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Purpose: To construct a novel radiogenomics biomarker based on hypoxic-gene subset
for the accurate prognostic prediction of clear cell renal cell carcinoma (ccRCC).

Materials and Methods: Initially, we screened for the desired hypoxic-gene subset by
analysis using the GSEA database. Through univariate and multivariate cox regression
hazard ratio analysis, survival-related hypoxia genes were identified, and a genomics
signature was constructed in the TCGA database. Building on this, a hypoxia-gene related
radiogenomics biomarker (prediction of hypoxia-genes signature by contrast-enhanced
CT radiomics) was constructed in the TCIA-KIRC database by extracting features in the
venous phase of contrast-enhanced CT images, selecting features using the mRMR and
LASSO algorithms, and building logistic regression models. Finally, we validated the
prognostic capability of the new biomarker for patients with ccRCC in an independent
validation cohort at Huashan Hospital of Fudan University, Shanghai, China.

Results: The hypoxia-related genomics signature consisting of five genes (IFT57,
PABPN1, RNF10, RNF19B and UBE2T) was shown to be significantly associated with
survival for patients with ccRCC in the TCGA database, delineated by grouping of the
signature expression as either low- or high-risk. In the TCIA database, we constructed a
radiogenomics biomarker consisting of 13 radiomics features that were optimal predictors
of hypoxia-gene signature expression levels (low- or high-risk) in patients at each
institution, that demonstrated AUC values of 0.91 and 0.91 in the training and
validation groups, respectively. In the independent validation cohort at Huashan
Hospital, our radiogenomics biomarker was significantly associated with prognosis in
patients with ccRCC (p=0.0059).
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Conclusions: The novel prognostic radiogenomics biomarker that was constructed
achieved excellent correlation with prognosis in both the cohort of TCGA/TCIA-KIRC
database and the independent validation cohort of Huashan hospital patients with
ccRCC. It is anticipated that this work may assist in clinical preferential treatment
decisions and promote the process of precision theranostics in the future.
Keywords: clear cell renal cell carcinoma, radiogenomics, contrast-enhanced computed tomography, texture
analysis, hypoxia
INTRODUCTION

Recognized as the most common urinary cancer, renal cell
carcinoma was responsible for more than 175,000 deaths
worldwide in 2020 (1, 2). Clear cell renal cell carcinoma
(ccRCC) is the predominant pathological type of kidney
cancer, accounting for approximately 75% of these malignancies
(3). Surgical resection remains the principal treatment for localized
or locally advanced renal cell carcinoma. Although surgically
resected localized renal cancers have a 5-year survival ranging
from 80% - 95%, non-metastatic renal cancers deemed to be high
risk have a probability of recurrence or metastasis as high as 30% -
40%, associated with an extremely high mortality rate (4). In
recent years, due to widespread use of abdominal ultrasound and
CT scans for vague symptoms, an increasing number of
serendipitously discovered, asymptomatic renal cancers have
been diagnosed. As noted previously, with rather wide variability
in the prognosis of individual patients with ccRCC, there is an
urgent need for more precise and readily defined prognostic
parameters to group patients according to disease risk, to
facilitate individualized clinical oncology treatment options.

Tumors are essentially a phenomenon of mutated gene
expression as oncogenes and tumor suppressor genes. Genetic
heterogeneity of cancer cells is the underlying cause for
differences in drug resistance, disease progression, and patient
survival (5–7). In contrast to normal cells, the metabolism of
glucose by clear cell renal carcinoma cells, even in the presence of
sufficient oxygen, is mainly via the glycolytic pathway. This
‘pseudo-hypoxia’ was found to be associated with the presence
of genetic mutations and deletions in the majority of ccRCC.
Hypoxia-inducible factor (HIF)-induced gene mutations
promote tumor angiogenesis, metabolic reprogramming, and
cancer cell proliferation (8–10). Most HIF targeted-genes are
involved in hypoxic responses, and the expression status of
hypoxia-related genes exerts a significant impact on the
prognosis of patients with ccRCC (11, 12). Although a number
of genetic mutations have been found in ccRCC (PBRM1, BAP1,
SETD2, and KDM5C), effective and definitive genetic prognostic
markers for gene expression in kidney cancer patients are
lacking. Additionally, small specimens obtained by puncture
biopsy do not accurately reflect the heterogeneity of gene
expression across the entire tumor. Reliable information on
tumor gene expression is usually obtained by genetic
sequencing of surgically resected specimens. Highly invasive
and costly for patients, they are not currently available on a
large scale and lack universal prognostic guidance.
2

Radiogenomics is a promising technology in cancer-related
research. Based on the use of automated, high-throughput
feature extraction methods, it can provide insight into the
occurrence, development and heterogeneity of tumors by
deeply mining the biological nature of medical images and
integrating them with genomic data (13). Likewise, this
technique is potentially exceptionally promising for linking
highly reproducible, non-invasive imaging features with the
disease gene expression profile that is distinctly associated with
a clinically meaningful prognosis (14). In recent years,
radiogenomics has been reported covering a wide range of
tumors, encompassing gene sequences, gene expression,
molecular subtypes, and tumor heterogeneity (15–17),
effectively providing direction for the formulation of clinical
treatment plans, particularly devised for the individual patient.

The current study focused on an important prognostic factor
in ccRCC: the association between hypoxia-related gene
expression and the prognosis of patients with clear cell renal
cell carcinoma. The intent was to develop a prognostic
radiogenomics biomarker for ccRCC employing the TCIA-
KIRC database, then utilizing radiomics to reflect the
expression levels of hypoxia-associated gene subsets through
contrast-enhanced CT features, and ultimately validating
radiogenomics biomarker on a cohort of ccRCC patients from
the Huashan Hospital dataset.
MATERIALS AND METHODS

Datasets
The workflow of the study is depicted in Figure 1. The study
included three cohorts. Cohort 1 contained transcriptome
profiles and corresponding clinical data from TCGA-KIRC
with the exception of TCIA, and was divided into training and
validation groups. It was used to construct a prognostic risk
model and determine the prognostic factors that contributed to
hypoxia-related gene mutation. This cohort initially included 318
samples; 41 samples were excluded as there were either no
clinical reports or insufficient survival data, leaving 277
samples for analysis. For Cohort 2, clinical and pathological
information (including gender, age, T stage, M stage, Stage,
Grade) as well as imaging and genetic data were obtained from
The Cancer Genome Atlas (TCGA) study website. Multi-
institutional medical imaging data were retrospectively
obtained from The Cancer Imaging Archive (TCIA) renal clear
October 2021 | Volume 11 | Article 739815
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cell carcinoma database. The data were collected with the
permission of each institution’s ethics review committee and
de-identified in accordance with the Health Insurance Portability
and Accountability Act (HIPAA). Cohort 3 comprised subjects
from Huashan Hospital, Fudan University, and the institutional
review board approved the study and waived informed consent.
Patients diagnosed with ccRCC who had undergone surgical
resection with confirmatory pathology between January 2013
and December 2017 were considered for this retrospective study.
The optimized risk prediction model based on genomic data was
investigated in Cohort 1, and Cohort 2 was used to explore the
relationship between hypoxic-related intratumor heterogeneity
and the imaging signature. Cohort 3 was used to assess and
validate the performance of the radiogenomics prognostic model.
Imaging Protocol
Cohort 2 initially included 245 patients for whom preoperative
baseline abdominal CT or MRI examinations for ccRCC were
available. Variations in imaging data in terms of examination
modality, machine manufacturer and image acquisition protocol
were taken into account. The data were screened according to both
inclusion and exclusion criteria. Inclusion criteria included the
following: (1) definite postoperative pathology of clear cell renal cell
carcinoma with TNM stage; (2) complete imaging data on
preoperative enhanced CT or MR scans, with image layer
thickness <5 mm, tube voltage 120 KV, and matrix 512*512; and
(3) clearly identifiable malignant lesions in the renal parenchymal
phase on enhancedCT images. Exclusion criteria included: (1) poor
quality enhanced CT images or significant artifacts affecting the
region of interest; or (2) inability to successfully extract radiomics
features from enhanced CT images. The detailed inclusion
procedure is depicted in Figure S1.

In Cohort 3, CT examinations of all patients were performed
using a 256-row CT system (Brilliance iCT, Philips Medical
Systems, The Netherlands). All renal CT images were acquired
Frontiers in Oncology | www.frontiersin.org 3
using a standard three-phase scanning protocol, with parameters
as follows: 120 kV; 150-200 mA; rotation time, 0.5-0.75 s;
collimation, 128 × 0.625 mm; matrix, 512 × 512; and slice
thickness, 1.5 mm. Patients were scanned in the supine
position with breath held, inclusive from the top of the
diaphragm to the lower edge of the kidney. The abdomen was
first scanned, and the enhanced scan utilized a high-pressure
syringe injection of a non-ionic contrast agent (1.5 ml/Kg, 3.0
ml/s), with scans at 30 s, 90 s and 300 s following injection to
obtain cortical, parenchymal and excretory phase images,
respectively. The inclusion and exclusion criteria for Cohort 3
were the same as for Cohort 2.

Cohort 2 initially included 136 samples as a training group
from which exclusions included 11 with no obvious tumor, 8 due
to poor imaging quality, and 25 with incomplete enhanced CT
data. There were 127 males and 67 females with a mean age of
60.45 ± 11.64 years (range, 34 to 88 years). Cohort 3 served as a
validation group, derived from Huashan Hospital as an
independent prognostic testing dataset. Of 58 initial samples, 8
were excluded due to incomplete enhanced CT imaging data,
leaving 50 samples as the final cohort (29 males and 21 females;
mean age, 62.9 ± 12.17; range, 33 and 87 years).
Construction of the Hypoxia-Related
Genomics Prognostic Model
The transcriptome data and the corresponding clinical survival
data (including age, gender, grade, TMN) of the patients with
ccRCC were obtained from the TCGA (https://portal.gdc.cancer.
gov/). The hypoxic-associated genes were then obtained from
GSEA. Univariate Cox proportional hazard regression analysis
collected the candidate hypoxia-related genes, which
significantly associated with the overall survival by using R-
package “survival” (P < 0.05). Prognostic hypoxic-related genes
were divided into risk related genes (hazard ratio, HR >1) and
protective related genes (HR <1). The risk score for each patient
FIGURE 1 | Workflow of the research.
October 2021 | Volume 11 | Article 739815
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was then calculated using a linear combination of characteristic
gene expression, with characteristic gene expression weighted by
their regression coefficients = (expression 1× coefficient gene
1) +(expression 2× coefficient gene 2) +… +(expressing 1×
coefficient gene). Patients with ccRCC were divided into high-
risk and low-risk groups according to the median risk score.

Image Processing and Region of
Interest Sketching
In Cohorts 2 and 3, the enhanced CT image data were
normalized and resized using the z-score method and the
mean normalization method. Parenchymal phase CT images of
each patient were used for radiomics feature extraction. For each
image sequence, a radiologist (14 years of abdominal imaging
experience) segmented the lesion contours on each slice using an
open-source software (3D Slicer version 4.11.0; Boston, MA).
Radiomic features were extracted for each stage of the 3D volume
with a python-based radiomics software (Pyradiomics version
3.0.0; https://github.com/Radiomics/pyradiomics) (18). The
extracted features are included in Supplementary Materials I.

Intra-class and inter-class correlation coefficients (ICC) were
used to assess the reliability of the extracted features. A random
selection of 50 patients underwent repeat region of interest (ROI)
segmentation performed by the same and an additional
radiologist (7 years of abdominal imaging experience) 30 days
after the initial segmentation. Relevant clinical and pathological
information was blinded to the radiologists.

Radiogenomics Signature Building
In Cohort 2, the extracted radiogenomics features were identified
according to the following consecutive steps to construct the
radiogenomics model. Initially, features with both intra- and
inter- ICC greater than 0.75 were filtered out. Feature
dimensionality reduction was further accomplished using the
mRMR (minimum Redundancy, Maximum Relevance) method
and the Least Absolute Shrinkage and Selection Operator (LASSO)
algorithm to select the most optimal and robust features. These
features were then combined with their coefficients in the LASSO
regression to construct radiogenomics feature labels: Radscores.
TheMann-WhitneyU testwasused to assess the abilityof thenewly
created radiogenomics marker to group patients with different
hypoxia gene set expression levels into low- or high-risk groups.
Wealso usedROCcurves and area under the curve (AUC)values to
evaluate its performance.

We also combined the constructed radiogenomics biomarker
with clinical and pathological factors to construct a nomogram
which better visualizes the model and increases the reliability and
predictive power. First, univariate cox regression analysis was
performed for each clinical, pathological variable and
radiogenomics biomarker, and then variables with P<0.05 in
the univariate analysis were included in the multivariate Cox
proportional risk model to determine the independent predictors
of overall survival (OS). In the multivariate Cox regression, a
combined model which consisting radiogenomics biomarker and
other useful clinical and pathological factors was built by
backward stepwise selection according to the Akaike
Frontiers in Oncology | www.frontiersin.org 4
Information Criterion (AIC), and a nomogram was
constructed using R software. Internal validation of the
predictive performance of the nomogram was carried out by
1000 resampling with the boots-trap method. ROC curves
(1-year, 3-year and 5-year survival) were applied for evaluation.
In addition, calibration curves were plotted to ensure the goodness
of fit and reliability of the nomogram.

Radiogenomics Signature Validation
For further validation of the prognostic predictive power of our
radiogenomics signature for ccRCC, we used Cohort 3, using the
same steps as described previously for image acquisition and
radiogenomics features extraction to produce the final
radiogenomics scores. Kaplan-Meier curves were produced for
overall survival of the patients based on this label, and the log-
rank test was used to determine whether the new marker was
successful in stratifying the prognosis of the patients. Hazard
ratios (HR) and their 95% confidence intervals were obtained to
assess survival differences between stratified groups. Univariate
Cox regression models were used to further identify whether the
radiogenomics signature were independently associated with OS.

Statistical Analysis
Cohort 1 comprised a training cohort (n=139) and a validation
cohort (n=138) for which risk scores were calculated. Using
univariate Cox proportional hazard regression analysis, based on
the median risk score, the patients in the training cohort were
divided into low- and high-risk groups, and the differences
between the groups were evaluated and verified. The same
approach was performed in the validation cohort, again
separating patients into low- and high-risk groups. The
radiogenomic features were then collected from the enhanced
CT images to determine the relationship between the imaging
report and the genome subcloning, intended to predict the
patient survival. Finally, we evaluated the prognostic
performance of the radiogenomics signatures on the Cohort 3
dataset with enhanced-CT and matched survival data.

The risk model based on hypoxia-related genes proved to be an
independent prognostic factor by univariate and multivariate Cox
proportional hazard regression analysis. Kaplan-Meier survival
curves were constructed to evaluate differences of overall survival
between groups. ROC (receiver operating characteristics) curve
analysis was performed to evaluate the prediction performance of
the risk model and the combined nomogram. Calibration curves
were plotted to assess the accuracy and reliability of the combined
nomogram. Two-tailed p-values of less than 0.05 were considered
statistically significant. Statistical analyses were all performed on R
software (version 3.6.3).
RESULTS

Phase1: Training of Hypoxia-Related
Genomic Subclone Model in Cohort 1
In the present study, the risk model was constructed to evaluate
hypoxia-related gene status of patients with ccRCC. Initially, a
October 2021 | Volume 11 | Article 739815
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univariate Cox analysis screened prognostic-related hypoxia genes.
Then the LASSO Cox regression algorithm was performed to
identify the most valuable prognostic hypoxia-related genes with
non-zero regression coefficients (Figures 2A, B). This produced 5
gene signatures and the risk score of each patient was calculated by
performing multivariate Cox analysis. IFT57 and RNF19B were
identified as low-risk prognostic genes whereas PABPN1, RNF10
and UBE2T were considered high-risk prognostic factors
(Figures 2C, D). The detailed information regarding the selected
genes are shown in Table 1. The Risk score = (0.0234×expression
of RABPN1) + (0.0670×expression of RNF10) + (0.0890×
expression of UBE2T) – (0.0924×expression of IFT57) –
(0.0432×expression of RNF19B). The risk model could be clearly
separated from the PCA (Principal Component Analysis) analysis
and the genomic signature established was independently
correlated with the survival of ccRCC patients (Supplementary
Materials II). The distribution of the risk scores as well as the
relationship between the risk scores and survival data are
illustrated in scatterplots (Figures 3A, B). Each of the patients
with ccRCC was allocated into either a low- or high-risk group
according to the median risk score. To comprehensively evaluate
the prognostic value of these five gene signatures in the training
group, Kaplan-Meier survival curves demonstrated that the
Frontiers in Oncology | www.frontiersin.org 5
patients in the high-risk group had a significantly shorter overall
survival compared to patients in the low-risk group. These results
were verified by the K-M survival curves in the validation set
(Figures 3C, D).

To further determine whether the risk-score constituted an
independent prognostic factor that correlated with poor
prognosis in patients with ccRCC, we performed both
univariate and multivariate Cox proportional hazards
regression analyses in both the training and validation sets.
These revealed that age, stage, and Risk score were significantly
associated with the OS of patients with ccRCC in the training set.
Critically important, in the validation set, only the Risk score
proved to be significantly associated with OS of patients with
ccRCC (Figure S2). The correlation between the prognostic
genes and pathology is shown in Figure 4.

Phase 1: Validation of the Hypoxia-Related
Genomics Model in Cohort 2
Based on the hypoxia-related prognostic genes obtained by the
above method, we divided Cohort 2 into high- and low-risk
groups according to the median value of the Risk score. The low-
risk group had a lower death rate and longer survival
(Supplementary Materials IV). The K-M survival curves
TABLE 1 | Identification of prognostic hypoxia-related genes in the multivariate cox regression.

Hypoxia-related genes Coef HR HR.95L HR.95H Cox p-value

IFT57 -0.092391582 0.911748056 0.840186788 0.989404414 0.026733824
PABPN1 0.023407623 1.023683732 0.995610475 1.052548572 0.098966027
RNF10 0.066942512 1.069234008 1.010052418 1.131883201 0.021208353
RNF19B -0.043239752 0.957681757 0.907947788 1.010139965 0.112021756
UBE2T 0.089040247 1.093124651 1.001637183 1.192968395 0.04586362
Oc
tober 2021 | Volume 11 | A
A B
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FIGURE 2 | (A, B) After univariate logistic regression, the LASSO regression algorithm was performed to further identify the most valuable prognostic hypoxia-
related genes with non-zero regression coefficient. (C) The heatmap of hypoxia-related prognostic genes expression level. (D) The high-risk hypoxia-related
prognostic factors selected by multivariate Cox analysis.
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indicated that the Risk score was inversely correlated with length
of survival (Figure 7A). The AUC of the ROC curve of
the risk model for overall survival is included in the
Supplementary Materials.

Phase 2: Radiomics Feature Selection,
Construction of the Radiogenomics
Biomarker and Combined Nomogram
In Cohort 2, 136 patients were randomized to the training
cohort. Enhanced CT images of the renal parenchymal phase
Frontiers in Oncology | www.frontiersin.org 6
from these patients were used to extract radiomics features,
starting with 1218 radiomics features. An initial screen of
intra- and inter-group ICC > 0.75 reduced the number to 827
features. The mRMR algorithm further downscaled the number
of features to 30, following which the most dynamic and relevant
features were finally selected for modeling using LASSO
regression (Figure 5A). The 13 optimal features were
combined by multivariate logistic regression for the expression
status of the hypoxic gene subgroup, thereby constructing a
radiogenomics signature, expressed as radiogenomics score.
A B

DC

FIGURE 4 | The correlation between the hypoxia-related prognostic genes and clinical pathological, such as Grade (A, C) and Stage (B, D), in the training cohort.
A B

DC

FIGURE 3 | The distribution of the risk scores as well as the relationship between the risk scores and survival status in the training cohort (A) and validation cohort
(B).The result of K-M analysis for the hypoxia-related risk model in the training cohort (C) and validation cohort (D).
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Details of the included radiomics features are shown in
Figure 5B. The specific formulae for radiogenomics scores are
presented in Supplementary Materials III.

We then constructed a combined model incorporating
clinical and pathological factors as well as the radiogenomics
biomarker. Univariate Cox regression analysis showed that T-
stage, M-stage, Grade, Stage and radiogenomics biomarker were
associated with survival (P<0.05), and these five factors were
included in the multivariate Cox regression. After backward
stepwise selection, T stage, M stage, Grade and radiogenomics
biomarker formed the final combined nomogram (Figure 5E). T
stage (HR=2.33, P=0.02) and radiogenomics biomarker
(HR=1.81, P=0.03) were shown to be independent predictors
of survival (Table 2).

Phase 2: Radiogenomics Model and
Combined Nomogram Evaluation
The Mann-Whitney U test vividly demonstrates the ability of the
radiogenomics signature to group hypoxic gene subsets, as
depicted in a violin plot (Figure 5C). Shown in Figure 5D,
this Radiogenomics score in the ROC curves discriminated well
between high- and low-risk groups for the subset of hypoxia
genes. The AUC values of the ROC curves reached 0.91 in the
training group and 0.91 in the validation group.

The ROC curve demonstrated that the combined nomogram
incorporating clinical and pathological factors and the
radiogenomics biomarker was effective in predicting 1-year, 3-
year and 5-year survival rates (AUC=0.789, 0.782, 0.731
respectively) in cohort 2 (Supplementary Materials V). It
Frontiers in Oncology | www.frontiersin.org 7
could further improve the predictive effectiveness of the model
compared to the Radiogenomics biomarker alone. In addition,
the calibration curves of the nomogram for predicting survival
are close to the “actual curves” (Supplementary Materials V),
indicating that the model fits well and is reliable.

In addition, the GSEA demonstrated that linoleic acid/alpha
linolenic/glycerophospholipid metabolism and oxidative
phosphorylation were significantly enriched in the high-risk
model, whereas tight/adherens junction, renal cell carcinoma,
ERBB signaling pathway, and the TGF beta signature pathway
were enriched in the low-risk model. (Figure 6)

Phase 3: Validation of the Prognostic
Predictive Performance for the
Radiogenomics Biomarker
For the independent validation group, extraction of radiomics
features needed to construct the radiogenomics model, and the
radiogenomics score were determined for each patient in like
manner to the techniques reviewed previously. Based on the best
cut-off values of the radiogenomics scores in Cohort 2, 14
patients were included in the predicted-high risk group of
hypoxic gene subset, while 36 patients were included in the
low-risk group.

The results demonstrated that the radiogenomics signature
was associated with overall survival (P <0.01) (Figure 7B).
Univariable Cox regression analysis revealed that the
radiogenomics biomarker proved to be an independent
preoperative prognostic factor in patients with ccRCC
(HR=1.57, P <0.01).
A B

D

E

C

FIGURE 5 | The Lasso regression procedure to select the optimist radiomics features (A). Features selected for hypoxia-related radiogenomics model construction
(B). The violin plots of the radiogenomics model in the training cohort and the validation cohort (C). ROC curves shows that the radiogenomics biomarker could
exactly distinguish patients into high- an low- hypoxia-related genomics grouping both in the training cohort and validation cohort (D). (E) Nomogram of the model
incorporating radiogenomics marker and other effective clinical and pathological information through Cox regression. ****p < 0.001.
October 2021 | Volume 11 | Article 739815
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DISCUSSION

In this study, we focused on establishing the relationship between
hypoxia gene expression and prognosis of patients with ccRCC.
Our data confirmed that high- and low-risk grouping of hypoxia
genes were significantly associated with prognosis. Furthermore,
a non-invasive, efficient assessment of the expression level of
Frontiers in Oncology | www.frontiersin.org 8
hypoxic gene sets was performed utilizing a radiomics approach.
Finally, this association of genomics and radiomics was verified
in the validation set of ccRCC patients, and survival statistics
established that our radiogenomics biomarker was capable of
stratifying the prognosis of ccRCC patients. In addition, we
combined A with validated clinical and pathological factors to
build an integrated model and visualized it by means of a
FIGURE 6 | Functional analysis of the risk model. GSEA analysis between high- and low-risk in TCGA. NES, normalized enrichment score; Nom, nominal; FDR, false
discovery rate.
TABLE 2 | Uni- and multivariable cox regression analysis of predictors of overall survival in cohort 2.

Factors Univariate Analysis Multivariate Analysis

Hazard Ratio (95%CI) P Value Hazard Ratio (95%CI) P Value

Age 1.41 (0.84,2.36) 0.19 NA NA
Gender 1.36 (0.81,2.28) 0.25 NA NA
T stage 3.97 (2.27,6.94) <0.01 2.33 (1.21,4.50) 0.02
M stage 3.94 (2.30,6.76) <0.01 1.67 (0.87,3.24) 0.12
Grade 2.28 (1.57,3.30) 0.03 1.42 (0.93,2.18) 0.10
Stage 3.17 (2.05,4.92) <0.01 NA NA
Radiogenomics biomarker 2.46 (1.45,4.19) <0.01 1.81 (1.04,3.14) 0.03
October 2021 | Volume 11 | Article
NA, not available.
A B

FIGURE 7 | The K-M analysis showed that the established radiogenomics biomarker could successfully divide ccRCC patients in to high- and low-risk, and
possessing effective prognostic predictive ability both in the TCIA-KIRC (A) database and Huashan validation database (B).
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nomogram, further improving the reliability and predictive
efficacy of the model. The reliability of the radiogenomics
biomarker as an independent prognostic marker for ccRCC
was further demonstrated in the multivariate COX regression.
It would seem appropriate for this biomarker to serve as a non-
invasive prognostic marker for ccRCC that could facilitate
individualized, potentially targeted treatment of tumors.

A high frequency of VHL gene mutations has been observed in
up to 80% of ccRCC. The function of the VHL protein (pVHL) has
been well analyzed (9, 10). pVHL contributes to the ubiquitination
and degradation of hypoxia-inducible factor (HIF), a transcription
factorofVEGF, underhypoxic conditions. In contrast,mutations in
the VHL gene lead to reduced degradation of HIF, and may lead to
VEGF overexpression and angiogenesis, which in turn lead to the
developmentof ccRCC.Therefore, the expression levels of hypoxia-
associated gene sets are significantly associated with the prognosis
of patients with ccRCC (19–21). Intratumoral heterogeneity has
been cited as a cause of prognostic differences of individual patients,
which is reflected by gene expression data. Methods currently in
common use to describe tumor heterogeneity include genetic
testing and histopathology. Such approaches confirm the
heterogeneity of cancer at the genetic level and can yield greater
insight into the establishmentof effective treatments.However, they
are often expensive and invasive. Moreover, the biological
characteristics of the excised tumor tissue may differ somewhat
from the tumor as a whole, thereby misrepresenting the actual
tumor hypoxic gene expression.

Surgery remains the preferred treatment modality for limited
kidney cancer as it lacks sensitivity to conventional radiotherapy
and chemotherapy. For inoperable patients with intermediate to
advanced ccRCC, targeted therapies and immunotherapy are often
recommended. However, the heterogeneity of tumors between
patients leads to extremely variable treatment responses, and
current clinicopathological markers such as Fuhrman grading
and TNM staging do not adequately or effectively reflect these
biological differences. Clearly, novel independent prognostic
biomarkers are needed to predict prognosis of ccRCC (22, 23).
Genetic mutations are the principal initiators of tumor cell
heterogeneity, and variations in the tumor gene set will continue
to accumulate further altering the genetic profile. Therefore, many
studies have been conducted to establish genetic biomarkers to
predict the prognosis of ccRCC, and these markers have been
associated with various physiological changes in the tumor, such
as immune infiltration and metabolic changes, and have achieved
good predictive results (24–26). Among these, hypoxia-associated
genes have been important factors in the development of KIRC as
well as predicting prognosis. An alternative method for this type of
research is the use of gene chips, but their cost limits clinical
application, and there remains a need for efficient, non-invasive
and cost-effective clinical biomarkers.

In recent years, with the deep application of artificial intelligence
in the field of image processing, radiomics has developed rapidly.
Despite tumor imaging being principally limited to morphological
features in routine clinical practice, the ability of imaging to provide
a comprehensive view of the spatial-temporal heterogeneity of
individual tumors is unmatched by other biomarkers and
Frontiers in Oncology | www.frontiersin.org 9
examination modalities. Radiomics can provide non-invasive
tools to study tumor biology, capture tumor heterogeneity, and
monitor tumor evolution and response to treatment. There have
been numerous radiomics studies applied to the differential
diagnosis, molecular typing and prognostic prediction of ccRCC
(27–29). Unfortunately, neither the computational features
extracted by traditional radiomics using machine-learning
methods, nor the “black-box” selection of deep learning methods
can explain the function of radiomics for the prediction of clinical
events. The interpretability of these methods is not strong, and in
particular, explanations of the underlying biological andmolecular
mechanisms are lacking. In contrast, radiogenomics profoundly
reflects the nature of tumor heterogeneity and fully explains the
latent causes affecting prognostic survival. Both excellent predictive
results are achieved through radiogenomics approaches and the
biology of this novel biomarker can be summarized in terms of the
essence of cancer pathogenesis: relevant gene mutations, thus
effectively improving the interpretability of the model and
facilitating its future clinical application.

This study has some limitations: (1) the TCIA database
contains imaging data from multiple centers with various
imaging machines and image acquisition protocols. Although
strict inclusion and exclusion criteria were used and the model
was validated in an independent center, the results need to be
further investigated in future clinical trials in more centers.
(2) The region of interest was extracted in the venous phase
and segmented manually during the radiomics feature extraction
process, which may lack the heterogeneity of tumor features
embedded in other phases of CT scans and may have some
selection bias. (3) Different combinations of machine learning
algorithms other than multivariate logistic regression and COX
regression need to be considered in the future to integrate and
optimize the best models for more effective feature selection and
to improve model prediction performance. (4) More clinical and
pathological factors may need to be incorporated in the future to
improve the predictive power and reliability of the model.
CONCLUSIONS

In this study, a novel radiogenomics biomarker based on the
expression of hypoxic gene subset was developed for the accurate
prediction of prognosis in ccRCC. This new biomarker achieved
good survival prediction in both the training set of TCIA/TCGA
and the independent validation set of Huashan hospital and may
assist in clinical preferential treatment decisions for ccRCC in the
future and promote the process of precision prognosis
and treatment.
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