gene expression

data for pathway evaluation in RA [45].

In this study, using publicly available PPI data, we have built a signaling network associated

with the cytokines and their transcription factors that are active in RASF. Using network cen-

trality measures, we have identified some important molecules of this network. Further, the

activity of these molecules was assessed using the RASF gene expression profiling data that is

available in GEO. Finally, the proteins with higher centrality scores and with differential gene

expression were considered the key molecules.

Key molecules of cytokine network in RA
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Methods

Creation of a human PPI database

We created a human PPI database by extracting the interactions from six publicly available

databases, namely HPRD, BioGRID, IntAct, MINT, STRING and CRG [36–41]. From each

database, only the experimentally determined physical interactions in human cells were con-

sidered. The experimental methods used for determining the protein interactions that are

listed in each database are given in the S1 File. All these interactions were merged into a single

database by converting the protein identifiers of individual databases into gene symbols. In

HPRD and BioGRID the proteins are represented with their respective gene symbols. In other

databases the different protein identifiers were converted into gene symbols before merging.

For instance, in IntAct and MINT databases, the proteins are identified with their respective

UniProtKB entries. They were converted into gene symbols by using a HUGO gene nomencla-

ture committee (HGNC) custom downloaded file containing gene symbols and UniProtKB

entries [46]. Similarly, in the STRING and CRG databases the proteins are represented with

the Ensembl protein and Ensembl gene identifiers respectively, and were converted into gene

symbols with the aid of the Ensembl Biomart project [47]. All these interactions have been

merged based on their gene symbols to create a final human PPI database. The database is in

the S2 File.

Creation of a synovial tissue-specific PPI database for the plasma

membrane and cytoplasm

In this study, we have focused on creating a cytokine signaling network starting from the bind-

ing of the cytokines to their cell surface receptors and ending with the activation of the tran-

scription factors in the cytoplasm. Therefore we aim to create a PPI interactome that is specific

to the plasma membrane and the cytoplasm. For this, only the interactions of those proteins

that get localized to the cytoplasm and the plasma membrane were extracted from the human

PPI database using the subcellular localization data present in the mammalian protein subcel-

lular localization database, LOCATE [48]. We also extracted the interactions of many cytokine

receptors and transcription factors that are not listed in LOCATE. A list of the genes of this

interactome, called the ‘G-list’, was prepared. Furthermore, to make this interactome specific

to the synovial tissue, we computed the co-expression of the interacting partners of these inter-

actions by analyzing the RA related microarray gene expression data obtained from GEO. All

the microarray datasets chosen in this study are based on the Affymetrix platform. Further

details about the microarray datasets and their analysis are provided at the end of the ‘Meth-

ods’ section. For every microarray dataset, we did the following; for a pair of genes in the G-list

we computed the Pearson correlation coefficient of the gene expression values across all RA

disease samples. The correlations were computed for all possible pairs in the G-list. This was

repeated for all the datasets. Only those pairs that had experimentally determined PPI interac-

tions and with a Pearson correlation coefficient > 0.7 in at least one microarray dataset were

considered as co-expressed in the synovial tissues. Finally, a synovial tissue-specific PPI data-

base was created by selecting the interactions of the co-expressed interacting proteins.

Creation of cytokine PPI network (CPPIN) in RASF

Using the created synovial tissue-specific PPI database, we have built a network with proteins

as nodes and their interactions as edges. The open source ‘igraph’ package in ‘R’ and python

scripts were used for this purpose. We named this network the ‘synovial PPI network’

(SPPIN).

Key molecules of cytokine network in RA
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Based on a literature search in PubMed, we identified 12 active cytokines and 8 of their

transcription factors in RASF. Details of these cytokines and their transcription factors are

described in the Results section and the list of search terms used is in S3 File.

Considering these cytokines and their transcription factors as sources and targets respectively,

we extracted all the shortest paths from the sources to the targets from the SPPIN network using

the Breadth-first search (BFS) algorithm. In addition to BFS, there are several other approaches

for finding shortest paths in graphs. Some of them are Depth-first search (DFS), Dijkstra and A�

[49]. DFS puts the visited vertices in a stack while BFS puts them in a queue. The BFS algorithm is

generally used for finding shortest paths in unweighted PPI networks. In SPPIN, the sources and

the targets are closer to one another, which is an ideal scenario for using the BFS algorithm. This

algorithm is computationally faster for searching shortest paths in SPPIN.

Each shortest path extracted from SPPIN contains the receptor of the source cytokine, the

target transcription factor and the intermediate proteins that connect them. If a cytokine

receptor is encoded by more than one gene, all the shortest paths between each of the cytokine

receptor genes and their respective transcription factors were considered. Similarly, if a tran-

scription factor is encoded by more than one gene, all the shortest paths between the cytokine

receptor and each of these genes were considered. There were a total of 103 distinct intermedi-

ate proteins in the shortest paths. Each of these intermediates was treated as a focal node and

all of the latter’s immediate neighborhood nodes were isolated. Finally, we formed the cytokine

network by connecting the cytokines, their transcription factors, the intermediates that con-

nect them and the neighborhood nodes of the intermediates [Fig 1]. We named this network

the ‘cytokine PPI network’ (CPPIN).

Centrality measures

In order to identify the highly connected and central proteins in the network, we measured

four important centralities of every node present in the network as described below.

Degree centrality. Degree centrality is the number of edges through which a node con-

nects to other nodes within a network. Proteins with a high degree are connected to a large

number of other proteins. In PPI networks, proteins with a higher degree are considered

‘essential proteins’ or ‘hubs’ as they are located at the center of the network [50]. Considering

the pair-wise interactions of ‘n’ nodes, the degree centrality of a node pk is calculated using the

following equation [51].

CDðpkÞ ¼

Xn

i¼1

aðpi; pkÞ

n � 1
ð1Þ

Where a(pi, pk) = 1 if and only if protein pi and protein pk are connected by an edge. Oth-

erwise it is 0. ‘n’ is the total number of nodes present in the network.

Betweenness centrality. Betweenness centrality is the measure of the number of shortest

paths that pass through a node within a network. Nodes with high betweenness, called ‘bottle-

necks’, control the flow of information within a network [52]. The betweenness of a node ‘n’

takes the node pairs such as (n1, n2) and calculates all the shortest paths that go through ‘n’ to

connect n1 and n2. The betweenness of a node ‘n’ is calculated using the following equation.

CBðnÞ ¼
X

n16¼n6¼n2

gn1;n;n2

gn1;n2
ð2Þ

Where, ‘gn1, n, n2’ is the number of shortest paths that pass through node ‘n’ and ‘gn1, n2’ is

the total number of shortest paths.

Key molecules of cytokine network in RA
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Fig 1. Building cytokine PPI network (CPPIN) in RA synovial fibroblasts (RASF). CPPIN was built using the publicly

available PPI data. For building this network, 12 cytokines and eight of their target transcription factors that are active in RASF

Key molecules of cytokine network in RA
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Closeness centrality. Closeness centrality is a measure of the average distance of all the

shortest paths between a node and every other node within a network. It gives how far a certain

node is from all other nodes [51]. This is calculated using the following equation.

CCðnÞ ¼
1

X

i6¼n

gni
ð3Þ

Where, gni represents the shortest paths between the node ‘n’ and every other node i. Close-

ness centralities are measured for all the nodes present within the CPPIN network.

Eigenvector centrality. Eigenvector centrality measures the influence of a node within a

network. The node with a high eigenvector is considered the central and influential node as it

is connected to many other central nodes [53]. Eigenvector centrality scores are the elements

of the first eigenvector of the adjacency matrix of a network.

Microarray data analysis

In this study, we have considered five Affymetrix RA related microarray datasets that are avail-

able in the NCBI GEO database. They are GSE7307, GSE55457, GSE55235, GSE12021

(HGU133A) and GSE12021 (HGU133B) (Table 1). These microarray experiments were car-

ried out on RA and normal synovial fibroblasts by other workers. The RA samples used in

these studies were obtained by tissue excision upon joint replacement/synovectomy surgery

from RA patients whereas the control samples were obtained from either postmortem joints or

traumatic joint injury cases. We re-analyzed these datasets using the R/Bioconductor statistical

package. All the datasets were normalized using two algorithms, MAS5 and RMA, separately.

The differential expression of the genes between RA and control groups was computed using

the two sample independent t-test.

For the co-expression analysis described above, we considered the RMA normalized expres-

sion values from the disease samples of each microarray dataset.

A gene is said to be differentially expressed in a dataset if it satisfies the following criteria:

(i) Gene should have a P-value < 0.05 and a fold-change > 1.5 for up or down regulation. (ii)

A gene is said to be up-regulated if it shows up-regulation by both the normalization methods

were considered. In the figure, the upper half shows the steps involved in the creation of CPPIN while the lower half is a

representation of CPPIN. First, the network SPPIN was created by applying two filters to the collated interactions from the six

PPI databases. The two filters are (i) plasma membrane and cytoplasm subcellular localization and (ii) synovial tissue co-

expression using microarray data. For creating CPPIN from SPPIN, the shortest paths between cytokines and target

transcription factors and the neighboring nodes of the shortest path intermediates were used. In the lower half of the figure, the

rectangles represent cytokines, the Y-shaped symbols represent the cytokine receptors, the red colored vertical ovals represent

the intermediate proteins that connect the cytokine receptors and the transcription factors, the green circles represent the

neighborhood nodes of the intermediate proteins and the pentagons represent the target transcription factors of the cytokines.

https://doi.org/10.1371/journal.pone.0199530.g001

Table 1. Details of microarray datasets used in this study.

S.No. GEO Accession PubMed ID Platform Probe Number Number of Samples

RA Control

1 GSE7307 - Affymetrix Human Genome U133 Plus 2.0 Array 54675 5 9

2 GSE12021 18721452 Affymetrix Human Genome U133A Array 22283 12 9

3 GSE12021 18721452 Affymetrix Human Genome U133B Array 22645 12 4

4 GSE55457 24690414 Affymetrix Human Genome U133A Array 22283 13 10

5 GSE55235 24690414 Affymetrix Human Genome U133A Array 22283 10 10

https://doi.org/10.1371/journal.pone.0199530.t001
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or up-regulation in one and below the fold-change threshold in the other. (iii) Similarly, a

gene is said to be down-regulated if it shows down-regulation by both the normalization meth-

ods or down-regulation in one and below the fold-change threshold in the other.

The same criteria were applied across the datasets to decide whether a gene is up/down reg-

ulated in each one of them.

Results

Construction of the CPPIN network

As explained in the ‘Methods’, we combined interactions from all the six resources to obtain a

complete dataset. By doing this, we obtained 77218 interactions from CRG, 39042 from

HPRD, 298802 from BioGRID, 89355 from STRING and 45896 from both the IntAct and

MINT databases. Overall, we considered 363,476 non-redundant interactions from the six

resources (S2 File). Interactions from all these six resources seem to be comprehensive. Then,

two filters were applied to this data: (i) plasma membrane and cytoplasm subcellular localiza-

tion and (ii) synovial tissue co-expression. This resulted in a synovial tissue-specific interac-

tome with 7939 interactions. Using this, we built the synovial tissue-specific PPI network,

SPPIN. In this network, the proteins and their interactions are represented as nodes and edges

respectively.

Based on a literature survey, we have identified 12 cytokines and eight of their target tran-

scription factors that are active in RASF (Table 2). These cytokines stimulate the RASF and

activate their respective transcription factors. We considered these cytokines as the sources

and their transcription factors as the targets in SPPIN. We then extracted a total of 139 shortest

paths that pass through the cytokine receptors between these sources and targets. The number

of intermediates on all the shortest paths was 103. The number of times each of these interme-

diate proteins occurred was also determined (S4 File).

We have also extracted the neighborhood nodes of the intermediates from the SPPIN net-

work. The intermediates are considered seed nodes. All the nodes to which a seed node has a

direct connection (path length 1) are extracted. Finally, we formed CPPIN by connecting the

cytokines, their transcription factors, the 103 intermediates and the neighborhood nodes of

the intermediates. This gave a network comprising 1204 nodes and 2155 edges. The edge list of

this network is provided in S5 File.

Central nodes of the CPPIN network and their activity in the RA synovium

We have measured the four centralities of all the nodes present in the network and plotted

their histograms (Fig 2). With the histograms as reference, we have extracted approximately

20% of the nodes with the highest centralities in each category. The degree distributions of

scale free networks, such as many real networks and human PPI, have a power-law tail. As a

consequence of this, a few highly connected nodes exist in the whole network. Researchers

generally refer to the 20% of nodes with the highest degree in a network as the hubs [50]. The

degree and eigenvector histograms have a power-law tail (Fig 2). We extended top 20% nodes

to the betweenness and closeness centrality categories in order to increase the number of cen-

tral nodes. This resulted in ~30% (354) of the total nodes in CPPIN as the central nodes. Then

we proceeded to determine how many of these nodes are differentially expressed in the RA

synovium. The nodes that are selected in (a) at least three of the four centrality measures and

differentially expressed in three of the five microarray datasets or (b) that are selected in at

least two centrality measures and differentially expressed in at least four microarray datasets

were considered the key molecules. This resulted in a total of 24 molecules (Table 3). A concise

interaction map that shows how these molecules are related to 12 cytokines and eight

Key molecules of cytokine network in RA
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Table 2. Cytokines, their receptors, their transcription factors and shortest paths. All the combinations of the shortest paths from each of the cytokine receptors to

their target transcription factor are considered.

S.

No.

Cytokine Cytokine Receptor(s) Transcription

Factor

Subunits/forms of the transcription

factor

No. of shortest

paths

Reference(s)

1 TNF TNFRSF1A,

TNFRSF1B

NF-κB NFKB1, NFKB2, RELA, RELB, REL 10 [9–12, 54–66]

2 IL-18 IL18R1, IL18RAP NF-κB NFKB1, NFKB2, RELA, RELB, REL 10 [13]

3 IL-17 IL17RA, IL17RC NF-κB NFKB1, NFKB2, RELA, RELB, REL 10 [11, 14–15, 67–68]

4 IL-27 IL27RA, IL6ST STAT1 STAT1 2 [16]

5 IL-1α/β IL1R1 NF-κB NFKB1, NFKB2, RELA, RELB, REL 5 [11–12, 17–18, 58, 62, 69–

75]

6 TNF TNFRSF1A,

TNFRSF1B

AP-1 JUN, JUNB, FOS, FOSB, FOSL1, FOSL2 12 [11, 16, 17, 54]

7 IL-1β IL1R1 AP-1 JUN, JUNB, FOS, FOSB, FOSL1, FOSL2 6 [11, 16, 18–20, 71–72, 74]

8 IL-17 IL17RA, IL17RC AP-1 JUN, JUNB, FOS, FOSB, FOSL1, FOSL2 12 [11, 15]

9 TNF TNFRSF1A,

TNFRSF1B

IRF3 IRF3 2 [19]

10 LIGHT

(TNFSF14)

TNFRSF14 NF-κB NFKB1, NFKB2, RELA, RELB, REL 5 [21–22]

11 IL-33 IL1RL1 NF-κB NFKB1, NFKB2, RELA, RELB, REL 5 [23]

12 IL-17 IL17RA, IL17RC STAT3 STAT3 2 [24, 76]

13 IL-1β IL1R1 STAT1 STAT1 1 [16, 26]

14 IFNα/β IFNAR1, IFNAR2 STAT1 STAT1 2 [10, 26–27]

15 IFNγ IFNGR1, IFNGR2 STAT1 STAT1 2 [10, 26]

16 TNF TNFRSF1A,

TNFRSF1B

STAT1 STAT1 2 [16, 26]

17 IL-1α/β IL1R1 IRF3 IRF3 1 [28]

18 IL-1α/β IL1R1 IRF7 IRF7 1 [28]

19 IFNα/β IFNAR1, IFNAR2 IRF3 IRF3 2 [28]

20 IFNα/β IFNAR1, IFNAR2 IRF7 IRF7 2 [28]

21 TNF TNFRSF1A,

TNFRSF1B

IRF1 IRF1 2 [12]

22 IL-1β IL1R1 IRF1 IRF1 1 [12]

23 TGF-β1 TGFBR1, TGFBR2 NF-κB NFKB1, NFKB2, RELA, RELB, REL 10 [29–30]

24 TGF-β1 TGFBR1, TGFBR2 AP-1 JUN, JUNB, FOS, FOSB, FOSL1, FOSL2 12 [29]

25 TGF-β1 TGFBR1, TGFBR2 SMAD SMAD2, SMAD3 4 [31, 77]

26 IL-21 IL2RG STAT3 STAT3 1 [32, 78]

27 IL6 IL6R STAT3 STAT3 1 [79]

28 TNF TNFRSF1A,

TNFRSF1B

STAT3 STAT3 2 [54]

29 IL-27 IL27RA, IL6ST AP-1 JUN, JUNB, FOS, FOSB, FOSL1, FOSL2 12 [16]

Total = 139

TNFRSF1A and TNFRSF1B, tumor necrosis factor receptor superfamily member 1A and 1B; IL18R1, interleukin-18 receptor 1; IL18RAP, interleukin-18 receptor

accessory protein; IL17RA, interleukin-17 receptor A; IL17RC, interleukin-17 receptor C; IL27RA, interleukin-27 receptor alpha; IL6ST, interleukin 6 signal transducer

(glycoprotein 130); IL1R1, interleukin 1 receptor, type 1; TNFRSF14, tumor necrosis factor receptor superfamily member 14; IL1RL1, interleukin-1 receptor-like 1;

IFNAR1, interferon-alpha receptor alpha chain; IFNAR2, interferon-alpha receptor beta chain; IFNGR1, interferon gamma receptor 1; IFNGR2, interferon gamma

receptor 2; TGFBR1, TGF beta receptor 1; TGFBR2, TGF beta receptor 2; IL2RG, interleukin-2 receptor subunit gamma; IL6R, inteleukin-6 receptor; NF-κB, nuclear

factor kappa-light-chain-enhancer of activated B cells; STAT1, signal transducer and activator of transcription 1; AP-1, activator protein 1; IRF3, interferon regulatory

factor 3; STAT3, signal transducer and activator of transcription 3; IRF7, interferon regulatory factor 7; IRF1, interferon regulatory factor 1

https://doi.org/10.1371/journal.pone.0199530.t002
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transcription factors, and among them, is shown in Fig 3. This map can also be visualized in

cytoscape using the S6 File.

Directionality of differential expression for cytokine-transcription factor

shortest path molecules

Since all the 12 cytokines are known to induce signal transduction pathways in RASF, all the

shortest paths—between a given cytokine and transcription factor pair—seem to be important.

However, some of these paths have the molecules with the same directionality (up- or down-

regulated) of differential expression between RA and normal samples in synovial microarray

datasets (Figs 4–6). Some cytokine and transcription factor pair shortest paths have higher

number of up-regulated molecules over down-regulated molecules (Figs 7 and 8). Some other

paths have higher number of down-regulated molecules over up-regulated molecules (Figs 8–

10). From this we can conclude that all these pathways are getting affected in RA. Some are

active because they have a high proportion of up-regulated molecules; some others are inactive

because they have a high proportion of down-regulated molecules; few of them are dysregu-

lated because they have both up- and down-regulated molecules.

Fig 2. The histograms of the four centrality measures, degree, betweenness, closeness and eigenvector. The

distributions of the four centrality measures are plotted as histograms. Taking the histogram as a reference,

approximately 20% of the proteins with high centrality scores (toward the right side of the histogram) are extracted for

differential expression analysis.

https://doi.org/10.1371/journal.pone.0199530.g002
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Effects of medical therapy initiation on gene expression

Except for GSE7307 and GSE55235, each RA patient belonging to other microarray studies

considered in this study has undergone different combinations of medical therapies. The

details of therapies are in Table 4. The therapies initiated on the patients are non-steroidal

anti-rheumatic drug (NSARD), Azulfidine (AZ), Prednisolone (PS), Methotrexate (MTX),

Cox-2 inhibitor (CX), Quensyl (QS), non-steroidal anti-inflammatory drug (NSAID) and Tili-

din (T). Some patients within a dataset were treated with the same combination of therapies

while others were treated with different combinations. To find out how these therapies could

have affected the gene expression of 24 key molecules, the samples in each dataset were hierar-

chically clustered based on the expression values. In GSE7307, GSE55235 and except for one

RA sample in GSE12021 (HGU133B), all RA and control samples were clustered into separate

groups (Figs 11–13). In GSE12021 (HGU133A) and GSE55457, some RA samples were clus-

tered into a separate group while others were clustered with controls (Figs 14 and 15), showing

that there is a drug effect.

In order to find the effect of medical therapies on the differential expression of genes, we

removed the RA samples that were clustered with healthy controls from GSE12021

(HGU133A), GSE12021 (HGU133B) and GSE55457 datasets and repeated the differential

Table 3. Centrality and differential expression of the CPPIN network proteins. The proteins that are selected in at least (a) three centrality measures and three synovial

microarray datasets or (b) two centrality measures and four synovial microarray datasets are considered as the key molecules. This resulted in 24 key molecules.

S.No. Key molecule Degree Betweenness Closeness Eigenvector Number of microarray datasets in which the

gene is differentially expressed

1 2 3 4 5

1 SYK

2 PTPN6

3 LCK

4 PTPRC

5 INPP5D

6 PRKCB

7 CD3E

8 CSF2RB

9 IL2RG

10 EGFR

11 JUN

12 MYC

13 FOS

14 AR

15 CCR5

16 IFNAR2

17 LRP1

18 MX1

19 LAP3

20 CXCR4

21 EGR1

22 FOSB

23 TNFRSF14

24 CD48

Blue color indicates the presence of the protein in the top 20% centrality list. Green color indicates the up-regulation and red color indicates the down-regulation.

https://doi.org/10.1371/journal.pone.0199530.t003

Key molecules of cytokine network in RA

PLOS ONE | https://doi.org/10.1371/journal.pone.0199530 June 21, 2018 10 / 33

https://doi.org/10.1371/journal.pone.0199530.t003
https://doi.org/10.1371/journal.pone.0199530


expression analysis for the 354 genes which encode central proteins of CPPIN. With the same

selection criteria of differential expression and centrality measures, all the 24 genes of key mol-

ecules were retained, and in addition, 10 other genes that encode central proteins were also

selected (S1 Table). S1–S3 Figs show the heat maps of the expression levels of these 24 genes in

these three data sets after eliminating the RA samples that clustered with healthy controls. We

notice the complete separation of controls from RA samples in the clusters.

We conclude that the 24 genes that were differentially expressed in both the cases were not

affected by the therapy initiation while the 10 other genes that were selected in the second case

might have been affected.

Direct PPI links of the CPPIN key molecules with current RA drug targets

In order to determine if there are any recognized RA drug targets in the CPPIN key molecules,

we have downloaded a dataset from the Therapeutic Target Database (TTD) which contains

information on drug target genes that are at various stages of the drug discovery process [80].

The dataset consists of successful drug targets as well as the ones that have been studied in

research projects and clinical trials for several diseases. We extracted all the drug targets of RA

from this dataset and combined them with the successful RA drug targets listed in Okada et al.

[81]. The resulting ensemble of 48 RA drug targets is listed in Table 5. Two of the key CPPIN

molecules, spleen tyrosine kinase (SYK) and c-Jun (JUN) are already established drug targets for

RA. Among the remaining key CPPIN molecules, 12 have direct PPI links to some of the current

RA drug targets (Table 6). So these 24 molecules can be considered potential drug targets for

RA. The overall strategy that was used to come up with the key molecules is explained in Fig 16.

Significance of overlap of key molecules with current RA drug targets

A random sample of 24 proteins was drawn from the CPPIN network and estimated their

overlap with the current RA drug targets. After removing the overlaps from the 24, for the

Fig 3. A concise interaction map for the 12 cytokines, eight transcription factors and 24 key molecules. This map shows how the cytokines and transcription factors

considered in this study interact with 24 key molecules. The key molecules, JUN, FOS and FOSB are represented with AP-1. Another key molecule, IL2RG is represented

with IL-21R.

https://doi.org/10.1371/journal.pone.0199530.g003
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remaining proteins we determined the direct PPI links to the drug targets. We got the follow-

ing results based on one million random samples:

1. The probability of getting 2 or more drug targets out of 24 randomly selected proteins is

0.0478, giving a statistical significance of less than 5%.

2. After removing overlaps, we counted the number of proteins among the remaining ones

that are directly connected to drug targets in CPPIN. The probability of getting 12 or more

proteins with direct connections to drug targets is found to be 2.6×10−5.

Thus, the selection of 24 proteins by our analysis with two drug targets and at least 12 direct

PPI links to drug targets has statistical significance.

Fig 4. Exclusively up-regulated shortest path molecules for TNF and IFNα/β related pathways. The figure shows

the completely up-regulated shortest path molecules in TNF and NF-κB, IRF3, IRF1 and STAT1 pairs, and IFNα/β and

STAT1 pair.

https://doi.org/10.1371/journal.pone.0199530.g004
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Discussion

In this study, we have built a cytokine signaling network (CPPIN) in RASF using publicly

available PPI data. The CPPIN network contains 12 cytokine pathways that are active in RASF.

The cytokine receptors, their transcription factors, intermediate signal transducers that con-

nect them and the direct interacting proteins of the intermediates are part of this network. The

Fig 5. Exclusively up-regulated shortest path molecules for TNF and IFNα/β, IL-21 and IL6 related pathways. The

figure shows the completely up-regulated shortest path molecules in TNF, IL-21 and IL6 cytokines and STAT3 transcription

factor pairs, and IFNα/β cytokine and IRF3 and IRF7 pairs.

https://doi.org/10.1371/journal.pone.0199530.g005
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cytokines include TNF, interleukins—IL-1α/β, IL-6, IL-17, IL-18, IL-21, IL-27 and IL-33,

tumor necrosis factor superfamily member 14 (TNFSF14), three interferons (IFNα/β and

IFNγ) and transforming growth factor-beta1 (TGF-β1). The transcription factors include

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer

and activator of transcription 1 (STAT1), STAT3, activator protein 1 (AP-1), interferon

regulatory factor 1 (IRF1), IRF3, IRF7 and SMAD. Even though the number of cytokines

considered in this study is low, they are reliable in the sense that they stimulate RASF and

induce signal transduction pathways leading to the activation of their respective transcription

factors.

Fig 6. Exclusively down-regulated shortest path molecules for IL-1β and TGF-β related pathways. The figure

shows the completely down-regulated shortest path molecules in IL-1β and TGF-β cytokines and AP-1, SMAD and

STAT1 transcription factor pairs.

https://doi.org/10.1371/journal.pone.0199530.g006
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For building this comprehensive network, we have considered the PPI interactions only if

the interacting participants of each interaction are co-expressed in the synovial tissues. To find

the central proteins of the CPPIN network, four centrality measures, degree, closeness,

betweenness and eigenvector have been measured for all the proteins of the CPPIN network.

In each centrality category, approximately 20% of the proteins with high centrality scores were

pulled out and the lists were merged for further analysis.

To identify the differential expression of the genes that encode the proteins with high cen-

trality values we analyzed five microarray datasets related to RASF in the GEO database. We

Fig 7. Mostly up-regulated shortest path molecules in IL-18, IL-17, TNFSF14 and IL-27 related pathways. The

figure shows the mostly up-regulated shortest path molecules in IL-18, IL-17 and TNFSF14 cytokines and NF-κB

transcription factor pairs, and IL-27 and STAT1 pair. The blue and red bars represent the up- and down-regulated

genes respectively.

https://doi.org/10.1371/journal.pone.0199530.g007
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have used the following methodology to come up with the key molecules. A protein is consid-

ered a key molecule only if it is selected in at least three centrality measures and three microar-

ray datasets or two centrality measures and four microarray datasets. This gave 24 key

molecules. Two of these 24, namely JUN and SYK, are already drug targets for RA. Among the

remaining, 12 have direct PPI links to current RA drug targets.

One of the key molecules in the list is epidermal growth factor receptor (EGFR). EGFR is

down-regulated in at least five RA microarray datasets. It is also highly connected in the

CPPIN network as it has high degree, betweenness and closeness centrality measures. Swanson

et al. observed that inhibition of EGFR by erlotinib reduced pannus formation, synovitis, vas-

cularisation, and cartilage and bone erosion in type-II collagen-induced arthritis (CIA) mouse

models [82–83]. Further, an earlier topological analysis of a PPI network in RA has reported

that EGFR is highly relevant to RA (Tieri et al.) [84]. Another key molecule, tyrosine-protein

phosphatase non-receptor type 6 (PTPN6) is up-regulated in three microarray datasets and is

selected in all the four centrality measures. It also interacts with some of the current RA drug

Fig 8. Up- and down-regulated shortest path molecules in IFNγ, IL-17 and TGF-β related pathways. The figure

shows the mostly up-regulated shortest path molecules in IFNγ and STAT1, IL-17 and STAT3 pairs. It also shows the

mostly down-regulated molecules in the shortest path between TGF-β and NF-κB pair. The blue and red bars

represent the up- and down-regulated genes respectively.

https://doi.org/10.1371/journal.pone.0199530.g008
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targets, janus kinase 1 and 2 (JAK1 and JAK2) and SYK. Additionally, it is found to be

enriched in the synovial fluid of RA patients [85].

Lymphocyte-specific protein tyrosine kinase (LCK) is up-regulated in four microarray data-

sets. It is also selected in all the four centrality measures. Further, Swanson et al. have affirmed

that tyrosine kinases such as LCK are the predominant players in the cell signaling pathways

that enhance inflammation and the formation of pannus in RA. They emphasized that LCK

can be considered a drug target for RA [86]. Another key molecule known as colony stimulat-

ing factor 2 receptor beta (CSF2RB) is up-regulated in four microarray datasets and is selected

Fig 9. Mostly down-regulated shortest path molecules in IL-17, TNF and IL-1α/β related pathways. The figure

shows the mostly down-regulated shortest path molecules in IL-17 and TNF cytokines and AP-1 transcription factor

pairs, and IL-1α/β and NF-κB pair. The blue and red bars represent the up- and down-regulated genes respectively.

https://doi.org/10.1371/journal.pone.0199530.g009
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in three centrality measures. It interacts with an RA drug target JAK2. Additionally, Fujikado

et al. have observed the up-regulation of the CSF2RB gene in their mouse RA models [87].

Interleukin receptor subunit gamma (IL2RG), which interacts with at least six cytokine recep-

tors including IL2RA, IL4RA, IL7RA, IL9RA, and IL15RA, is up-regulated in four microarray

datasets and is selected in all the four centralities. In addition, Chang et al. have observed the

up-regulation of IL2RG in their microarray studies on RA synovial tissues [88]. c-myc (MYC)

is down-regulated in three microarray datasets and is selected in all the four centralities. It also

interacts with two current RA drug targets, the conserved helix-loop-helix ubiquitous kinase

(CHUK) and JUN. Hashiramoto et al. have found the involvement of c-myc in RA pathogene-

sis [89]. They have observed that c-myc antisense oligodeoxynucleotides (AS ODN) arrested

Fig 10. Mostly down-regulated shortest path molecules in IL-1α/β and IL-33 related pathways. The figure shows

mostly down-regulated shortest path molecules in IL-1α/β cytokine and IRF7, IRF3 and IRF1 transcription factor

pairs, and IL-33 and NF-κB pair. The blue and red bars represent the up- and down-regulated genes respectively.

https://doi.org/10.1371/journal.pone.0199530.g010
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Table 4. Medical therapies initiated on RA patients.

Dataset Patients Medical Therapies

GSE7307 RA1 Not treated

RA2 Not treated

RA3 Not treated

RA4 Not treated

RA5 Not treated

GSE12021 (HGU133A) RA1 NSARD + Azulfidine + Prednisolone

RA2 NSARD + MTX + Prednisolone

RA3 NSARD + MTX+ Prednisolone

RA4 NSARD + Azulfidine + Prednisolone + MTX

RA5 NSARD + MTX + Prednisolone

RA6 NSARD + Azulfidine + Prednisolone

RA7 MTX + Prednisolone

RA8 NSARD

RA9 NSARD + Prednisolone

RA10 NSARD + Prednisolone

RA11 COX-2 inhibitor + Prednisolone + Quensyl

RA12 NSAID + Tilidin + Prednisolone

GSE12021 (HGU133B) RA1 NSARD + Azulfidine + Prednisolone

RA2 NSARD + MTX + Prednisolone

RA3 NSARD + MTX+ Prednisolone

RA4 NSARD + Azulfidine + Prednisolone + MTX

RA5 NSARD + MTX + Prednisolone

RA6 NSARD + Azulfidine + Prednisolone

RA7 MTX + Prednisolone

RA8 NSARD

RA9 NSARD + Prednisolone

RA10 NSARD + Prednisolone

RA11 COX-2 inhibitor + Prednisolone + Quensyl

RA12 NSAID + Tilidin + Prednisolone

GSE55457 RA1 NSARD + Azulfidine + Prednisolone

RA2 NSARD + MTX + Prednisolone

RA3 NSARD + MTX+ Prednisolone

RA4 NSARD + Azulfidine + Prednisolone + MTX

RA5 NSARD + MTX + Prednisolone

RA6 NSARD + Azulfidine + Prednisolone

RA7 MTX + Prednisolone

RA8 NSARD

RA9 NSARD + Prednisolone

RA10 no therapy used

RA11 NSARD + Prednisolone

RA12 COX-2 inhibitor + Prednisolone + Quensyl

RA13 NSAID + Tilidin + Prednisolone

GSE55235 RA1 Therapies not mentioned

RA2 Therapies not mentioned

RA3 Therapies not mentioned

RA4 Therapies not mentioned

RA5 Therapies not mentioned

(Continued)
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cell proliferation and induced apoptosis in rheumatoid synoviocytes. Further, Pap et al. have

found c-myc, in co-operation with c-Raf-1, controls the growth and invasiveness of RASFs in

the SCID mouse model of RA [90]. A subunit of the transcription factor AP-1, c-Fos (FOS), is

down-regulated in three microarray datasets and is selected in all the four centrality measures.

Further, Aikawa et al. have reported the suppression of RA by a small molecule inhibitor of c-

Fos in CIA mice models [91]. CCR5 is up-regulated in four microarray datasets and is also

selected in three centrality measures. Further, it interacts with the RA drug targets, JAK1 and

JAK2. However, in a preclinical study blocking CCR5 with its antagonists and subsequently

testing the effects of CCR5 blocking in a clinical trial with RA patients has not reported any

clinical benefit [92–93]. The C-X-C chemokine receptor type 4 (CXCR4) is up-regulated in

four microarray datasets and is selected in two centrality measures. Schmutz et al. have also

Table 4. (Continued)

Dataset Patients Medical Therapies

RA6 Therapies not mentioned

RA7 Therapies not mentioned

RA8 Therapies not mentioned

RA9 Therapies not mentioned

RA10 Therapies not mentioned

https://doi.org/10.1371/journal.pone.0199530.t004

Fig 11. Hierarchical clustering of RA and control samples based on the gene expression of selected key molecules in GSE7307. The RA patients

belonging to this dataset were not treated with drugs. The RA and control samples were clustered into separate groups.

https://doi.org/10.1371/journal.pone.0199530.g011
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observed the up-regulation of CXCR4 in synovial tissues [94]. Further, the antagonists of

CXCR4 have reduced angiogenesis in the CIA murine models of RA [95]. Some antagonists of

CXCR4 such as AMD3100 and a T140 analog have also reduced joint inflammation and the

severity of RA [96–97]. Furthermore, low-level laser irradiation has reduced the expression of

CXCR4 in CIA rat models of RA [98]. Even the single nucleotide polymorphisms (SNPs) of

some genes such as PTPRC and TNFRSF14 are associated with RA [99–100].

In the current study, microarray and human PPI data were combined to generate a cytokine

signaling network. We identified key molecules, which are the central proteins of this network

with differential expression in RA. We also identified how these key molecules are connected

to some of the current RA drug targets. Our strategy is based on a two dimensional informa-

tion involving PPI and gene expression data. This network-based strategy, which led to the

identification of key molecules of the cytokine signaling network, may be used for identifying

multiple biomarkers, which may have potential for monitoring therapy responses.

Even though eight of the key molecules were down-regulated, their knowledge can be used

for making strategies for drug discovery. For instance, designing drugs in such a way that they

(i) enhance the expression of the down-regulated genes or (ii) inhibit the action or expression

of a particular molecule which is known to cause the down-regulation of the key molecule (for

instance, inhibition of a transcriptional repressor) can be a useful strategy in dealing with the

down-regulated genes. In addition, the gene expression signatures which include both the up-

Fig 12. Hierarchical clustering of RA and control samples based on the gene expression of selected key molecules in GSE55235. The RA and control samples were

clustered into separate groups.

https://doi.org/10.1371/journal.pone.0199530.g012
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and down-regulated genes can be used for screening a library of bioactive small molecules

using the connectivity map (CMAP) database [101]. The molecules can further be explored for

their exact targets and mechanism. This way, the gene expression signatures can essentially be

used in discovering new knowledge from existing knowledge. Moreover, biological systems

are robust because the perturbations caused by drug treatments can be restored. Overcoming

robustness is likely to be the key factor for finding better drug targets. In this respect, both the

up- and down-regulated genes may be leveraged for a multi-targeted approach.

In building the CPPIN network, we did not look for the differential expression of the cyto-

kines in the microarray data. Cytokines are autocrine, paracrine and endocrine signaling mol-

ecules and they might be secreted by a bunch of different populated cell types in the synovium

and synovial fluid of the patients with RA. Since they come from a variety of sources, they may

not be differentially expressed in the microarray data. If they are secreted by other cell types

and are present in the microenvironment of RASF, they can induce signaling pathways. All of

the reported 12 cytokines in this study are known to be elevated in RA and they are known to

activate their corresponding eight transcription factors. Elevated levels of the transcription fac-

tors may contribute to the enhanced expression of their target genes. However, an activated

transcription factor may induce the expression of its target genes even though it is not differen-

tially expressed but present in enough concentration. Therefore, we did not look for the differ-

entially expressed cytokine and transcription factor pairs for building CPPIN.

Fig 13. Hierarchical clustering of RA and control samples based on the gene expression of selected key molecules in GSE12021 (HGU133B). The RA (except

one) and control samples were clustered into separate groups. The figure also shows the combinations of drugs used for treating RA patients.

https://doi.org/10.1371/journal.pone.0199530.g013
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In summary, we have built a cytokine signaling network in RA. A combination of network

centrality measures and gene expression profiling data has identified 24 key molecules of this

network. Two of these are already drug targets for RA while 12 others physically interact with

some of the recognized drug targets. Some of these molecules such as EGFR, PTPN6, LCK,

CSF2RB, IL2RG, MYC, FOS, CXCR4, PTPRC and TNFRSF14 are well studied in RA by other

workers and are reported to play a role in the pathogenesis of RA. However, our strategy

Fig 14. Hierarchical clustering of RA and control samples based on the gene expression of selected key molecules in GSE12021 (HGU133A). Some RA

samples were clustered into a separate group while others were clustered with control samples. The figure also shows the combinations of drugs used for treating

RA patients.

https://doi.org/10.1371/journal.pone.0199530.g014
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Fig 15. Hierarchical clustering of RA and control samples based on the gene expression of selected key molecules in GSE55457. Some RA samples were

clustered into a separate group while others were clustered with control samples. The figure also shows the combinations of drugs used for treating RA patients.

https://doi.org/10.1371/journal.pone.0199530.g015

Table 5. An ensemble of current RA drug targets. These are the current RA drug targets that are obtained from two

sources namely TTD and a scientific article, Okada et al. [81].

Drug target Status of the target Source

IKBKB Clinical trial TTD, Okada et al.

CHUK Clinical trial TTD

CFLAR Research project TTD

JUN Clinical trial TTD

ITGB1 Clinical trial TTD

(Continued)
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Table 5. (Continued)

Drug target Status of the target Source

IL6R Clinical trial TTD, Okada et al.

FGF2 Clinical trial TTD

CCL2 Clinical trial TTD

ITGA4 successful TTD

OSM Research project TTD

MIF Clinical trial TTD

IL1R1 successful TTD, Okada et al.

LIF Research project TTD

MMP8 successful TTD

IL13 Clinical trial TTD

PTGS2 successful TTD, Okada et al.

IL6ST Clinical trial TTD

IL15 Clinical trial TTD

CTSK successful TTD

SYK Clinical trial TTD

JAK3 successful TTD, Okada et al.

MAPK12 Clinical trial TTD

F2RL1 Research project TTD

IL2 Clinical trial TTD

DHODH successful TTD, Okada et al.

IKBKE Clinical trial TTD

MYD88 Research project TTD

TLR9 Clinical trial TTD, Okada et al.

TNF successful Okada et al.

CD80 successful Okada et al.

CD86 successful Okada et al.

MS4A1 successful Okada et al.

PRDX5 successful Okada et al.

HPRT1 successful Okada et al.

CAMLG successful Okada et al.

PPP3R2 successful Okada et al.

ELANE successful Okada et al.

DHFR successful Okada et al.

ALOX5 successful Okada et al.

PTGS1 successful Okada et al.

PPARG successful Okada et al.

FKBP1A successful Okada et al.

MTOR successful Okada et al.

JAK1 successful Okada et al.

JAK2 successful Okada et al.

NR3C1 successful Okada et al.

NR3C2 successful Okada et al.

TLR7 successful Okada et al.

TTD, therapeutic target database.

https://doi.org/10.1371/journal.pone.0199530.t005
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Table 6. Direct PPI links of the key molecules with current RA drug targets.

S.No. Key molecule Direct PPI interaction with the RA drug targets

1 PTPN6 JAK1, JAK2, SYK

2 LCK MS4A1, SYK

3 PTPRC JAK2

4 INPP5D JAK1, SYK

5 CD3E SYK

6 CSF2RB JAK2

7 IL2RG IL2

8 MYC CHUK, JUN

9 FOS JUN

10 CCR5 JAK1, JAK2

11 EGR1 JUN

12 FOSB JUN

https://doi.org/10.1371/journal.pone.0199530.t006

Fig 16. The overall strategy used for identifying the key molecules. From the CPPIN network, approximately 20% of the proteins with high scores in each centrality

category were extracted. This resulted in 354 proteins. The differential expression of the genes which encode these proteins was computed in five synovial microarray

datasets. Finally, the genes which are selected in at least three centrality measures and three microarray datasets or two centrality measures and four microarray datasets

were considered the key molecules. This resulted in 24 key molecules. Two of these, SYK and JUN, are already current RA drug targets. Among the remaining, 12 have

direct PPI links to some of the current RA drug targets.

https://doi.org/10.1371/journal.pone.0199530.g016
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herein was to develop a proof-of-principle method for identifying key molecules probably

involved in the pathogenesis of RA. Though some of these molecules are well studied in RA,

yet their crucial involvement in the disease and their amenability for drug discovery needs to

be established.

Conclusions

The present study was focused on developing an approach that can maximize the use of the

publicly available PPI and gene expression profiling data from GEO for identifying key mole-

cules for RA. In this study, a comprehensive RA synovial-specific cytokine signaling network

with 12 cytokines and 8 of their respective transcription factors has been built. Using a novel

approach that combines network centrality measures and differential expression in microarray

datasets, we identified 24 key molecules of this network probably involved in the pathogenesis

of RA. Two of these molecules, JUN and SYK, are already known drug targets for RA. Of the

remaining, 12 have direct PPI links to some of the current drug targets of RA. The scientific lit-

erature also provides evidences for the prominence of some of these 24 molecules in the patho-

genesis of RA. These molecules, seemingly important to the cytokine signaling network, need

to be further studied in order to establish their involvement in the pathogenesis of RA and to

explore their potential for developing new therapeutics.

Supporting information

S1 File. The list of experimental methods used for determining protein-protein interac-

tions in the six databases.

(DOCX)

S2 File. The human PPI database created from the six publicly available protein-protein

interaction databases namely HPRD, BioGRID, IntAct, MINT, STRING and CRG.

(TXT)

S3 File. The list of search terms used in PubMed for retrieving articles which provided

information on active cytokines and their target transcription factors.

(DOC)

S4 File. The intermediate proteins of the shortest paths. The number of occurrences of each

of the intermediates is also mentioned in the file.

(TXT)

S5 File. The edge list of the CPPIN network.

(TXT)

S6 File. An interaction map for 12 cytokines, eight transcription factors and 24 key mole-

cules.

(XGMML)

S1 Table. In addition to 24, 10 other genes showed up in microarray data analysis after

removing RA samples clustered with healthy controls.

(XLSX)

S1 Fig. Hierarchical clustering of RA and control samples based on the gene expression of

selected key molecules in GSE12021 (HGU133B) after removing the RA sample clustered

with the healthy controls.

(TIF)

Key molecules of cytokine network in RA

PLOS ONE | https://doi.org/10.1371/journal.pone.0199530 June 21, 2018 27 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199530.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199530.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199530.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199530.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199530.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199530.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199530.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199530.s008
https://doi.org/10.1371/journal.pone.0199530


S2 Fig. Hierarchical clustering of RA and control samples based on the gene expression of

selected key molecules in GSE12021 (HGU133A) after removing the RA samples clustered

with the healthy controls.

(TIF)

S3 Fig. Hierarchical clustering of RA and control samples based on the gene expression of

selected key molecules in GSE55457 after removing the RA samples clustered with the

healthy controls.

(TIF)
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