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Abstract 

Background:  Identification of motifs and quantification of their occurrences are 
important for the study of genetic diseases, gene evolution, transcription sites, and 
other biological mechanisms. Exact formulae for estimating count distributions of 
motifs under Markovian assumptions have high computational complexity and are 
impractical to be used on large motif sets. Approximated formulae, e.g. based on com-
pound Poisson, are faster, but reliable p value calculation remains challenging. Here, 
we introduce ‘motif_prob’, a fast implementation of an exact formula for motif count 
distribution through progressive approximation with arbitrary precision. Our imple-
mentation speeds up the exact calculation, usually impractical, making it feasible and 
posit to substitute currently employed heuristics.

Results:  We implement motif_prob in both Perl and C+ + languages, using an effi-
cient error-bound iterative process for the exact formula, providing comparison with 
state-of-the-art tools (e.g. MoSDi) in terms of precision, run time benchmarks, along 
with a real-world use case on bacterial motif characterization. Our software is able to 
process a million of motifs (13–31 bases) over genome lengths of 5 million bases within 
the minute on a regular laptop, and the run times for both the Perl and C+ + code 
are several orders of magnitude smaller (50–1000× faster) than MoSDi, even when 
using their fast compound Poisson approximation (60–120× faster). In the real-world 
use cases, we first show the consistency of motif_prob with MoSDi, and then how the 
p-value quantification is crucial for enrichment quantification when bacteria have dif-
ferent GC content, using motifs found in antimicrobial resistance genes. The software 
and the code sources are available under the MIT license at https://​github.​com/​DataI​
ntell​SystL​ab/​motif_​prob.

Conclusions:  The motif_prob software is a multi-platform and efficient open source 
solution for calculating exact frequency distributions of motifs. It can be integrated 
with motif discovery/characterization tools for quantifying enrichment and deviation 
from expected frequency ranges with exact p values, without loss in data processing 
efficiency.
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Background
Motif discovery and characterization are important for the study of gene evolution, 
duplication, transcription sites, and protein identification [1], as well as of genetic dis-
eases caused by unstable repeat expansion [2, 3].

Several tools have been developed for de novo motif discovery [4–6]—including dis-
criminative regular expression motif elicitation (DREME), hypergeometric optimization 
of motif enrichment (HOMER), multiple expectation maximizations for motif elicita-
tion (MEME), the memetic framework for motif discovery (MFMD), peak-motifs, prosa-
mpler, regulatory sequence analysis tools (RSAT), Trawler Web, and Weeder—either 
generic or specialized, e.g. for ChIP-seq data [7–15].

Assessing the statistical significance of motif enrichment is a fundamental and chal-
lenging step of motif discovery, and can severely hamper downstream analytics. Kiesel 
et  al. [16] pointed out that p values “Small enrichment factors can occur frequently in 
practice simply due to an imperfect background model that slightly underestimates the 
expected frequency of occurrence”. In addition, p values are crucial not only in the dis-
covery phases, but also in motif comparison and motif-motif similarity studies [17]. 
The classical definition of the motif enrichment problem (in terms of differences among 
motifs occurrences within background genome contents) has been proven to be NP-hard 
[18]. The p value calculation is not straightforward, and requires making assumptions on 
a background model of base frequencies and co-occurrence in order to derive a distribu-
tion of motif occurrences in reference genomes [19]. Several formulae—approximated 
and exact—and algorithms for estimating motif count distributions have been devised 
and implemented [20–28]. Exact formulae for estimating count distributions of motifs 
under Markovian assumptions have high computational complexity and are impractical 
to be used on large data sets. Approximated formulae, e.g. based on compound Poisson, 
are faster, but reliable p value calculation remains challenging [19, 25]. Thus, methods 
for p value estimation can be a bottleneck in large-scale projects. HOMER, Weeder and 
Peak-motifs do not report motif statistical significance, MEME uses an approximation 
approach (very conservative), later improved by DREME and the new simple, thorough, 
rapid, enriched motif elicitation (STREME) [10, 15], and MFMD uses information con-
tent score and complexity scores [29].

A software that provides a comprehensive occurrence and probability estimation is 
the bioinformatics toolkit for Motif Statistics and Discovery (MoSDi) by Marschall [30], 
written in Java, featuring models based on the approximated compound Poisson and nth 
level Markov order, as well as (quasi-)exact combinatorial formulae to reduce computa-
tional complexity (https://​bitbu​cket.​org/​tobia​smars​chall/​mosdi). Another tool is motif-
counter [31], an R-Bioconductor library implementing existing methods [27, 32], as well 
as an improvement on the compound Poisson model. One limitation of these programs 
is that calculation of occurrence distribution—even using the fast compound Poisson—
becomes impractical with longer motifs (10+) and longer reference genomes (millions 
of bases), besides large motif datasets.

Prosperi et al. [28] provided an exact formula for counting the distribution of strings 
that do not overlap with themselves (i.e. non-clumpable), coupled with a mathematical 
demonstration of its validity, under both Bernoullian and Markovian assumptions. The 
calculation of the formula was exponential in the genome length by the length of the 

https://bitbucket.org/tobiasmarschall/mosdi
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motif, but the authors demonstrated that it could be calculated efficiently within an arbi-
trary tolerance level.

This software article describes “motif_prob”, a count distribution tool suitable for 
long motifs and long reference genomes, implementing the exact method by Prosperi 
et al. [28] with the efficient error-bound algorithm. In addition to the relevance of this 
software piece for large-scale processing, another motivation for our work is that the 
majority of probability distribution or p value calculators, even the most recent ones, 
use heuristics. To our knowledge, the formula by Prosperi et al. is still among the most 
efficient for exact calculation. The proposed motif_prob implementation thus makes 
exact quantification suitable with large scale projects, and posits to substitute currently 
employed heuristics. We compare motif_prob with other tools in terms of run time and 
precision, showing that its exact algorithm is several orders of magnitude faster even 
than the approximated methods, and finally we describe use cases for long motifs in 
bacteria.

Methods
Theoretical formulation

The exact formula by Prosperi et al. [28], for the calculation of the frequency distribu-
tion j of a string of length m within a text of length n (m < n) over alphabet k, under the 
Markovian model, is

where P(S) = P(a1) · P(a2 | a1) · … · P(am−1 | am), P(S0,n) = P(S0,n−1) − P(S) · P(S0,n−m), 
S0,n = S0,n−1 · k − P(S) · km · S0,n−m, d1 … dj+1 are the lengths of the j + 1 segments where 
the j strings divide the text of length n in exact configurations with d1 + ··· + dj+1 = n − mj, 
and

Formula (1) has a complexity of O(nj), which becomes quickly intractable. However, 
by defining R = P(S0,n+1)/P(S0,n) as a constant, Prosperi et al. show that for any positive 
(arbitrarily small) number ε, there is an index ηε such that for every η > ηε then

By using this approximation, the summation of the original formula can be reduced to 
a single step, and calculations can be stopped when the ratio P(S0,n)/P(S0,n−1) reaches a 
desired level of tolerance ε. Specifically, after plugging the iterative approximation (3) in 
(1), we obtain the final formula

We note that P(j, m, n) is the same irrespective of the position of the nucleotides in a 
query string, e.g. AACCC and CCCAA have the same probability. This property permits 
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to extrapolate a probability for clumpable strings by permutation, e.g. ACCA into 
CCAA, although the value is not guaranteed given possible overlap. Another way is to 
replace the first or the last character with another one that has the same frequency. All 
details on the derivation of the exact formula and the proof for its progressive approxi-
mation, along with comparison against other state-of-art algorithms, can be found in the 
original work by Prosperi et al. [28].

Implementation

Two different implementations are produced: one in Perl and another in C++. Both 
programs take the same input and parameters, namely: (1) a query string or multiple 
strings to be analyzed; (2) the length of the reference genome; and (3) the nucleotide fre-
quencies of the genome. In alternative to the genome length and nucleotide frequencies, 
a FASTA file containing the genome string can be passed as input to the program. The 
output file reports—for each motif—the count distribution and other summary informa-
tion including a flag for clumped strings, string probability, and statistics on the preci-
sion and tolerance levels.

Since the computational complexity of the formula is exponential, motif occurrences 
are calculated at increasing counts until the occurrence probability becomes lower 
than given a tolerance level ε, or the upper limit of counts j is reached. We also con-
trol estimates at each iteration in order to avoid issues with floating point operations 
when frequency/length ratios diverge, and to handle relatively ill-posed configurations. 
Given the motif m and genome g lengths, one can set a tolerance level ε such that P(0, 
m, n) > (1 − ε), and in general each case where (1 − P(S))(m−m+1) > (1 − ε). This is equal to 
(n − m + 1)∙log(1 − P(S)) > log(1 − ε), which implies n > m − 1 + log(1 − ε)/log(1 − P(S)). In 
the source code, we have set ε to 10−7 and j to 500. Further, we implement the calcula-
tion of the expected number of strings and the motif ’s (stationary) occurrence probabil-
ity at any text position, according to Robin et al. [33].

Figure  1 provides a flowchart of the data processing pipeline, showing the required 
input specifications, the method’s internal parameters, and the output fields.

The source code, documentation, sample datasets, and executable files are available 
under the MIT license at https://​github.​com/​DataI​ntell​SystL​ab/​motif_​prob.

Results
An example of the occurrence distribution for motif query sequences of length 6, calcu-
lated on a randomly generated genome of 20,000 bases, varying the nucleotide frequen-
cies, is illustrated in Fig. 2. The difference between the equiprobable base and the more 
general case is evident and demonstrates how the background distribution affects the p 
value calculation (see real-world use case after the benchmarks).

Table 1 shows run time benchmarks on different motif length and motif set size con-
figurations, executed on a laptop machine with Intel(R) Core(TM) i9-10885H CPU @ 
2.4 GHz, 32 GB RAM. Both the Perl and the C++ programs exhibit run times several 
orders of magnitude smaller than MoSDi, even when the latter is executed with the fast 
compound Poisson approximation. We set a maximum processing time of 30  min for 
datasets up to 400,000 motifs, and MoSDi can process them only with smaller values of 
k and the approximated model, while the exact model is not feasible for most of datasets. 

https://github.com/DataIntellSystLab/motif_prob
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The C++ implementation is the fastest, and the expected run time increase due to 
higher motif lengths is well compensated by the implementation setup.

In terms of precision, we compare the exact probability values yielded by our program 
with both the compound Poisson and the exact estimates of MoSDi (allowing it to switch 
automatically to standard/doubling algorithms to improve run time). As previously 
described, usually the largest errors appears near the probability mass points [28]. For all 
motif lengths combinations of 4 bases, over a 10,000 bases reference genome, on aver-
age the peak probability values of MoSDi and motif_prob exact differ by two orders of 
magnitude, e.g. if the peak probability is in the range of 10−2 then the observed absolute 
difference is 10−4. The difference with the compound Poisson approximation is larger, 
on average double than the exact, but the relative ratio it is still one-two orders of mag-
nitude smaller than the actual values. The difference becomes smaller as the sequence 
lengths increase.

We further test the concordance among MoSDi and motif_prob using a real motif 
dataset, the library of DNA-binding site matrices for Escherichia coli (https://​arep.​med.​

Fig. 1  Flowchart of the data processing pipeline for motif_prob, with input/output specifications and 
program parameters

Fig. 2  Application output for motif sequences of length 6 over a genome of length 20,000, and different 
nucleotide frequencies

https://arep.med.harvard.edu/ecoli_matrices/
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harva​rd.​edu/​ecoli_​matri​ces/), which contains 802 motifs from 67 housekeeping genes 
for a median motif length of 26 (interquartile range, IQR 20–29). We consider motifs 
length within 20 bases to be able to estimate non-near-zero probabilities on the genome 
length of Escherichia coli. The final set includes 230 motifs with a median length 16 
(IQR 15–18). The median (IQR) difference between MoSDi and motif_prob exact over-
all is 2.6·10−8 (2.2·10−8–5.0·10−8), while for all probabilities where the center of mass 
is not zero (median 0.18), it is 3.8·10–8 (3.3·10−9–2.6·10−7). Once again, the differences 
with the approximated estimation are larger but of the same level of magnitude. Fig-
ure 3 illustrates the absolute difference in probability between motif_prob and MoSDi 
(exact/compound Poisson) as well as the relative magnitude difference, expressed as 
the log10(Probmotif_prob/abs(Probmotif_prob − ProbMoSDi)), which well highlights how the 
difference between the two exact methods (and the compound Poisson too, although 
larger) is negligible with respect to the actual probability estimates.

Table 1  Run time (mm:ss) of the Perl and C++ programs compared to MoSDi (exact and 
approximated using compound Poisson) for calculating the occurrence distribution for s motif query 
sequences of length m (13–31) over a reference genome of 5 million bases

Runs lasting over 30:00 were stopped

No. of motifs s Motif length 
m

C++ Perl MoSDi exact
(10/500)

MoSDi approx
(10/500)

10 13 00:00 00:00 00:47/17:50 00:00/00:00

20,000 13 00:01 00:07 xx:xx/xx:xx 01:16/02:24

50,000 13 00:03 00:18 xx:xx/xx:xx 03:14/06:24

200,000 13 00:15 01:12 xx:xx/xx:xx 13:34/27:40

400,000 13 00:35 02:20 xx:xx/xx:xx 28:05/xx:xx

1,000,000 13 00:85 05:45 xx:xx/xx:xx xx:xx/xx:xx

10 31 00:00 00:00 01:47/xx:xx 00:00/00:01

20,000 31 00:02 00:07 xx:xx/xx:xx 15:34/16:41

50,000 31 00:04 00:17 xx:xx/xx:xx xx:xx/xx:xx

200,000 31 00:16 01:09 xx:xx/xx:xx xx:xx/xx:xx

400,000 31 00:29 02:26 xx:xx/xx:xx xx:xx/xx:xx

1,000,000 31 00:32 05:18 xx:xx/xx:xx xx:xx/xx:xx

Fig. 3  Comparison between motif_prob and MoSDi (exact and approximated with compound Poisson) in 
terms of concordance of probability estimates. Panel A shows the absolute difference in peak probability 
values, stratified by motif length and probability mass value, while panel B shows the relative magnitude 
difference by motif length

https://arep.med.harvard.edu/ecoli_matrices/
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As a final use case, we investigate the distribution of frequencies of antimicrobial 
resistance gene signatures found in bacteria under different GC content. Drug resistance 
mechanisms in bacteria involve acquisition of genes, often via mobile genetic elements, 
and in some cases changes within core housekeeping genes. A number of algorithms use 
k-mers, i.e. motifs of fixed k length, to classify antimicrobial resistance [34], as they can 
be handled efficiently through ad hoc data structures suitable to process high-through-
put data. But assessing the importance of a k-mer with respect to their frequency in drug 
resistance genes is not straightforward; one issue is that bacteria and genes can have very 
different GC content [35]. When the GC content varies, the probability distributions of 
motif occurrence can change over a broad range (given also the underlying, individual 
A, C, G, and T content), and thus the p values of over- or under-representation. To show 
how the quantification can have large variance, we analyze k-mers from antimicrobial 
resistance genes collected in the MEGARes 2.0 database [36]. MEGARes contains 7868 
genes, with an average gene length of 1030.29 nucleotide bases, 57 different antibiotic 
resistance classes, and 220 distinct resistance mechanisms.

From MEGARes, we select all the 3911 genes conferring resistance to beta-lacta-
mase; we then identify all 13-mers, for a total of 453,308 motifs (50% GC content). In 
Table 2, we show how the count probability distribution of the 13-mers in MEGARes’ 
beta-lactamase genes changes among bacterial species present in the human microbi-
ome of respiratory tract [37], where we select uniformly 18 species on the basis of their 
GC content. The median probability of finding the aforementioned 13-mers at least 
once varies between 93 and 99%, and even species with a similar GC content can show 
different medians and interquartile ranges, such as Stomatobaculum longum (55% GC 
content, median p = 97%) and Kluyvera intermedia (52% GC content, median p = 93%). 

Table 2  Median (interquartile range, IQR) probability of finding at least once 13-mer motifs (top-
frequent among beta-lactamase resistance genes) in the MEGARes database over different bacterial 
species characterized by heterogeneous GC content

Species Genome length GC content Median (IQR) probability

Nocardioides Salarius 4,429,322 0.73 0.98 (0.94–1)

Enhydrobacter aerosaccus 6,767,089 0.65 0.93 (0.87–0.98)

Paraburkholderia ginsengisol 6,541,884 0.64 0.93 (0.87–0.97)

Neisseria shayeganii 2,419,744 0.58 0.97 (0.95–0.98)

Stomatobaculum longum 2,308,581 0.55 0.97 (0.96–0.98)

Kluyvera intermedia 4,938,529 0.52 0.93 (0.92–0.94)

Buttiauxella noackiae 4,766,673 0.49 0.93 (0.93–0.93)

Megasphaera micronuciformis 1,765,374 0.45 0.97 (0.97–0.98)

Oribacterium sinus 2,727,518 0.43 0.96 (0.95–0.98)

Prevotella jejuni 3,913,006 0.42 0.95 (0.92–0.97)

Prevotella melaninogenica 3,168,282 0.4 0.96 (0.94–0.98)

Streptococcus pseudopneumoniae 2,195,458 0.4 0.97 (0.95–0.99)

Veillonella rogosae 2,187,106 0.39 0.97 (0.95–0.99)

Lachnoanaerobaculum orale 2,799,073 0.38 0.97 (0.94–0.99)

Catonella morbi 3,477,404 0.38 0.96 (0.93–0.99)

Staphylococcus argenteus 2,753,898 0.32 0.98 (0.95–0.99)

Leptotrichia wadei 2,337,418 0.29 0.98 (0.96–1)

Fusobacterium nucleatum 2,455,060 0.26 0.99 (0.97–1)
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This variability is due to: the individual nucleotide content, which can differ even when 
the GC content is the same, and it directly affects the distribution (see also Fig. 2); the 
genome length; and the nucleotide content of the query motifs.

Conclusion
The motif_prob software is a multi-platform, open source, efficient solution for calculat-
ing exact frequency distributions of (long) motif occurrences in reference genomes using 
high-throughput data. We showed how our code estimates are consistent with other, 
slower, exact calculations, and how the run times of our code (both Perl and C++) are 
competitive even with the non-exact compound Poisson approximation. Specifically, 
motif_prob is 50–1000× faster than MoSDi exact and 60–120× faster than MoSDi com-
pound Poisson.

The current implementation is limited to non-clumpable strings, although it extrapo-
lates a probability for clumpable strings by permutation. As future development of our 
work we foresee to develop an exact formula for clumpable strings and to extend the 
approach to generalize over motifs that can include nucleotide changes, insertions or 
deletions.

In conclusion, our tool can be effectively used in conjunction with motif discovery 
suites that process high-throughput data, allowing them to compute exact count distri-
butions and associated p values without loss of run time performance, instead of relying 
on to approximations.

Availability and requirements
Project name: motif_prob
Project home page: https://​github.​com/​DataI​ntell​SystL​ab/​motif_​prob
Operating system(s): Multi-platform (UNIX/Linux/Mac, Windows)
Programming language: Perl, C++
Other requirements: None
License: MIT
Any restrictions to use by non-academics: Permissible under the terms of the MIT license.
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DREME: Discriminative regular expression motif elicitation; HOMER: Hypergeometric optimization of motif enrichment; 
MEME: Multiple expectation maximizations for motif elicitation; MFMD: Memetic framework for motif discovery; RSAT: 
Regulatory sequence analysis tools; STREME: Simple, thorough, rapid, enriched motif elicitation; MoSDi: Motif statistics 
and discovery; mm:ss: Minutes:seconds; IQR: Interquartile range.
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