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BACKGROUND Adverse events in COVID-19 are difficult to predict.
Risk stratification is encumbered by the need to protect healthcare
workers. We hypothesize that artificial intelligence (AI) can help
identify subtle signs of myocardial involvement in the 12-lead elec-
trocardiogram (ECG), which could help predict complications.

OBJECTIVE Use intake ECGs from COVID-19 patients to train AI
models to predict risk of mortality or major adverse cardiovascular
events (MACE).

METHODS We studied intake ECGs from 1448 COVID-19 patients
(60.5% male, aged 63.4 6 16.9 years). Records were labeled by
mortality (death vs discharge) or MACE (no events vs arrhythmic,
heart failure [HF], or thromboembolic [TE] events), then used to
train AI models; these were compared to conventional regression
models developed using demographic and comorbidity data.

RESULTS A total of 245 (17.7%) patients died (67.3% male, aged
74.5 6 14.4 years); 352 (24.4%) experienced at least 1 MACE (119
arrhythmic, 107 HF, 130 TE). AI models predicted mortality and
MACE with area under the curve (AUC) values of 0.60 6 0.05 and
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0.55 6 0.07, respectively; these were comparable to AUC values
for conventional models (0.73 6 0.07 and 0.65 6 0.10). There
were no prominent temporal trends in mortality rate or MACE inci-
dence in our cohort; holdout testing with data from after a cutoff
date (June 9, 2020) did not degrade model performance.

CONCLUSION Using intake ECGs alone, our AI models had limited
ability to predict hospitalized COVID-19 patients’ risk of mortality
or MACE. Our models’ accuracy was comparable to that of conven-
tional models built using more in-depth information, but transla-
tion to clinical use would require higher sensitivity and positive
predictive value. In the future, we hope that mixed-input AI models
utilizing both ECG and clinical data may be developed to enhance
predictive accuracy.
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KEY FINDINGS

� We demonstrate the feasibility and examine the poten-
tial effectiveness of a rapid, inexpensive triage tool for
COVID-19 patients using a 12-lead electrocardiogram
(ECG) at admission augmented by machine learning.

� When compared with the traditional statistical model
incorporating extensive clinical data, our results using
only the deep neural network–augmented ECG did not
yield improved discrimination.

� Our model’s low sensitivity and positive predictive value
would be a barrier to successful deployment in clinical
settings in its current form; our findings suggest that
mixed-input models using both ECG data and clinical
variables might be a viable path towards better predic-
tive capabilities.
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Introduction
Coronavirus disease 2019 (COVID-19) has now been docu-
mented in at least 230 million people worldwide, resulting in
at least 4.7 million deaths.1–6 This affliction has been linked
with a range of cardiovascular complications including
arrhythmias, myocarditis, acute coronary syndrome, and
thromboembolism.7 These de novo cardiovascular events, as
well as pre-existing cardiovascular comorbidity, are linked to
adverse outcomes in patients with COVID-19. Work in cardi-
omyocytes derived from human pluripotent stem cells showed
that SARS-CoV-2 infection impaired electrophysiological and
contractile function and led to widespread cell death, suggest-
ing cardiovascular symptoms may be a direct consequence of
cardiotoxicity.8 Atrial fibrillation (AF)9 is associated with
increased mortality in infected patients, especially when it
newly presents during hospitalization for COVID-19.5

Biomarker-detected myocardial injury,10 thromboembolism,
and abnormal laboratory coagulopathy studies are frequent
complications of SARS-CoV-2 infection and are also associ-
ated with worse outcomes.11–13 Early prediction of mortality
and morbidity risk may improve patient management.

One of the greatest challenges during the pandemic, espe-
cially in resource-strained settings, has been early identifica-
tion of individual patients at higher risk for adverse
outcomes. Machine learning (ML) has the potential to facil-
itate triage by providing clinicians with useful risk stratifica-
tion data to inform decisions regarding level of care and
follow-up monitoring. The electrocardiogram (ECG), a
rapid, inexpensive, and noninvasive diagnostic test suitable
for repetitive recordings, is an ideal target for ML augmenta-
tion, especially in light of associations observed between
ECG abnormalities and adverse COVID-19 outcomes.14,15

ECG ML applications have been shown to recognize subtle
patterns in the electrical signals, imperceptible to human
readers, that can be leveraged to predict and classify different
arrhythmic conditions, including AF,16 and to screen for
other cardiovascular conditions, including hypertrophic
cardiomyopathy,17 left ventricular systolic dysfunction,18

and aortic stenosis.19 ML networks have also demonstrated
promise identifying clinically meaningful markers of prog-
nosis, predicting both 1-year mortality20 and incident cardiac
arrest within 24 hours.21

In this study, we developed a deep neural network22,23

(DNN)-based ECG analysis system to predict the risk of
adverse events in patients with COVID-19 solely using 12-
lead intake ECGs recorded at the time of COVID-19 hospital
admissions as input. We trained 2 DNNs, 1 to predict mortal-
ity and 1 to predict major adverse cardiovascular events
(MACE, including arrhythmic events, new-onset heart fail-
ure, or thromboembolic complications).We report the perfor-
mance of these DNN systems, which use the ECGs alone to
predict these outcomes of interest, and compare these to a
conventional statistical model, which uses a broad set of de-
mographics, comorbidities, and clinical variables to make the
same predictions.
Methods
Collaboration setup
We enrolled patients from the University of Washington
Healthcare System (UW; Seattle, WA), the Karolinska Insti-
tutet University Hospital (KI; Stockholm, Sweden), the Up-
psala University Hospital (UU; Uppsala, Sweden), and the
Copenhagen University Hospital (UC; Copenhagen,
Denmark). Data collection was retrospective for all centers
except UC, where collection was prospective, but data
were analyzed retrospectively. This study was approved by
the Institutional Review Board of the UW, the Swedish
Ethical Review Authority, and the regional Danish Ethical
Committee. Associated reference numbers are as follows:
IRB6878 (UW), 2020-02627 (KI), 2020-02662 (UU), and
H-20021500 (UC).

Dataset design
We first identified 1448 patients who were admitted to 1 of
the 4 study centers between March 2, 2020, and February
28, 2021 for COVID-19; those who underwent an ECG
recording during hospital intake were included. All included
patients had laboratory-confirmed COVID-19 diagnosis
(ICD-10-CM U07.1). Each center identified records from
March 2, 2020, to June 8, 2020. UW, which was the main
center for the study, continued extracting records through
February 28, 2021. ECGs were adjudicated to exclude cases
with pacing artifacts caused by cardiac implantable electronic
devices or unacceptable quality (owing to missing leads or
significant noise); in total, 62 records were excluded owing
to these criteria (24 pacing artifacts; 38 poor quality). The re-
maining 1386 hospitalized COVID-19 patients (60.5% male,
63.4 6 16.9 years old) comprised our final dataset. Standard
10-second 12-lead ECGs and inpatient outcomes (see next
subsection) were collected for the study cohort, along with
demographics, comorbidities, hospitalization variables, and
laboratory values (Table 1 includes details of variables
collected). ECGs were acquired using GE ECG systems



Table 1 Demographics, comorbidities, and outcomes, overall and by enrolling hospital system

N

Overall UW KI UU UC

P value Missing (%)1386 420 481 308 177

Demographics
Age (years), mean (SD) 63.43 (16.90) 63.26 (16.41) 59.91 (17.04) 65.88 (17.96) 69.15 (13.24) ,.001 0.0
Sex at birth 5 female, n (%) 547 (39.5) 169 (40.2) 161 (33.5) 134 (43.5) 83 (46.9) .004 0.0
BMI (kg/m2), mean (SD) 28.38 (6.58) 29.70 (7.81) 28.63 (5.96) 27.85 (6.90) 27.06 (5.79) .001 20.8
Ethnicity, n (%) - 13.1
Hispanic/Latinx 85 (7.1) 84 (20.2) 0 (0.0) 1 (0.3) -
Non-Hispanic/Latinx 609 (50.5) 327 (78.6) 13 (2.7) 269 (87.3) -
Unknown / unavailable 511 (42.4) 5 (1.2) 468 (97.3) 38 (12.3) -

Race, n (%)
FN/AK Native 9 (0.6) 9 (2.1) 0 (0.0) 0 (0.0) - ,.001 0.0
Asian 118 (8.5) 71 (16.9) 7 (1.5) 40 (13.0) - ,.001 0.0
Black/AA 74 (5.3) 57 (13.6) 11 (2.3) 6 (1.9) - ,.001 0.0
HI FN/Pac Isl 7 (0.5) 7 (1.7) 0 (0.0) 0 (0.0) - .001 0.0
White 694 (50.1) 265 (63.1) 228 (47.4) 201 (65.3) - ,.001 0.0
Other 57 (4.1) 3 (0.7) 50 (10.4) 4 (1.3) - ,.001 0.0
Unknown / unavailable 252 (18.2) 8 (1.9) 187 (38.9) 57 (18.5) - ,.001 0.0

Comorbidity
Hypertension (%) 737 (54.0) 214 (53.2) 236 (49.3) 184 (59.7) 103 (58.2) .021 1.4
CAD (%) 187 (13.8) 59 (14.8) 65 (13.7) 48 (15.6) 15 ( 8.5) .144 2.1
CIED (%) - 13.3
Pacemaker 22 (1.8) 9 (2.2) 8 (1.7) 5 (1.6) -
ICD 5 (0.4) 4 (1.0) 1 (0.2) 0 (0.0) -

Outcomes
Arrhythmic event (%) 125 (9.0) 28 (6.7) 48 (10.0) 36 (11.7) 13 (7.3) .084 0.0
TE (%) 132 (9.5) 36 (8.6) 52 (10.8) 29 (9.4) 15 (8.5) .660 0.0
HF (%) 109 (7.9) 19 (4.5) 58 (12.1) 23 (7.5) 9 (5.1) ,.001 0.0
Mortality (%) 245 (17.7) 88 (21.0) 73 (15.2) 69 (22.4) 15 (8.5) ,.001 0.0

P values are for tests of differences between centers (continuous variables: ANOVA; categorical variables: c2).
AA5 African American; BMI5 body mass index; CAD5 coronary artery disease; CIED5 cardiac implanted electronic device; FN/AK Native5 First Nations or

Alaskan Native; HF 5 heart failure; HI FN/Pac Isl 5 Hawaiian First Nations / Pacific Islander; ICD 5 implanted cardioverter-defibrillator; KI 5 Karolinska In-
stitutet; TE 5 thromboembolic event; UC 5 University of Copenhagen; UU 5 Uppsala University; UW 5 University of Washington.
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(General Electric Company, Boston, MA) and raw data were
managed using the GE MUSE Cardiology Information Sys-
tem. Of the 1386 intake ECGs, 1207 (95.0%) were acquired
within 24 hours of the hospital admission date; for the re-
maining 179 patients, the median number of days between
hospital admission and intake ECG acquisition was 4 (inter-
quartile range: 3, 8). For patients who had multiple ECGs in
theMUSE system from date of intake, the latest one was used
in the dataset. All data were collected and managed using
Research Electronic Data Capture (REDCap) electronic
data capture tools hosted at the UW Institute of Translational
Health Sciences.24,25 Data entry was overseen or performed
by experienced research nurses or doctors at all 4 sites. A
PDF copy of the REDCap data collection instrument used
to populate our database is provided in the Supplemental
Material.
Clinical outcomes
Records were labeled by clinician and/or trained study coordi-
nators with clinician supervision for (1) patient all-cause mor-
tality vs survival and (2) incidence of major adverse
cardiovascular events (MACE) during COVID-19 hospitaliza-
tion (controls without events vs cases with arrhythmic, heart
failure [HF], or thromboembolic events). Co–primary
endpoints were mortality and composite of MACE, which
included thromboembolic, arrhythmic, or HF events. Throm-
boembolic events were defined as acute myocardial infarction,
ischemic stroke, or pulmonary embolism. Arrhythmic events
were defined as new-onset AF, high burden of premature
ventricular complexes, sustained ventricular tachycardia, ven-
tricular fibrillation, and cardiac arrests owing to bradyarrhyth-
mias and tachyarrhythmias. HF events included new-onset HF
and cardiogenic shock. Patients with previously known or
recurrent AF were noted, but these were not classified as
events under the arrhythmic endpoint, since our aim was to
predict complications that arose de novo because of COVID-
19. The non-event cases formed the background class, in
which patients developed no MACE during their COVID-19
hospitalization. The study period only comprised the hospital-
ization for COVID-19 and no long-term follow-up was per-
formed after discharge. Thus, all included patients either
died or were discharged.
Artificial intelligence model development
Essential details about the artificial intelligence (AI)models are
provided in this section; Supplemental Methods provides
further information. Figure 1 presents a dataflow diagram for
our study. In addition to the general exclusion criteria described
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above, 6 records were excluded from theMACEnetwork anal-
ysis owing to the presence ofAF on the intake ECG in a patient
with new-onset AF as an outcome. ECGs and associated label-
ing information were split into training and testing sets using a
10-fold stratified cross-validation scheme.26 The ratio of re-
cords in the training, validation, and testing sets was 8:1:1.
The deep learning model input data was a stack of standard
10-second 12-lead ECG records sampled at either 500 (n 5
1217) or 250 Hz (n 5 169). For each clinical record used the
model input was an 8! 5000 matrix.

We formulated 2 distinct convolutional neural networks
with long short-term memory (CNN-LSTMs); these were
designed to predict the incidence during COVID-19 hospital-
ization of, respectively, mortality (CNN-LSTM1) and life-
threatening cardiovascular events as described above
(CNN-LSTM2). Figure 2 shows schematic representations
for the model architectures, both of which had 3 main sec-
tions. In section I, a series of 1D convolution layers was
used to extract temporal features from each channel sepa-
rately. Every convolution layer was followed by a batch
normalization layer to centralize data distribution and a recti-
fied linear unit to weight the output of past layers.27 Section II
was a recurrent neural network, consisting of 2 LSTM
layers23 to process spatial features across all 8 channels;
each LSTM layer contained up to 4 units with feedback con-
nections. Section III was a fully connected layer and activa-
tion function, used to output a value describing the model’s
confidence that a particular ECG belonged to each class.
CNN-LSTM1 was a binary model (ie, predicted likelihood
of survival vs death), whereas CNN-LSTM2was a multilabel
model (independent likelihoods for all 4 event types:
arrhythmic, heart failure, thromboembolic, or none).

In addition to the primary analysis via 10-fold cross-
validation, a secondary analysis was conducted to evaluate
whether the timing of patient intake might affect the predic-
tive power of our AI models. In this case, we trained the
models with only ECGs of patients who were admitted be-
tween March 2, 2020, and June 8, 2020. Model performance
was then evaluated with a holdout test set that contained only
ECGs of patients who were admitted on or after June 9, 2020.
Lastly, to explore the possibility that changing the cohort size
might affect model accuracy, we reran the entire 10-fold
train/validate/test process for CNN-LSTM1 for subsets
with 20%, 40%, 60%, or 80% of the population. These
were used to construct a learning curve (ie, model accuracy
vs cohort size), as in prior work.28

Training and testing of CNN-LSTM models was carried
out using advanced computational, storage, and networking
infrastructure provided by the Hyak supercomputer system
of the University of Washington. All jobs were run on 1 stan-
dard compute node (32 cores, Intel�Xeon�Gold 6130 CPU
@ 2.10 GHz, 128 GB RAM).

Statistical assessment of AI model performance
Model performance was evaluated by calculating area under
the receiver operator characteristic curves (AUROC),
sensitivity and specificity values, and confusion matrices
for holdout testing sets in a 10-fold cross-validation scheme,
as described above. Optimal probability thresholds were
determined based on the ROC curves of internal validation
sets for each output class:

D5fprval
212!ð12tprvalÞ2

where D is a weighted distance from the origin of the coordi-
nate system to a specific point in the ROC curve of validation
set, fpr is false-positive rate, and tpr is true-positive rate. This
formulation intentionally weighted sensitivity (ie, 12 tpr)
over specificity (ie, fpr), since the importance of minimizing
false-negative rate (fnr) was deemed a much higher priority
than reducing fpr. Each fpr, tpr pair maps to a unique
threshold determined by minimizing D.

The ROC curves for each class in CNN-LSTM2 indepen-
dently consider the comparison of model output to ground
truth label. Thus, assessing the overall performance of this
model necessitated the use of an ROC aggregation technique.
We thus calculated the macro-average ROC curve (ie, each
class’s ROC curve contributed equally to the average), which
considered each prediction problem separately (eg, survival
vs non-survival AND death vs non-death, independently)
then averaged them together.

Finally, when aggregating results of different model per-
formances from all different train/test iterations carried out
as part of the 10-fold cross-validation process, 2-sided 95%
confidence intervals were used to estimate the overall perfor-
mance matrix for the system.

Conventional statistical model development
Clinical model comparisons were developed using multivari-
able logistic regression. The cohort was split into the same 10
training/testing sets used for the AI models. The endpoints of
mortality and composite cardiac event (experience of at least
1: HF, arrhythmia, or thromboembolism) were modeled
separately. The following steps were performed for each of
the 10 cohort splits: Missing data were imputed in the
training set using mean imputation and the same mean values
were applied to missing data in the test and validation sets.
Logistic regression was used to predict the outcome. The
models adjusted for age, sex, race/ethnicity, body mass index
(BMI), history of hypertension, history of coronary artery
disease (CAD), and presence of an intracardiac device.
Four metrics extracted from ECGs were also included: ven-
tricular rate, PR interval, QRS duration, and QT interval.
ECG metrics were treated as continuous variables. Race cat-
egories were Asian, Black, White Hispanic, White non-
Hispanic, and Other/Unknown. BMI was either entered by
clinical staff or calculated from height and weight. Age and
BMI were treated as continuous variables. History of hyper-
tension, history of CAD, and presence of intracardiac device
were treated as binary variables, with the reference being not
present. The reference category for sex assigned at birth was
male. Race/ethnicity was included as a factor, with non-
Hispanic White as the reference. The logistic regression
models used the same optimal threshold identification



Figure 1 Flowchart showing inclusion of patients into databases for both classification problems to be addressed via artificial intelligence–based predictive
modeling. The left branch of the tree concerns the first convolutional neural network with long short-termmemory (CNN-LSTM1), concerned with differentiating
between electrocardiograms (ECGs) from patients who survived vs died. The right branch describes the database used for CNN-LSTM2, which independently
predicts the likelihood that each ECG belongs to a patient from 4 groups (no event vs major adverse cardiovascular events [MACE], as shown in legend). AE5
arrhythmic event; HF 5 heart failure; TE 5 thromboembolic event.
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process as outlined above for the AI models in the test
set and performance metrics were evaluated in the valida-
tion cohort. Results of the model performances from all
different train/validation/test iterations carried out as part
of the 10-fold cross-validation process were aggregated
to determine 2-sided 95% confidence intervals. Analyses
were performed using the R programming language,
version 3.6.1, and used packages readxl,29 tidyr,30 dplyr,31

caret,32 and pROC.33
Results
We used intake ECGs and outcomes during COVID-19
hospitalization for 1386 patients, after all exclusion criteria
had been applied (see Methods). All 4 centers were univer-
sity hospitals (Table 1). The mean age was 63.43 6 16.9
years; 60.5% (n 5 839) were assigned male sex at birth,
54.0% (n 5 737) had hypertension, and 1.9% (n 5 27)
had a cardiac implantable electronic device (22 [1.6%]
pacemakers; 5 [0.4%] implantable cardioverter-
defibrillators). A total of 116 intake ECGs included atrial
arrhythmia, which accounted for 8.4% of the total database.
Ninety-seven were AF and 12 were atrial flutter, with
various other arrhythmias accounting for the remaining
cases (Supplemental Table 1); of note, 6 records with
new-onset AF were excluded from the development of
CNN-LSTM2 to avoid confounding, as outlined in
Methods.



Figure 2 Schematics illustrating machine learning network architectures for convolutional neural network long short-termmemories 1 and 2 (LSTM1/2). Each
network consists of 3 sections: (I) convolution layers, shown here as “feature maps” and “pooling” subsections; (II) recurrent neural network layers (labeled
“Long-Short Term Memory”); and (III) fully connected layers that produce outputs (ie, predicted probabilities for each class). AE 5 arrhythmic event; HF 5
heart failure; ReLu 5 rectified linear unit; TE 5 thromboembolic event.
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The all-cause mortality rate was 17.7% (n5 245); the sur-
vival group included patients who were discharged either to
home (n 5 776; 63.7%) or to other care units after stabiliza-
tion (n5 235; 19.3%). As shown in Table 1, subcohorts from
different regions were distinct, with statistical tests showing a
lack of homogeneity in all demographic and comorbidity cat-
egories except hypertension. In contrast, outcomes were
more uniformly distributed across the centers, with excep-
tions being a higher incidence of HF events at KI and a lower
mortality rate at UC. We also tabulated these data, along with
ECG metrics, according to mortality vs survival outcome
(Supplemental Table 2) and event type (none vs arrhythmic
vs HF vs thromboembolic event; Supplemental Table 3).
Compared to those who survived, patients who died were
older (average age: 74 vs 61 years) and had higher prevalence
of hypertension (70% vs 50%) and CAD (23% vs 12%); for
comparison between event types, significant intergroup dif-
ferences existed for several demographic variables as well
as hypertension and CAD (both of which were higher in
patients who experienced arrhythmia or HF events). In 2 sub-
groups (patients who died vs those who survived and patients
with HF vs noMACE), ventricular rate was faster, QRS dura-
tion was greater, and corrected QT interval was prolonged
(P, .01 in all cases). Given the high rate of atrial arrhythmia
in this cohort, it is notable that there were no significant
intergroup differences whatsoever in PR interval or P-wave
duration.
The ability of the fully trained CNN-LSTM1 model to
successfully predict death during hospitalization vs survival
from intake ECG is illustrated by the ROC curve in
Figure 3A (green line; AUROC: 0.60 6 0.05); the ROC
curve for the conventional statistical model is also shown
for comparison (red line; AUROC: 0.73 6 0.0.07). Addi-
tional detail regarding the conventional model (odds ratio
and P values for each covariate in the model) are presented
in Supplemental Table 4. In both cases, the line shown is
the average across all 10 cross-validation data sets and the
shaded region shows the 61 standard deviation range. The
predictive power of CNN-LSTM1 was not approved by
either of the transfer learning (TL) approaches described in
the Supplemental Methods (TL1 AUROC: 0.42 6 0.06;
TL2 AUROC: 0.54 6 0.06). At the optimal threshold value,
positive and negative predictive values (PPV/NPV) [95%
confidence intervals] for CNN-LSTM1 were 0.22 [0.20–
0.23] and 0.87 [0.85–0.89]; the overall sensitivity and spec-
ificity were 0.66 [0.60–0.73] and 0.47 [0.41–0.53]. These
values were distinct from those observed for the conventional
statistical model, in which positive and negative predictive
powers were inverted (PPV: 0.90 [0.88–0.92]; NPV: 0.35
[0.32–0.38]; sensitivity: 0.75 [0.69–0.80]; specificity: 0.61
[0.50–0.72]). To further examine the tradeoff between highly
undesirable fnr (ie, survival predicted for a patient at risk of
dying) and more tolerable fpr (ie, death predicted for a patient
tracking towards survival), we plotted both quantities as a



Figure 3 Data summarizing predictive power of artificial intelligence–based and conventional models. A: Receiver operator characteristic (ROC) curves for
convolutional neural network long short-term memory 1 (CNN-LSTM1) and the corresponding conventional model, which attempted to differentiate between
electrocardiograms of patients who survived vs died.B: False-positive and false-negative rates (fpr and fnr, respectively) for CNN-LSTM1 as a function of model
threshold; at a nominal threshold (dashed yellow line) associated with a 20% fnr, the corresponding fpr (w70%) is shown by a dashed black arrow. C: ROC
curves for CNN-LSTM2 (multilabel model independent prediction of different major adverse cardiovascular event types; single curve derived via macro-
averaging) and the corresponding conventional model (binary prediction: any event vs no event). See Figure 4 and Supplemental Figure 2 for additional plots.
AUC 5 area under the curve; MACE 5 major adverse cardiovascular event.
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function of the raw CNN-LSTM1 output threshold for distin-
guishing between predicted death and survival (Figure 3B).
This analysis shows that to maintain a reasonable fnr (eg,
20% for the nominal threshold shown by the dashed yellow
line), it was necessary to accept a high fpr (w70% for the
example shown); this is consistent with the high NPV and
low PPV values reported above. Construction of a learning
curve (Supplemental Figure 1) for CNN-LSTM1 showed
that there was no trend towards increasing model accuracy
as a function of cohort size. Rather, there was a trend towards
reduced accuracy, although differences in accuracy for suc-
cessive cohort sizes were not statistically significant.

Summary data (ie, macro-average ROC curve; AUROC:
0.55 6 0.07) for prediction of cardiovascular events via
CNN-LSTM2 are shown in Figure 3C (green line). These
results are contrasted with those from the logistic regression
model shown in Figure 3C (red line), which tackled a distinct
classification problem that was binary (ie, MACE vs no
MACE; AUROC: 0.65 6 0.10); see Supplemental Table 4
for additional covariate information from this model. Both
the ML-based and conventional approach had inferior power
compared to the respective death vs survival models, indi-
cating that MACE prediction (multiclass using CNN-
LSTM2 or binary using the conventional model) was more
challenging. Quantitative metrics of the CNN-LSTM2 aggre-
gate performance were as follows: PPV 5 0.28 [0.27–0.29];
NPV 5 0.76 [0.74–0.78]; sensitivity 5 0.67 [0.61–0.72];
specificity 5 0.42 [0.36–0.47]. The predictive power of the
logistic regression model was comparatively higher: PPV:
0.82 [0.81–0.84]; NPV: 0.32 [0.26–0.38]); sensitivity: 0.75



Figure 4 Individual receiver operator characteristic (ROC) curves for the 4 independent classification tasks performed by convolutional neural network long
short-term memory 2 (CNN-LSTM2).A: Prediction of no event during hospitalization from intake electrocardiogram. B: Prediction of arrhythmic event.C: Pre-
diction of thromboembolic event. D: Prediction of heart failure event. AUC 5 area under the curve; MACE 5 major adverse cardiovascular event.
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[0.69–0.82]; specificity: 0.39 [0.29–0.49]. Since TL was not
beneficial in the context of the mortality vs survival network,
we elected not to attempt it for CNN-LSTM2.

ROC curves illustrating model performance for indepen-
dent prediction of the 4 individual MACE types are provided
in Figure 4A–4D. Here, we see that poor performance of
CNN-LSTM2 was disproportionately driven by the model’s
difficulty in identifying ECGs from patients who had no
event or experienced a thromboembolic event (AUROC 5
0.54 6 0.07 and 0.51 6 0.06, respectively); in contrast, the
model’s ability to predict arrhythmic or HF events was on
par with the AI-based ability to predict death (AUROC 5
0.58 6 0.07 and 0.59 6 0.07, respectively). Nevertheless,
as shown by graphs of fpr and fnr as a function of event-
specific model thresholds for all 4 outcome types in
Supplemental Figure 2A–2D, the practical consequence of
this increased predictive power is modest (ie, dashed black
lines showing the fpr that must be tolerated to achieve a
20% tpr all range betweenw75% andw80%, with little dif-
ference between event types).

CNN-LSTM1 outputs for predicted death and survival
probabilities for intake ECGs in a representative test set are
shown in Figure 5A. As indicated by the box-and-whisker di-
agrams superimposed on the violin plots, the optimal
threshold value (dashed line) resulted in 72% of the ECGs
from patients who died being assigned a “death” prediction
(ie, tpr; Figure 5A, right). The corresponding rate of correct
classification for ECGs from patients who survived was
lower (Figure 5A, left: 54% tnr). Similar plots for CNN-
LSTM2 (Figure 5B and 5C and Supplemental Figure 3A
and 3B) indicate that the multilabel classification problem
was more challenging.



Figure 5 Violin plots with box-and-whisker annotations showing raw network outputs. A: Results for classification task (survival vs death) in convolutional
neural network long short-termmemory 1 (CNN-LSTM1).B, C:Results for 2 classification tasks in CNN-LSTM2 (B: arrhythmic events;C: heart failure events).
X-axis labels show ground truth labels; dashed lines in each panel show optimal classification thresholds, as explained in Methods. See Supplemental Figure 3 for
additional plots. AE 5 arrhythmic event; HF 5 heart failure; TE 5 thromboembolic event.
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Finally, as shown in Figure 6, using a test set
comprising only ECGs and outcomes from patients re-
cruited after a cutoff date (June 9, 2020), the predictive po-
wer of both the survival vs death model (Figure 6A) and the
multilabel MACE model (Figure 6B; macro-average and
individual predictive ROCs) were within the 61 standard
deviation intervals for the corresponding models shown
in Figure 3A and 3C, respectively. The numbers of patients
enrolled at each center over the study period are shown in
Supplemental Figure 4A and 4B. There were no discern-
able trends in mortality rate or MACE incidence on a
month-by-month basis (see Supplemental Figure 4C and
4D, respectively).
Discussion
In this manuscript, we demonstrate the feasibility and
examine the potential effectiveness of a rapid, inexpensive
triage tool for COVID-19 patients using a 12-lead ECG at
admission augmented by ML. To our knowledge, this is
the first such attempt to triage any viral disease using a single
ECG. Destabilization of healthcare infrastructure during the
pandemic sharply highlighted the need for rapid and readily
available triage tools to guide resource allocation during
times of crisis. When compared with the traditional statistical
model incorporating extensive clinical data, our results using
only the DNN-augmented ECG did not yield improved
discrimination; however, this approach has the advantage



Figure 6 Summary data for holdout testing of both artificial intelligence–based models trained with electrocardiograms (ECGs) from before a cutoff date (June
9, 2020) and tested with ECGs from after that date. A: Receiver operator characteristic (ROC) curve for convolutional neural network long short-term memory 1
(CNN-LSTM1) trained and tested using the holdout protocol defined above.B: Same as panel A but for CNN-LSTM2. Both macro-averaged and individual event
type ROCs are shown superimposed on this plot. AUC 5 area under the curve; MACE 5 major adverse cardiovascular event.
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of not requiring clinical expertise to gather medical history.34

Nevertheless, our models’ low sensitivity and PPV would be
a barrier to successful deployment in clinical settings in its
current form. Mixed-input AI models that analyze both
ECG data and clinical variables might enhance the accuracy,
as discussed below.

Our network yielded AUROC values of 0.60 for predict-
ing death and 0.55 for predicting MACE. The overall perfor-
mance of our models can be compared to other commonly
used risk stratification tools such as the CHADS2 and
CHA2DS2-VASc scores for stroke, which are estimated by
the U.S. Agency for Healthcare Research and Quality to
have AUROC values of 0.66–0.75.35 Owing to the unpredict-
able nature of the disease, especially in hospitalized patients,
and the high risk of devastating complications,36 we opti-
mized our DNN to maximize NPV. This prioritized correct
identification of patients who had favorable outcomes as
low risk (ie, true negatives), while minimizing false nega-
tives. Our model achieved an NPV of 0.87 for mortality
and 0.76 for MACE.

Of the 2 networks we developed, CNN-LSTM1 had
distinctly better performance than CNN-LSTM2. Although
the specifics of the classification tasks involved are distinct
(multiclass vs binary), the general implication is that intake
ECG data may be less suitable for predicting MACE during
COVID-19 hospitalization compared to demographic data
and comorbidity data. Nevertheless, results from CNN-
LSTM2 must be carefully interpreted, since its ability to
predict different MACE types was divergent. For the best-
performing individual prediction (HF event classifier), at
the optimal threshold the network had relatively low fpr
(eg, 44% for ECGs from patients with no event; Figure 5C,
column 1) but this came at the cost of a relatively high fnr
(27%; Figure 5C, column 4). In the case of independently
predicting the likelihood that a patient would experience no
MACE (Supplemental Figure 3A), while 73% of ECGs
from patients who truly lacked adverse events were correctly
classified (column 1), .50% of patients in all 3 MACE
groups were incorrectly classified (columns 2–4).

The strategic holdout analysis presented in Figure 6 also
warrants further discussion. The aim here was to determine
if the model’s predictive power was degraded by attempting
to train and test the model with ECGs from patients hospital-
ized earlier and later in the pandemic, respectively. This
might be expected, owing to the changing attributes of
COVID-19 disease and treatment over time, although our
analysis of temporal distribution of mortality rates and
MACE incidence in this cohort (Supplemental Figure 4C
and 4D) showed no apparent trends. In practice, holdout
model performance was not obviously inferior to the main re-
sults presented in Figure 3. Notably, the holdout MACE
model’s ability to predict HF from intake ECG was among
the highest observed in the study (AUROC 5 0.68).

Even though our enthusiasm for the potential translational
value of these particular models is low, our study has signif-
icant strengths. We initiated an international collaboration of
4 university hospitals, which were heavily affected by the
pandemic across 2 continents. This yielded a diverse set of
patients from different geographic regions and institutions
with significant heterogeneity in presentation as well as ther-
apies. Various conventional ML techniques have been pro-
posed for ECG-based algorithms,37 but most use ECG
features, as opposed to the raw ECG signal itself as employed
here, as input (eg, R-R interval, QRS complex duration, etc),
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which requires labor-intensive preprocessing. Moreover, we
opted for minimal data sanitization by enforcing only the
most essential exclusion criteria and applying minimal pre-
processing to model inputs. Thus, the data used to train and
test our ML networks closely resemble “real-world” signals
that could be found in any clinical setting. We highlight
that atrial arrhythmia is common and likely to be encountered
in many patients presenting with COVID-19, so we opted to
include as many of these ECGs as possible in our study. The
lone exception was that ECGs demonstrating new-onset AF
were excluded from the MACE outcome, since new-onset
AF was a component of the MACE outcome.

It is also worth noting that CNN-LSTM2 carries out a mul-
tilabel classification task in which the likelihood of a partic-
ular ECG belonging to each group (no event vs 3 types of
MACE) is independently predicted via 1 single set of calcu-
lations. This is a distinct and more difficult classification task
from the conventional statistical model against which the per-
formance of CNN-LSTM2 was evaluated (ie, binary predic-
tion of no MACE vs any MACE). Finally, we carried out a
rigorous and comprehensive hyperparameter tuning exercise
for both CNN-LSTM1 and CNN-LSTM2. In each case, we
considered 128 unique network permutations and carried
out a complete set of train/test cycles using our 10-fold
cross-validation schemes (ie, 1280 unique runs per model),
meaning that the predictive capabilities of the models shown
in Figure 2, Supplemental Tables 4, 5 are the best possible
outcome for this set of DNN parameters. As such, we are
confident that the modest AUROC values for our 2 models
are not the consequence of an inadequate exploration of
what DNN technology might potentially offer.

The imperfect performance of our network demonstrates
an important aspect ofML applications: explainability.While
many DNN architectures allow for identification of specific
features predictive of adverse outcomes, we were unable to
do so because of the LSTM components included in our
DNNs. The CNNmodels in our study were trained to identify
adverse outcomes regardless of the exact changes occurring
on the ECG. We believe it is entirely possible that the
CNNs could be using any changes encoded in that signal
(eg, heart rate, heart rate variability, QRS width, ST changes,
or combinations of these elements) to make predictions about
outcomes. In the case of COVID-19, it is possible that the
most salient ECGmarkers are those that are indicative of base-
line comorbidity, such as right atrial abnormality or right ven-
tricular strain pattern, which suggest pulmonary disease.
Alternatively, the network may have preferentially identified
novel features associated with severe COVID-19 disease. To
examine exactly what features the CNN models are exam-
ining to make these predictions, we would have to use certain
explainable AI models, which would be more interpretable.
This was beyond the scope of the current project, but future
studies may be able to harness new computational tech-
niques38 to improve approaches in this regard. It is also diffi-
cult to speculate what steps may be taken to improve model
performance. We hypothesize that the heterogeneity of both
the components of MACE and varied causes of mortality
contributed to poor performance. Future efforts may benefit
from identification of more narrowly defined outcomes with
linear and biologically plausible mechanistic connections be-
tween cardiac electrical activity and the outcome.

Some interesting observations can be gleaned from the
odds ratios for covariates in the 2 conventional models
used as a basis of comparison for the AI-based models.
Advanced age, male sex, and higher ventricular rate were
associated with increased risk of both mortality and
MACE; for the second model, there were additional associa-
tions between MACE risk and elevated BMI or increased PR
interval duration, albeit with weaker P values. The clinical
significance of these features is not entirely clear. In the
context of the current study, it is noteworthy that at least 1
ECG feature (ventricular rate) was strongly associated with
both death and MACE. While it is possible that formulation
of alternative statistical models using exclusively ECG met-
rics, demographic data, or comorbidity information might
elucidate the key drivers of predictive capability, these ana-
lyses were deemed beyond the scope of this AI-focused
study. Nevertheless, the fact that the predictive accuracy of
both conventional models outstripped that of our AI-based
methods suggests that future development of mixed-input
CNN-LSTMs that analyze both raw ECG and demo-
graphic/comorbidity data might prove useful.
Limitations
Our study has several additional limitations. First, the modest
performance of our networks limits clinical applicability at
the current stage. Although the accuracy we observed was
not superior to the traditional model based on clinical data,
we note that triage tools for potentially fatal diseases should pri-
oritize high NPV and our models did achieve that design goal.
A deep learning model based on both clinical and ECG data
might be able to achieve better accuracy; however, building
such a network with heterogeneous inputs is complicated
and, to the best of our knowledge, has not been attempted in
this field. Notably, while we note that the size of the cohort
considered in this study is small compared to many prior AI-
based ECG studies,39,40 our analysis (Supplemental Figure 1)
suggests this may not be the key factor constraining model per-
formance.While this finding does not guarantee that increasing
the cohort size would not increase the accuracy of our model, it
suggests a more likely explanation is that the deep learning
approach is relatively ill suited for the chosen problem.

Second, this study included only hospitalized patients
with COVID-19. Whether this test can be used to prognosti-
cate in settings where patients have few or no symptoms re-
quires a separate study. Third, certain agents used to treat
COVID-19, which we did not aim to capture in our database,
affect the ECG (eg, hydroxychloroquine, azithromycin, and
other critical care medications) and may have impacted
network performance. Regarding the latter point, the
geographic and management diversity of the included pa-
tients who were treated in different institutions may have
enhanced the robustness and generalizability of our analysis.
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Lastly, MACE definitions were based on clinicians’ deter-
minations as adjudicated by chart review and notes. While we
collected data on certain laboratory values, we opted to rely
on clinician judgment for diagnosis of MACE elements
such as acute myocardial infarction. These definitions carry
an important implication of subjectivity and interobserver
bias, but we determined that this would be the more ideal
adjudication method compared to the alternative of having
an arbitrary threshold lab value or premature ventricular com-
plex burden when these parameters were not being measured
systematically in the pandemic setting.
Conclusion
Our analysis shows that AI-based algorithms could be helpful
for rapid prognostication of adverse events in COVID-19 pa-
tients using a single ECG taken at the time of admission.
While these models do not have perfect accuracy by any
means, their performance is comparable to that of conven-
tional statistical models relying on a multitude of clinical
and demographic variables.
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