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Abstract
Background: Acinetobacter baumannii is a pathogen responsible for nosocomial infec-
tions,	especially	in	patients	with	burns	and	ventilator-	associated	pneumonia	(VAP).	The	
aims of this study was to compare the biofilm formation capacity, antimicrobial resist-
ance	patterns	and	molecular	typing	based	on	PFGE	(Pulsed-	Field	Gel	Electrophoresis)	
in A. baumannii	isolated	from	burn	and	VAP	patients.
Materials and Methods: A	total	of	50	A. baumannii isolates were obtained from burn 
and	VAP	patients.	In	this	study,	we	assessed	antimicrobial	susceptibility,	biofilm	for-
mation	 capacity,	 PFGE	 fingerprinting,	 and	 the	 distribution	 of	 biofilm-	related	 genes	
(csuD, csuE, ptk, ataA, and ompA).
Results: Overall,	74%	of	the	strains	were	multidrug	resistant	(MDR),	and	26%	were	ex-
tensively	drug-	resistant	(XDR).	Regarding	biofilm	formation	capacity,	52%,	36%,	and	
12%	of	the	isolates	were	strong,	moderate,	and	weak	biofilm	producers.	Strong	biofilm	
formation	capacity	significantly	correlated	with	XDR	phenotype	(12/13,	92.3%).	All	
the	isolates	harbored	at	least	one	biofilm-	related	gene.	The	most	prevalent	gene	was	
csuD	(98%),	followed	by	ptk	(90%),	ataA	(88%),	ompA	(86%),	and	csuE	(86%).	Harboring	
all	the	biofilm-	related	genes	was	significantly	associated	with	XDR	phenotype.	Finally,	
PFGE	clustering	revealed	6	clusters,	among	which	cluster	No.	2	showed	a	significant	
correlation	with	strong	biofilm	formation	and	XDR	phenotype.
Conclusion: Our	findings	revealed	the	variable	distribution	of	biofilm-	related	genes	
among	MDR	and	XDR	A. baumannii	 isolates	from	burn	and	VAP	patients.	A	signifi-
cant	correlation	was	found	between	strong	biofilm	formation	capacity	and	XDR	phe-
notype.	Finally,	our	results	suggested	that	XDR	phenotype	was	predominant	among	
strong-	biofilm	producer	A. baumannii in our region.
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1  |  INTRODUC TION

Burnt skin provides a suitable environment for colonization and 
proliferation of bacteria. Patients with burns and ventilator are 
two	groups	at	high	risk	for	bacterial	 infections.	 In	these	patients,	
Acinetobacter baumannii (A. baumannii) can be transmitted by in-
vasive clinical procedures, such as mechanical ventilation, and 
indwelling devices.1	Multidrug-	resistant	 (MDR)	A. baumannii is an 
important ubiquitous pathogen responsible for a variety of com-
munity and hospital infections and forms biofilms in healthcare 
settings.2 Eradicating A. baumannii faces dramatic problems due to 
antimicrobial	therapy	failure	secondary	to	the	emergence	of	MDR	
and	extensively-	drug	resistant	(XDR)	isolates.	In	fact,	antimicrobial	
resistance is a great threat increasing A. baumannii-	related	 mor-
bidity and mortality,3 and biofilm formation provides the driving 
force for the emergence of new and more antimicrobial resistant 
phenotypes, which are more strongly associated with nosocomial 
infections.4

Although	A. baumannii is naturally resistant to many available 
antibacterial agents, the development of antimicrobial resistance 
against other generation antimicrobials such as carbapenems, 
leading to antimicrobial therapy failure, highlights the importance 
of the infections caused by these bacteria as a significant health 
problem.3 Biofilm formation is a main virulence factor and a hall-
mark characteristic of this bacterium. Acinetobacter spp. can form 
biofilm	 at	 solid–	liquid	 and	 air-	liquid	 interface.	 The	 biofilm	 forma-
tion rate in A. baumannii at the solid– liquid interface is higher than 
other Acinetobacter species.5 Within biofilm, A. baumannii can ac-
quire genes encoding antimicrobial resistance from other bacteria 
through mobile genetic elements including plasmids, integrons, or 
transposons.3

Biofilm formation and antimicrobial resistance have been found 
to be directly correlated in A. baumannii isolates, suggesting that 
biofilm	 formation	 is	 a	necessary	 step	 in	 the	development	of	MDR	
bacteria.4,6

Multidrug	resistant	and	XDR	A. baumannii are commonly found 
in	healthcare-	associated	infections,	generally	in	the	context	of	noso-
comial infections. Multidrug resistance profile as defined by the iso-
late	being	non-	susceptible	to	at	least	one	agent	in	≥3	antimicrobial	
categories.	 Isolates	of	A. baumannii with resistance to at least one 
agent in all but two or fewer antimicrobial categories were consid-
ered	XDR.7

It	 has	 been	 proven	 that	 several	 factors	 are	 associated	 with	
biofilm-	related	genes,	and	in	fact,	biofilm	formation	largely	governs	
the	severity	of	infections	and	triggers	antimicrobial	resistance.	For	
example,	in	catheter-	related	bacteremia	and	aspiration	pneumonia,	
the prevalence of A. baumannii	 harboring	 biofilm-	related	 genes,	
including ompA, ataA, csuA, csuE, and ptk, was reported to be high 
among	antimicrobial	 -	resistant	 strains.8 The outer membrane pro-
tein	A	(OmpA),	a	38-	kDa	protein	of	A. baumannii, is encoded by the 
ompA gene and acts as a major porin that allows for biofilm forma-
tion on biotic surfaces, such as epithelial cells, through facilitating 
porin/fibronectin interactions.9

A. baumannii	 is	 generally	non-	motile;	however,	 it	possesses	 sev-
eral	genes,	known	as	chaperone-	usher	pilus	(csuA/BABCDE) assembly 
operon, that are required to assemble pilus to produce strong biofilm 
on polystyrene and glass surfaces such as catheter and ventilators.2 
Interestingly,	biofilm	maturation	is	promoted	by	csu-	operon,	and	the	
absence of the cusE gene results in the lack of pilus production, dis-
rupting biofilm formation.10 A. baumannii colonization is influenced by 
the presence of the acinetobacter trimeric autotransporter adhesion 
(ata) gene that contributes to adhesion to and invading human endo-
thelial and epithelial cells.11 Besides, the ata gene has a wide variety of 
molecular activities and participates in most biological processes such 
as adhesion, biofilm formation, immune evasion, angiogenesis, and 
apoptosis.	On	the	other	hand,	Ptk	is	a	putative	protein	tyrosine	kinase	
encoded by the ptk gene, required for capsule polymerization. This is 
without a doubt one of the most important factors to promote bio-
film formation by A. baumannii.9 Based on population genetic studies 
and epidemiological investigations of A. baumannii, there are several 
typing	methods,	including	multilocus	sequence	typing	(MLST),	pulsed-	
field	gel	electrophoresis	 (PFGE),	multiple-	locus	variable	number	tan-
dem	repeats	(VNTRs)	analysis	(MLVA),	and	whole	genome	sequencing	
(WGS).12,13	Among	these	methods,	PFGE	is	considered	the	gold	stan-
dard due to its sensitivity, reproducibility and discriminatory power, 
and to determine the prevalence of pathogens within and between 
hospitals and their stability in the environment are used.14	 In	 this	
study,	we	aimed	to	investigate	the	presence	of	biofilm-	related	genes	
(ompA, csuA, csuE, ptk, and ataA) and their association with biofilm for-
mation	and	perform	molecular	typing	based	on	PFGE	in	A. baumannii 
isolated	from	burn	and	VAP	patients.

2  |  MATERIAL S AND METHODS

2.1  |  Study population and bacterial isolates

This	cross-	sectional	study	was	in	accordance	with	the	Declaration	of	
Helsinki	 (between	October	2020	and	July	2021).	All	samples	were	
collected	 from	 two	hospitals	 in	Tehran	 (Rasool	Akram	and	Shahid	
Motahhari).	 Informed	consent	 and	ethical	 approval	were	obtained	
from the hospitals' authorities and the institutional ethics commit-
tee,	 respectively,	 prior	 to	 the	 study.	Non-	replicating	A. baumannii 
bacteria	were	collected	from	burn	and	VAP	patients.	Primary	iden-
tification A. baumannii	isolates	was	based	on	the	Gram	staining	re-
action and colony morphology. Standard biochemical tests such as 
catalase,	citrate,	triple	sugar	iron	agar,	urease	test,	oxidase,	methyl	
red,	Voges	Prausker,	and	indole	production	were	used	to	identify	the	
A. baumannii isolates.15	All	 the	 isolates	were	 confirmed	using	mo-
lecular (gyrB)16	and	bacteriological	identification	tests	(API	20NE).

2.2  |  Antimicrobial ausceptibility testing

Antibacterial	 susceptibility	 patterns	 were	 assessed	 using	 the	
disk-	agar	 diffusion	 method,	 applying	 piperacillin-	tazobactam	
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(100/10 μg),	 ampicillin/sulbactam	 (10/10 μg),	 imipenem	 (10 μg), 
meropenem	 (10 μg),	 ceftazidime	 (30 μg),	 cefepime	 (30 μg), ceftri-
axone	 (30 μg)	 gentamicin	 (10 μg),	 and	 ticarcillin-	clavulanic	 acid	
(75/10 μg) (Himedia) antimicrobials. Minimum inhibitory concentra-
tions	 (MIC)	 of	 polymyxin	 B	 and	 colistin	were	 determined	 by	 the	
E-	test	method	 (AB	BIODISK),	 and	 results	were	 interpreted	 using	
Clinical	 and	 Laboratory	 Standards	 Institute	 2020	 (CLSI,	 2020)	
guidelines.17	 All	 breakpoints	 were	 available	 for	 the	 antibacte-
rial agents. Escherichia coli	ATCC	25922,	E. coli	ATCC	35218,	 and	
Pseudomonas aeruginosa	 ATCC	27853	were	 used	 as	 internal	 con-
trols.	MDR	 isolates	 of	A. baumannii	 exhibit	 resistance	 to	 at	 least	
one	agent	from	three	antimicrobial	classes,	whereas	XDR	isolates	
of A. baumannii	exhibit	resistance	to	at	least	one	agent	from	all,	but	
two	or	 fewer	 antimicrobial	 categories.	 PDR-	A. baumannii isolates 
were	non-	susceptible	to	all	antimicrobial	agents.18

2.3  |  Biofilm formation

Biofilm formation was assessed using the crystal violet quantifica-
tion test. Briefly, isolates were inoculated in the LB broth culture 
medium	(Conda)	and	incubated	at	37°C	for	24 h.	The	bacterial	con-
centration	was	 then	measured	by	 a	 spectrophotometer	 at	650 nm	
(OD	=	0.1–	0.08).	The	bacterial	suspension	(190 μl	LB	medium + 10 μl 
cultured	bacteria)	was	poured	into	each	well	of	a	96-	well	microplate	
and	incubated	at	37°C	for	24–	48 h.	The	biofilm	formation	assay	was	
carried out three times for each sample, and the LB medium was 
used	as	a	negative	control	in	all	experiments.	Planktonic	cells	were	
removed, and after three times of washing with PBS, biofilm plates 
were	fixed	with	150 μl	of	99%	v/v	methanol	(Merck),	and	then	each	
well	was	stained	with	crystal	violet	(1%,	w/v)	and	incubated	at	room	
temperature	for	20 min.19

Biofilm	was	decolorized	by	ethanol-	acetone	33%	(80,	20,	v/v)	for	
20 min,	 and	 the	 supernatant	was	collected.	Lastly,	 the	absorbance	
was	measured	at	595 nm,	and	biofilm	production	capacity	was	quan-
tified	by	calculating	a	score	based	on	OD595	and	categorized	as	no	
(OD < optical	density	cutoff	value,	ODc,	−),	weak	(ODC < OD	≤2ODC,	
+),	 moderate	 (2ODc < OD	 ≤3ODc,	 + +),	 and	 strong	 (OD > 3ODc)	
biofilm	formation.	For	the	evaluation	of	biofilm	formation,	Mueller	
Hinton Broth (MHB) and A. baumannii	 ATCC	19606	were	 used	 as	
negative	and	positive	controls,	respectively.	Triplicates	of	all	experi-
ments were conducted.

2.4  |  Identifying biofilm- related genes

Whole	DNA	was	 extracted	 from	all	 samples	 by	 boiling.20	 Biofilm-	
related genes, including ompA, csuA, csuE, ptk, and ataA were ampli-
fied utilizing specific primers listed in Table 1. The PCR reaction was 
performed	at	 the	 final	 volume	of	25 μl, containing 1× PCR buffer, 
2.5 mM	MgCl2,	0.2 mM	dNTP	mix,	10 pmol	of	each	primer,	and	50 ng	
of	 template	 DNA.	 PCR	mixtures	 were	 subjected	 to	 the	 following	
thermal	cycling:	5 min	at	94°C,	followed	by	35 cycles	with	denatura-
tion	at	94°C	for	50 s,	annealing	at	55°C–	57°C	for	30 s,	extension	at	
72°C	for	30 s,	and	a	final	extension	at	72°C	for	5 min.

2.5  |  Pulsed field gel electrophoresis genotyping

Genetic	relatedness	of	collected	isolates	was	carried	out	by	Pulsed-	
Field	Gel	Electrophoresis	(PFGE)	as	described	previously.21 Briefly, 
all	pure-	cultured	isolates	were	embedded	in	agarose	plugs	and	then	
treated	with	a	cell	suspension	buffer	(CSB)	containing	EDTA	and	pro-
teinase	K	 (20 mg.	mL−1). The plaques were thoroughly washed and 

Genes Primers Sequences 5′– 3′
Weight 
(bp) References

ataA ataA-	F ACGAC	TAT	CAA	CAT	TTT	TAA	GCTGG 101 In	this	study

ataA-	R TTGGG	TCG	GCT	GGA	AAAGAA

csuD csuD-	F ATACC	GAC	CTT	TCA	CGGCTG 335 In	this	study

csuD-	R GCCAG	TAT	CGC	CCT	GCTTAT

csuE csuE-	1F CTTTA	GCA	AAC	ATG	ACC	TACC 702 51

csuE-	1R TACAC	CCG	GGT	TAA	TCGT

csuE-	2F GGCGA	ACA	TGA	CCT	ATTT 580

csuE-	2R CTTCA	TGG	CTC	GTT	GGTT

ompA ompA-	1F GATGG	CGT	AAA	TCG	TGGTA 355 51

ompA-	1R CAACT	TTA	GCG	ATT	TCTGG

ompA-	2F GACCT	TTC	TTA	TCA	CAACGA 343

ompA-	2R CAACT	TTA	GCG	ATT	TCTGG

ptk ptk-	F AGCCA	TAA	CCA	TAG	CCAGCG 465 In	this	study

ptk-	R ACTCG	TGG	TAA	GAG	CCCAAC

Note: The primers for ataA, csuD and ptk	were	designed	using	Gene	Runner	(Version	3.05,	Hastings	
Software).

TA B L E  1 Primers	list	was	usded	in	this	
study
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then	digested	by	 the	Apa	 I	 restriction	enzyme	 (TaKaRa,	Dalian)	 at	
20°C	 for	5 h.	All	PFGE	samples	were	 loaded	 into	 the	CHEF-	DR	 III	
system	(Bio-	Rad)	under	the	condition	described	by	Qi	et	al.22

Finally,	 PFGE	 patterns	 were	 analyzed	 and	 processed	 by	 the	
GelCompare	 II	system	(Applied	Maths,	Sint-	Martens-	Latem),	and	a	
genetic	similarity	dendrogram	was	generated	based	on	the	UPGMA	
algorithm	with	 a	 position	 tolerance	 of	 1.5%.	 The	 genetic	 related-
ness was determined according to the criteria described by Tenover 
et al.23	and	PFGE	patterns	were	distinguished	at	a	similarity	cutoff	
of	80%.

2.6  |  Statistical analysis

Statistical analysis was performed in SPSS version 20 software 
(SPSS,	 Inc.)	 and	 GraphPad	 Prism	 version	 8	 software	 (GraphPad	
Software	Inc.).	The	Chi-	square	test	and	Fisher's	exact	test	were	used	
to determine statistically significant associations between main vari-
ables at a p value of <0.05.

3  |  RESULTS

3.1  |  Population and antimicrobial susceptibility

A. baumannii isolates were identified by various tests that included: 
Gram-	negative	 coccobacilli,	 catalase	 positive,	 urease	 negative,	 H2S 
negative,	oxidase	negative,	gas	negative,	citrate	positive,	indole	nega-
tive,	 Voges-	Proskauer	 negative	 and	 methyl	 red	 positive.	 Isolates	 of	
A. baumannii were collected from burn patients (23/50) and patients 
with	VAP	(27/50),	of	whom	36	(72%)	were	male	and	14	(28%)	were	fe-
male,	with	a	mean	age	of	44.9 ± 12 years	(range:	10–	75 years).	Overall,	
74%	(37/50)	were	MDR	and	26%	(13/50)	were	XDR.	All	the	isolates	
were	intermediate	to	colistin	(MICs	range	from	0.	25	to	1 μg/ml) and 
polymyxin-	B.	(MICs	range	from	0.	5	to	2 μg/ml). Resistance to merope-
nem	was	the	most	common	observation	(92%,	46/50)	while	the	least	
common	resistance	was	related	to	ampicilin/sulbactam	(42%,	21/50).	
The resistance rates against gentamicin, imipenem, cefepime, ceftazi-
dime,	 ceftriaxone,	 piperacillin/tazobactam,	 and	 ticarcillin/clavulanic	
acid	were	44%	(22/50),	88%	(44/50),	86%	(43/50),	88%	(44/50),	84%	
(42/50),	86%	(43/50),	and	66%	(33/50),	respectively.

There was no statistically significant difference in the antimicro-
bial	resistance	rate	between	the	bacteria	isolated	from	burn	or	VAP	
patients (p =	0.1).	The	prevalence	of	XDR	in	the	isolates	from	burn	
and	VAP	patients	was	39.13%	(9/23)	and	14.81%	(4/27),	respectively.	
No	significant	association	was	found	between	XDR	phenotype	and	
infection outcome (p =	0.9).

3.2  |  Biofilm formation capability

All	the	isolates	evaluated	were	biofilm	forming,	and	according	to	the	
quantitative	assay	for	biofilm	formation,	52%	(26/50),	36%	(18/50),	 TA
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and	12%	 (6/50)	of	 them	were	strong,	moderate,	and	weak	biofilm	
producers, respectively. The prevalence of strong biofilm producers 
was	61.53%	(16/26)	in	VAP	samples	and	38.46%	(10/26)	in	burn	sam-
ples.	 In	this	study,	a	significant	association	was	observed	between	
being	 a	 strong	 biofilm	 producer	 and	XDR	 antimicrobial	 resistance	
(p = 0.003). Table 2 shows the distribution of antimicrobial resist-
ance	 patterns	with	 regarding	 the	 of	 various	 biofilm-	related	 genes	
and different biofilm formation categories. The pattern of biofilm 
related-	genes	among	strong	and	moderate	biofilm	producers	was	sig-
nificantly different compared with weak biofilm producers (Table 2). 
The distribution of antimicrobial resistance patterns among differ-
ent biofilm formation categories has been demonstrated in Table 3, 
indicating a statistically significant association between resistance 
to gentamicin, imipenem, ticarcillin/clavulanic acid, and ampicillin/
sulbactam	 and	 strong	 biofilm	 formation.	 Also,	 resistance	 to	 ampi-
cillin/sulbactam was significantly associated with moderate biofilm 
formation (Table 3).

3.3  |  Distribution of biofilm- related genes

The most prevalent gene among all A. baumannii isolates was csuD 
(98%,	49/50),	followed	by	ptk	(90%,	45/50),	ataA	(88%,	44/50),	ompA 
(86%,	43/50),	and	csuE	 (86%,	43/50)	 (Figure 1).	A	significantly	higher	
prevalence of ompA was observed in the strains isolated from burn com-
pared	with	VAP	patients	 (96.2%,	26/27,	p =	0.03,	OR	=	9.175;	95%	
CI	=	1.693–	23.80).	Twenty	six	(52%)	isolates	harbored	all	the	investi-
gated	genes.	All	 the	 isolates	harbored	more	 than	 four	biofilm-	related	
genes. There was a significant difference in the distribution of antimi-
crobial resistance patterns among strong biofilm producers (p = 0.001).

3.4  |  Biofilm production capacity among 
antimicrobial- resistant strains

The	 frequency	 of	 antimicrobial-	resistant	 strains	 was	 significantly	
different among isolates with various biofilm production capacities 
(Figure 2A). Table 3 shows the distribution of antimicrobial resist-
ance patterns among A. baumannii isolates with different capacities 

for biofilm generation, indicating a higher antimicrobial resistance 
rate in strong biofilm producers.

Regarding the prevalence of antimicrobial resistance patterns in 
bacteria with different biofilm formation capacities, strong biofilm 
producers	 were	 more	 commonly	 identified	 with	 XDR	 phenotype	
(Figure 2B).	A	significant	 relationship	was	observed	between	XDR	
phenotype	and	strong	biofilm	formation	(38.46%,	10/26,	p = 0.005). 
Also,	 the	 strains	 harboring	 all	 the	 assessed	 biofilm-	related	 genes	
showed a strong biofilm capacity and a significantly higher preva-
lence	of	XDR	phenotype	(47.62%,	10/21,	p = 0.001). However, there 
was	no	significant	relationship	between	the	distribution	of	biofilm-	
related	genes	and	biofilm	formation	capacity.	The	prevalence	of	XDR	
A. baumannii with different biofilm formation capacities has been 
depicted in Figure 2B.

Strong	 biofilm	 producers	 constituted	 88.7%	 (21/26)	 of	 the	
strains	harboring	all	biofilm-	related	genes.	Our	results	showed	that	
the	presence	of	all	biofilm-	related	genes	 increased	the	strength	of	
biofilm formation (p < 0.0001).

3.5  |  Pulsed- field gel electrophoresis fingerprinting

PFGE	was	 performed	 for	 all	 isolates.	 The	 PFGE	 results	 showed	 6	
clusters and 21 different pulsotypes, indicating a remarkable genetic 
diversity.	Among	all	patients,	cluster	1	was	the	most	prevalent	(38%)	
(Figure 3),	followed	by	clusters	2,	5,	4,	3,	and	6.	The	distribution	of	
cluster	 3	 was	 restricted	 to	 patients	 with	 VAP.	 The	 lowest	 preva-
lence	of	 clusters	was	 in	 clusters	3	 and	4	 (0.8%).	 In	 clusters	1	 and	
2,	clonality	was	higher	compared	to	other	clusters.	In	cluster	2,	the	
prevalence	 of	XDR	A. baumannii strains with a strong biofilm for-
mation capacity was significantly higher compared to other clusters 
(p = 0.013, Figure 3). There was no significant relationship between 
biofilm-	related	genes	and	clusters.

4  |  DISCUSSION

MDR	A. baumannii poses a great health challenge worldwide, and 
polymyxin	 antimicrobials	 such	 as	 colistin,	 as	 “salvage”	 therapy,	

Biofilm 
formation 
capacity

Antimicrobial 
resistance 
phenotype Biofilm- related genes p Value

MDR XDR cusE cusD ompA ataA Ptk

Strong 14 12 22 26 23 23 24 0.003

Moderate 17 1 15 17 14 17 16 0.01

Weak 6 0 6 6 6 4 5 0.31

Non-	biofilm 0 0 0 0 0 0 0 0

Total 37 13 43 49 43 44 45

Abbreviations:	AMP/S,	ampicillin-	sulbactam;	CFP,	Cefepime;	CTX,	ceftriaxone;	CTZ,	ceftazidime;	
GEN,	gentamicin;	IMI,	imipenem;	MEM,	meropenem;	T/C,	ticarcillin-	clavulanic	acid;	TZP,	
piperacillin-	tazobactam.

TA B L E  3 The	prevalence	of	
antimicrobial resistant strains with 
different biofilm formation capacities
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play an important role against these infections.24	 In	this	study,	all	
studied	isolates	were	susceptible	to	colistin	and	polymyxin-	B,	high-
lighting	 their	 importance	 as	 rescuing	 antimicrobials	 against	MDR	
A. baumannii	that	has	been	categorized	as	an	urgent	antimicrobial-	
resistant	 infection	 by	 the	 Center	 for	 Disease	 Control	 (CDC)	 and	
World	Health	Organization	(WHO).25	The	development	of	MDR	and	
especially	XDR	A. baumannii	infections	in	burn	and	VAP	hospitalized	
patients poses a great risk factor compromising their improvement 

and increasing morbidity and mortality in many cases.26,27 A. bau-
mannii infection is particularly common in hospitals and health envi-
ronments, where its development is mediated by biofilm formation. 
Within a biofilm niche, bacteria are up to 1000 times more resistant 
to antimicrobials than the planktonic form.25

The	increase	of	XDR	infections	greatly	concerns	health	profes-
sionals due to the high rate of antimicrobial therapy failure in the 
patients	admitted	 to	 the	burn	and	 ICU	wards.26,27 Regarding anti-
microbial	susceptibility,	26%	of	the	assessed	isolates	exhibited	XDR	
phenotype.	In	a	recent	study	in	Isfahan,	Iran,	16.1%	of	118	isolates	
of A. baumannii	were	XDR.	In	another	study	in	Zanjan,	Iran,	Zighami	
et	al.	reported	that	91%	of	A. baumannii	isolates	were	XDR,9,28 indi-
cating different frequencies in various geographical regions of the 
country.	In	our	study,	since	the	sample	size	was	relatively	small,	non-	
biofilm producer isolates were not found, and this limitation should 
be considered in future studies in the region.

Carbapenem antimicrobials such as meropenem and imipenem 
have activity against A. baumannii.29 However, the emergence of 
carbapenem-	resistant	A. baumannii	 (CRAb)	 is	 a	 serious	 concern	 in	
Iran	and	other	countries.30 Recently, Beigverdi et al. have reported 
considerably high resistance rates against meropenem and imipe-
nem among A. baumannii	 isolates	from	Iranian	patients	(83.6%	and	
81.1%,	respectively).30	In	this	study,	we	also	observed	a	high	resis-
tance rate of A. baumannii	against	imipenem	and	meropenem	(88%	
and	92%,	respectively).

As	antimicrobial	resistance	can	be	acquired	by	bacteria	within	
a biofilm niche via different molecular mechanisms, such as 

F I G U R E  1 The	frequency	of	biofilm-	related	genes	in	all	
examined	strains	isolated	from	different	clinical	sources

F I G U R E  2 (A)	The	percentages	of	antimicrobial	resistant	strains	–		resistant	strains	with	different	biofilm	formation	capacities.	*p	≤ 0.01;	
**p	≤ 0.001;	****p	≤ 0.0001.	(B)	The	biofilm	formation	capacity	of	isolates	with	different	antimicrobial	resistant	strains	resistance	patterns.	(C)	
The distribution of strong biofilm producing isolates among different antimicrobial resistant strains resistance patterns.
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horizontal	 gene	 transfer,	 plasmid	 transformation,	 and	 DNA	 up-
take,	the	development	of	MDR	and	XDR	strains	has	been	noted	to	
associated with biofilm formation on biotic and abiotic surfaces.22 
Accordingly,	one	of	the	key	findings	of	this	research	was	that	XDR	
strains	 tended	 to	 form	 stronger	 biofilm	 than	 MDR	 strains.	 The	

results	of	this	study	are	quite	different	from	those	of	Qi	et	al.	who	
reported	that	non-	biofilm	producer	A. baumannii	often	XDR.22	On	
the	other	hand,	Zighami	et	al.	and	Khoshnood	et	al.	reported	that	
all	MDR	and	XDR	A. baumannii isolates had a strong biofilm forma-
tion capacity, highlighting that these strains were often associated 

F I G U R E  3 Pulsed	field	gel	electrophoresis	was	analyzed	via	Bionumerics	using	the	UPGMA	algorithm	at	the	position	tolerance	of	1.5%	
and	the	cut	off	of	80%.
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with	ICU-	related	infections.9,31 Shenkutie et al. showed that bio-
film	formation	would	induce	irreversible	resistance	in	XDR	A. bau-
mannii strains.32

In	 this	 study,	 we	 showed	 that	 the	 presence	 of	 a	 full	 set	 of	
biofilm-	related	genes	 (ompA, ptk, ataA, csuE, and csuA) predicted 
strong	biofilm	formation	and	variable	antimicrobial	resistance.	An	
analysis	of	the	biofilm-	related	genes	of	A. baumannii was published 
by	Liu	et	al.	It	was	found	that	abaI and csuE	were	present	in	59.8%	
of the samples and ompA	 in	100%	of	the	samples.33 A baumannii 
isolates	from	meat	of	different	origins	are	examined	for	the	pres-
ence	of	biofilm-	related	genes	by	Elbehiry	et	al.	In	their	study,	the	
prevalence of casE, ompA, bap, and csgA	was	72%,	60%,	52.7%,	and	
25%,	respectively.34

Literature	 information	 and	 our	 results	 suggest	 that	 ompA-	
mediated adhesion contributes significantly to biofilm formation 
in A. baumanni-	associated	nosocomial	infections,	especially	in	burn	
and	VAP	patients.35,36	In	this	study,	ompA	was	significantly	and	more	
frequently	detected	 in	burn	 than	 in	VAP	samples.	The	ompA	pro-
tein mediates the interaction between bacteria and epithelial cells.37 
Previous studies have reported a positive relationship between the 
presence	of	 biofilm-	related	 genes	 such	 as	ompA and antimicrobial 
resistance.9,38

Being the most abundant porin in A. baumannii,	the	role	of	OmpA	
in drug resistance was more prominent in disruption mutants of the 
gene, which indicated reduced resistance to imipenem, meropenem, 
nalidixic	 acid,	 and	 chloramphenicol.	 Also	 diffusion,	 studies	 shows	
that	OmpA	possibly	couples	with	efflux	pumps	and	forces	out	an-
tibacterial compounds from the periplasm.39	Overproduction	of	this	
gene is a risk factor for the mortality rate of nosocomial bactere-
mia and pneumonia caused by A. baumannii.	Besides,	the	expression	
level	of	OmpA	measured	by	qRT-	PCR	can	be	used	as	a	rapid	diag-
nostic	 index	 for	antibiotic-	resistant	A. baumannii.40	 In	 this	study,	a	
strong capacity for biofilm formation significantly correlated with 
the	presence	of	all	the	examined	biofilm-	related	genes,	which	was	in	
agreement	with	the	results	of	Amin	et	al.36 However, we observed 
a significant association between being a strong biofilm producer 
and showing antimicrobial resistance, which was in contrast with 
the	report	of	Amin	et	al.	who	asserted	that	non-	MDR	strains	were	
more capable of generating strong biofilm.36 This was inconsistent 
with our observation indicating a higher biofilm formation capacity 
in	XDR	than	in	MDR	A. baumannii strains. There are several reports 
suggesting	that	XDR	bacterial	strains	form	stronger	biofilm	than	an-
timicrobial	-	sensitive	strains,9,41,42 which was in parallel to our results 
showing	 the	higher	biofilm	 formation	capability	of	XDR	compared	
to	MDR	strains.	In	contrast	with	our	results;	however,	a	number	of	
studies have reported that sensitive strains form more strong biofilm 
than	MDR	bacteria.22,42,43

Besides,	in	our	study,	harboring	all	the	assessed	biofilm-	related	
genes	significantly	correlated	with	XDR	phenotype,	suggesting	a	role	
for biofilm formation in the acquisition of antimicrobial resistance, 
especially in healthcare facilities and among the bacteria forming 
biofilm on biotic and abiotic surfaces.44 Recently, Shenkutie et al. 
have reported that biofilm formation by A. baumannii during hospital 

colonization induces transient antimicrobial tolerance in sensitive 
strains	but	a	more	stable	resistance	in	XDR	strains.32	Genetic	relat-
edness is confirmed by several methods and has been addressed by 
surveillance, subtyping, and epidemiological studies on A. baumannii 
outbreaks.45

In	this	context,	Salguero	et	al.	have	recently	shown	in	an	epidemi-
ological	study	that	matrix-	assisted	laser	desorption/ionization-	time	
of	 flight	 (MALDI-	TOF)	 mass	 spectrometry	 (MS)	 and	 repetitive-	
element	PCR	(Rep-	PCR)	are	not	suitable	methods	to	replace	PFGE	in	
the epidemiological evaluation of A. baumannii.46

In	 the	present	 study,	 genome	 fingerprinting	was	 confirmed	by	
ApaI-	digested	PFGE,	which	is	the	gold	standard	for	determining	ge-
netic relatedness among A. baumannii clinical isolates.47 The analysis 
revealed	 that	 the	distribution	of	XDR	phenotype	was	significantly	
high	in	cluster	No.	2;	however,	no	significant	correlation	was	found	
between clusters and biofilm formation.

Our	results	were	similar	to	those	of	Bardbari	et	al.	Three	Iranian	
hospitals	were	sampled	for	typing	of	MDR	A. baumannii strains by 
PFGE	 to	 identify	 the	 strains	 they	 contained.	 Eight	 clusters	 were	
identified,	with	 two	main	clusters	accounting	 for	30%	and	23%	of	
the	sample.	In	their	study,	they	showed	that	there	was	no	correlation	
between	biofilm	formation	and	PFGE	patterns.48

The	PFGE	method	was	used	in	a	study	conducted	by	Ceparano	
et al. in which 102 A. baumannii	 strains	 isolated	 from	59	 patients	
were genotyped by this method. Two main patterns were observed 
as	a	result	of	PFGE	typing.	The	results	indicated	that	approximately	
40%	 of	 the	 genotyped	 strains	 were	 associated	 with	 healthcare-	
associated	infections,	the	majority	of	which	were	VAP	in	both	infec-
tion patterns.49

In	another	 study	conducted	 in	an	academic	hospital	 in	Turkey,	
PFGE	was	used	to	determine	the	type	of	69	strains	of	A. baumannii. 
It	has	been	suggested	 that	different	clones	may	be	present	 in	 the	
same hospital departments, while the same clones may be present 
in different departments.50

This study investigated the antimicrobial resistance patterns 
and	biofilm	 formation	capacities	of	MDR	A. baumannii strains col-
lected	from	two	Tehran's	hospitals,	Iran,	by	the	molecular	detection	
of	 biofilm-	related	 genes.	 To	 the	 best	 of	 our	 knowledge,	 there	 are	
no previous reports on biofilm formation capacity and the distribu-
tion	of	biofilm-	related	genes	in	A. baumannii,	followed	by	PFGE	fin-
gerprinting.	Our	findings	suggested	that	a	strong	biofilm	formation	
capacity	mediated	by	biofilm-	related	genes	might	contribute	to	the	
acquisition	of	antimicrobial	resistance,	especially	XDR	phenotype,	in	
A. baumannii	found	in	the	burn	and	ICU	wards.

5  |  CONCLUSION

In	 the	present	 study,	 the	distribution	of	biofilm-	related	genes	and	
antimicrobial resistance patterns were determined in A. baumannii 
isolated	 from	burn	 and	VAP	patients.	We	 also	 checked	 for	 a	 pos-
sible correlation between biofilm formation and antimicrobial re-
sistance	 patterns.	 The	 results	 demonstrated	 that	 XDR	 phenotype	
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significantly correlated with a strong biofilm formation capacity, 
and	 biofilm-	related	 genes	 showed	 a	 significantly	 high	 prevalence	
in	XDR	A. baumannii	clinical	isolates.	Our	results	indicated	that	the	
prevalence of antimicrobial resistance correlated with strong biofilm 
formation, suggesting the transmission of resistance mechanisms 
among	bacterial	strains	within	the	biofilm	niche.	 It	 is	suggested	to	
use biofilm disrupting agents to prevent biofilm formation, especially 
on	hospital	surfaces,	to	reduce	the	extent	of	the	infections	caused	
by	MDR	and	XDR	A. baumannii strains, particularly by designing pro-
spective studies.
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