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Abstract: Influenza D virus (IDV) has been identified in several continents, with serological evidence
for the virus in Africa. In order to improve the sensitivity and cost–benefit of IDV surveillance in Togo,
risk maps were drawn using a spatial multicriteria decision analysis (MCDA) and experts’ opinion to
evaluate the relevance of sampling areas used so far. Areas at highest risk of IDV occurrence were
the main cattle markets. The maps were evaluated with previous field surveillance data collected in
Togo between 2017 and 2019: 1216 sera from cattle, small ruminants, and swine were screened for
antibodies to IDV by hemagglutination inhibition (HI) assays. While further samples collections are
needed to validate the maps, the risk maps resulting from the spatial MCDA approach generated
here highlight several priority areas for IDV circulation assessment.
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1. Introduction

In 2011, influenza D virus (IDV) was detected for the first time in pigs with influenza-like illness
in the United States [1]. Since then, several studies have shown presence of the virus or anti-IDV
antibodies in other species, including cattle, small ruminants, camelids, horses, and feral-swine [2–5].
The distribution of IDV is very wide since the virus has already been detected in America [6–9],
Europe [10–13], Asia [14,15], and Africa [2], although the circulation of IDV in these continents,
particularly Africa, is poorly understood. In Africa, serological evidence of the IDV circulation has been
found in Benin, Togo, Morocco, and Kenya, but the virus has not yet been isolated on the continent [2].

Experimental infection with IDV is associated with mild to moderate pathogenicity in calves [8,16]
and in the field, IDV is more often detected in cattle with respiratory clinical signs rather than without
(OR = 2.94), although not significantly [17]. IDV has, thus, been postulated to play a role in the bovine
respiratory complex [8,16–18].
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Active surveillance of animal influenza A viruses has been carried out in Togo from 2008–2013 [19],
and again since 2017 [20]. IDV circulation was first assessed in a preliminary study with samples from
2009 through 2015. Twenty one percent of the cattle sera tested in 2015 were seropositive for IDV [2].
Because of field, personnel, and economic limitations, surveillance activities are difficult to initiate
and maintain in Togo and other countries in Africa. It is, therefore, important that any resources
spent on such activities should be optimally utilized. In the present study, risk maps were drawn
with the aim to implement a risk-based surveillance system of IDV in Togo. To increase the efficiency
and sensitivity of IDV surveillance, risk maps of IDV occurrence in Togo were generated using a
spatial multicriteria decision analysis (GIS-MCDA) and compared with available surveillance data.
GIS-MCDA is based on existing knowledge of the disease but contrary to statistical models, it does not
require reliable epidemiological disease data which are not available for IDV in Togo [21]. GIS-MCDA
operates in several well-defined steps: risk factors identification and definition of a mathematical
relationship between risk factors and disease occurrence, risk factors weighting, combination of risk
factors, risk maps drawing, and finally, uncertainty analysis and map validation when possible. Spatial
MCDA has been used in Africa to assess the likelihood of occurrence of Rift valley fever and African
swine fever, and the likelihood of highly pathogenic avian influenza H5N1 virus introduction and
spread [22–24].

2. Materials and Methods

2.1. Surveillance Data

Through the national disease surveillance program, 2412 samples were collected from cattle,
small ruminants, and pigs, in markets and farms in 22 different locations in Togo between 2017 and
2019. These samples included 1196 nasal swabs and 1216 sera (not necessarily paired samples from the
same individuals). Nasal swabs were pooled in groups of 5 and RNA extraction was carried out using
the RNeasy®Mini Kit (Qiagen). RNAs were screened for IDV by RT-qPCR using One-step RT-PCR
kit (Qiagen) with primers and TaqMan probe targeting PB1 gene, as described by Hause et al. [1].
All sera were treated with receptor destroying enzyme (RDE, Seika) following the manufacturer’s
instructions, diluted 10 folds, and hemadsorbed on packed chicken red blood cells. Hemagglutination
inhibition (HI) assays were performed as previously described [16], with four hemagglutination units of
D/bovine/France/5920/2014 and 1% chicken red blood cells. Based on our previous study carried out on
African sera, a single antigen was used in HI tests, although two distinct genetic and antigenic lineages
of IDV have been reported so far in North America and Europe (D/swine/OK and D/bovine/660) [7]
(no significant differences were observed between the 2 antigens in HI assays on African sera [2]).
Sera with antibody titers ≥ 10 were considered positive.

2.2. Identification of Risk Factors and Experts Survey

First, nine international IDV experts were selected based on their recognized IDV experience.
As the nine international experts did not know the Togolese context, four local experts from the
Togolese veterinary services and field veterinarians were also selected for their knowledge on the
livestock system, cattle market management, and local wildlife. Nine risk factors associated with
IDV were selected based on the literature and submitted to international experts for their evaluation
(Table 1).
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Table 1. Risk factors selected for risk mapping of IDV occurrence.

Risk Factor Explanation References

Swine density IDV was discovered in swine and it is efficiently
transmissible in this species. [1,25]

Cattle density

Cattle are susceptible to IDV and harbor the highest
seropositivity rates. Cattle are considered as the main
host of the virus. IDV is also transmissible by aerosol

between cattle.

[8,12,13,16,26,27]

Small ruminants density Specific antibodies against IDV were detected in small
ruminants, justifying their density as a risk factor. [3,26]

Presence of respiratory
clinical signs in cattle

Several studies report that IDV is more commonly
isolated from cattle with respiratory clinical signs and

can be airborne transmitted among cattle.
[8,16–18]

Cattle age Calves appear more susceptible to IDV infection than
adults. [8,27]

Proximity to cattle market

Some cities in Togo receive cattle from all over the
country and sometimes from neighboring countries.
Cattle can stay in fields around the city waiting to be

transferred to the slaughterhouse or to be sold to other
farmers. Cattle markets represent focus points where
cattle of different sanitary status and from different

origins are parked, likely leading to an easier circulation
of the virus.

Local expert opinion

Transhumance areas

Transhumance occurs each year in Togo between January
and May. During this period, about 50,000 cattle come
from Sahelian countries and are parked on dedicated
fields, with the possibility of contact with local cattle.
Trade with local farmers occurs during this period.

Transhumance areas and periods were therefore
considered a risk factor for IDV occurrence.

Local expert opinion

Proximity to wildlife

In wildlife, IDV has been detected only in feral swine but
because of the wide range of hosts susceptible to

infection, wild ruminants and other species from wildlife
could play a role in transmission.

[5]

Proximity to water

Water areas can represent focus points where cattle from
different farms can have close contact between each other

and with wildlife, extensive breeding being the main
breeding system for cattle and small ruminants in Togo.

Local expert opinion

In order to assign a weight for each risk factor and to determine the relationship between the risk
of occurrence and risk factors, international IDV experts were asked to answer an online questionnaire
developed using the koBo Toolbox (https://www.kobotoolbox.org/). The questionnaire was composed
of three parts. First, experts were asked to select relevant risk factors among those that were previously
identified (Table 1). Second, they were asked to characterize the relationship between each selected
factor and the risk of IDV occurrence by selecting from a list of several mathematical functions (linear,
sigmoidal, quadratic and linear bi-directional). For non-linear relationships, experts could specify
thresholds. To make this step easier without influencing answers an example was used with malaria,
which illustrated the relationship between mosquito density and malaria risk. Third, we used the
analytical hierarchy process (AHP) to assign a weight to each risk factor [28]: experts were asked to
fill in a pair-wise comparison matrix where each factor was compared with the others, relative to its
importance, from 1/9 (“extremely less important”), through 1 (“equal importance”), to 9 (“extremely
more important”). The relationships and thresholds were also discussed with the local experts who
were often the best qualified individuals to define the relationships and the thresholds due to their direct
field expertise. When it was not possible to specify a threshold, the default relationship selected was
linear. Some risk factors were clearly relevant to sampling schemes, but they could not be represented
on a map. Such risk factors were included in the expert opinion questionnaire, but then removed to
generate the maps. The weights of the remaining risk factors used to make the map were corrected as
described below, in order to keep risk values between 0 and 1.

https://www.kobotoolbox.org/
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2.3. Spatial Data Collection and Geoprocessing

The raster density maps of domestic animals (pigs, goats, sheep, and cattle) were obtained from
the portal to spatial data and information Geonetwork from the FAO (http://www.fao.org/geonetwork/

srv/en/main.search?any=Livestock+GLW&hitsPerPage=10). The rasters corresponding to sheep and
goat densities were congregated to obtain a small ruminants density map. The vector map of water
area distribution was obtained from DIVA-GIS (https://www.diva-gis.org/). The vector map of cattle
markets places was generated with data from the ministry of agriculture of Togo and from a shapefile
of cities loaded from DIVA-GIS. As we were unaware of any wildlife distribution data for Togo, a vector
map showing distribution of the main forests and wildlife protected areas of Togo, extracted from
OpenStreetmap of QGIS, was used as a proxy. The vector map of transhumance area was drawn thanks
to data from the ministry of agriculture of Togo. In order to combine the different layers, all initial
layers were geoprocessed as follows. First, all vector layers were transformed in raster files. Second,
the layers’ values were modified to range between 0 and 1 by using the fuzzy functions corresponding
to the relationships selected by the experts [29]. The layers where the risk is linked to proximity (cattle
markets, water, wildlife, and transhumance areas), were geoprocessed before fuzzy transformation
by using the Euclidean distance function in ArcGIS. While the distance to the outer border of water,
wildlife, and transhumance areas were considered, cattle markets were treated as centroids. All layers
were standardized with the same resolution: 0.0083 × 0.0083 decimal degree.

2.4. Generation of the Final Maps

Two maps were obtained for each expert, one corresponding to the transhumance period and
a second one corresponding to the period outside the transhumance. For each international expert,
a map was drawn by applying the weight previously calculated from the pairwise matrix to the
corresponding layer. Because maps from the different experts were similar, a mean weight for each
risk factor was calculated for both periods. This final weight was then used to generate the final maps
applying the following equation to risk factors layers, where n is the number of risk factors, wi is the
weight, and RFi is the value of risk factor i.

Suitability index =
n∑

i=1

wi∗RFi, 1 ≤ i ≤ n

To generate the maps corresponding to the period outside the transhumance or those where some
risk factors were removed as they could not be spatially represented, the relevant layers were removed
from the model and the other weights were corrected using the following equation. In this equation,
wcRFi

is the corrected weight for the risk factor i, wRFi is the original weight previously calculated by
the expert for the risk factor i, and wRFex corresponds to the weight of risk factors which were excluded
with n as the number of excluded risk factor.

wcRFi
=

wRFi

1−
∑n

j=1 wRFex
, 1 ≤ j ≤ n

2.5. Uncertainty Analysis and Validation

To assess the robustness of the model and determine the impact of weight variations on the final
maps, an uncertainty analysis was carried out. For this step, all the layers corresponding to each risk
factor were converted into shapefiles. The shapefiles were then merged to obtain a final shapefile with
all the risk factors using the animal density shapefile for the spatial joining process as a reference in
order to have the maximum spatial resolution. The dbf file from the final shapefile was processed in
Rstudio for uncertainty analysis measuring the standard deviation of each point of the map when
the weight of each risk factor varied from −25% to + 25% of the weights defined by the experts [30].
When the weight of a given risk factor was adjusted, the weight of the others was modified in order

http://www.fao.org/geonetwork/srv/en/main.search?any=Livestock+GLW&hitsPerPage=10
http://www.fao.org/geonetwork/srv/en/main.search?any=Livestock+GLW&hitsPerPage=10
https://www.diva-gis.org/
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to keep a sum of all weights equal to 1. In total, 100 maps (during transhumance and outside the
transhumance period) were generated and the standard deviation was mapped on the final shapefile.

2.6. Risk Maps Comparison with Serological Results

Risk maps were visually compared with serological results obtained from cattle, small ruminants,
and swine. Among all the sera collected over a given area, if at least one was found seropositive for
IDV, the area was considered as positive for the comparison with risk maps.

3. Results

3.1. Surveillance Data

All nasal swabs were found negative for IDV by RT-qPCR regardless of species sampled.
A seropositivity rate of 4.5% was found in cattle and of 3.8% in small ruminants. All sera samples
from swine were seronegative (Table 2). Surprisingly, 43 positive sera were collected during the
transhumance period and only three were outside the transhumance period.

Table 2. Number of samples collected by species and results after analysis.

Species Nb. Sera
Samples

Nb. IDV
Seropositive

Samples

Positive Sera (%)
[Median HI Positive

Titer; HI Titers Range]

Nb. Nasal
Swabs

Nb. IDV
Positive Swabs

Cattle 399 18 4.5
[20; 10–320] 10 0

Small
ruminants 737 28 3.8

[40; 10–160] 840 0

Swine 80 0 0 346 0

Nb: number.

3.2. Risk Mapping

Three of the nine international experts from three different continents answered consistently to all
questions and their answers could be used for the present study. According to all experts, the most
important risk factors of IDV occurrence were those directly linked to cattle; namely, cattle density,
cattle markets, presence of respiratory clinical signs, and cattle age. A linear increasing relationship in
animal densities was used, as no specific threshold was identified by the experts. Sigmoid decreasing
relationships were used for the proximity with markets, wildlife, water, and transhumance areas,
with the greatest risk between 0 km and threshold a, decreasing risk thereafter and negligible after
threshold b (Table 3). Risk factors “cattle age” and “respiratory clinical signs in cattle” were ignored for
the maps because they could not be spatially represented.

Table 3. Weights, risk relationships, and thresholds attributed by experts.

Risk Factor Mean Weight Risk Relationships * Thresholds

Cattle density 0.38 Linear increasing a = minimum raster layer value
b = maximum raster layer value

Small ruminants density 0.08 Linear increasing a = minimum raster layer value
b = maximum raster layer value

Swine density 0.11 Linear increasing a = minimum raster layer value
b = maximum raster layer value

Proximity to water 0.01 Sigmoid decreasing a = 2.5 km
b = 5 km

Proximity to cattle market 0.24 Sigmoid decreasing a = 5 km
b = 10 km

Proximity to wildlife 0.02 Sigmoid decreasing a = 2 km
b = 4 km

Proximity to transhumance areas 0.16 Sigmoid decreasing a = 0.5 km
b = 2.5 km

* When risk relationships proposed by the experts were different, a consensus was derived giving more importance
to local experts.
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3.3. Suitability Map, Uncertainty Analysis, and Serological Comparison

The most suitable areas for IDV occurrence were those containing cattle markets (spots with
highest risk values on Figure 1A) and areas with high cattle density (diffuse yellow areas on Figure 1A).
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Figure 1. Suitability map for occurrence of influenza D virus in Togo. (A) Outside the transhumance
period. (B) During the transhumance period.

During the transhumance period, areas where cattle from neighboring countries are kept showed
an increased IDV occurrence risk (Figure 1B). Irrespective of the period, some areas seemed at higher
risk than others, especially cattle markets located in the North-West of Togo.

Regarding the uncertainty analysis, for both maps, the maximum value of standard deviation was
far from the 0.1 value, supporting the robustness of the model (Figure 2). Important changes in the
weights defined by experts had a very weak impact on the final model. Variations of more than 20% in
the value of the weight previously defined by experts induced a maximum change of 0.0287 of the
risk value.
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transhumance period.

Because of the non-random sampling plan, it was not possible to correctly validate the maps
using the available serological results. Nevertheless, a comparison of risk maps and serological results
highlighted some high-risk areas of IDV occurrence, which had not been previously considered for
sample collection (Figure 3). Encouragingly, visual comparison of risk maps and serological results
showed that most of the sampled areas with no seropositivity were deemed at low risk using our
model. Seropositive samples came from a mix of areas considered as high and low risk (Figure 3).
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4. Discussion

In the present study, risk factors and areas at higher risk of IDV occurrence were identified in
Togo. Cattle markets and high-density areas seem at higher risk of IDV occurrence, and especially the
cattle market in the North-West of Togo, which has not been sampled to date. According to uncertainty
analysis, the North of Togo is the most variable region when changing weights, with a standard
deviation value which remained inferior to 0.1.

We were unable to detect IDV in any nasal swab collected during the study period, likely because
only a limited number of nasal swabs had been collected in cattle, the main host of the virus.
Alternatively, the negative results could be due to the short time window to detect the virus since IDV
is shed for about 10 days in calves under experimental conditions [16]. Clearly, increasing sampling
intensity and prioritizing young cattle with respiratory clinical signs is necessary; both these factors
were strongly associated with IDV according to expert’s opinion. Seropositivity rates we calculated
may also have been underestimated because HI assays are less sensitive than ELISAs, which should
be preferred for further serological analyses [31], even if previous IDV seroprevalence in Africa were
calculated from HI assays data as well [2].
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As no IDV vaccination is in place, all the positive sera came from natural infections.
The seropositivity rates observed in cattle and small ruminants were lower than those reported
in Europe, North America, Asia, or Africa [2,3,12,13,15,26,27]. Our IDV seroprevalence estimated in
Togo was also higher in 2015 than in 2017–2019, reaching 21% in cattle [2]. Interestingly, the HI titers in
seropositive animals were also lower in the current samplings than in the previous years. It should also
be noted that IDV has not yet been isolated in Africa, and the local strains may be antigenically distinct
from the strain used for the HI assays (D/bovine/France/5920/2014) as was previously suggested [7].
The temporal differences in the seropositivity rates in cattle in Togo could also be explained by
differences in locations of samples collection. In 2015, most samples were collected in the Adetikopé
market, which receives cattle from throughout Togo and neighboring countries. In the present study,
samples were collected in peri-urban farms in Lomé, areas where cattle have less contact with animals
from other places.

Interestingly, in the present study, 43 positive sera among 723 were collected during the
transhumance period and only three positive sera among 493 were collected outside the transhumance
period. These results should, however, be considered with caution. Indeed, all the 399 cattle sera were
collected during the transhumance period, which represents a significant bias. Another significant bias
is the collection areas, since some places were sampled only during transhumance period and some
others were only sampled outside the transhumance period. According to the risk maps (Figure 1),
the North of Togo (where the highest density of cattle is observed) is at higher risk of IDV occurrence;
however, the region was poorly sampled during the collection period. Nevertheless, cattle markets are
at risk and should be prioritized for future sampling campaigns.

The MCDA approach has some inherent limits that should be taken into consideration. The method
can only consider risk factors which can be mapped. To address this limitation, risk factors that could
not be represented spatially were used in conjunction to the map, to further inform future sampling
strategies. While no clear guideline on the number of experts to select for eliciting health topics can be
found [32], only three IDV experts fully answered the questionnaire. This number is very limited, but
it is in line with the literature [33], and the answers from the three experts were very similar.

An additional caveat of the final maps is that they are influenced by the quality of the layer data
used to generate them. As far as animal density is concerned, the raster layers available from the FAO
were generated with data from 2010, 7 to 9 years prior to the study period. According to local experts,
while animal density has increased for cattle, small ruminants, and pigs, the areas with the highest
animal densities in Togo have not changed. All the density animal raster layers showed « no data »
for two geographic locations corresponding to wildlife protected areas (Figure 2). According to local
experts, the density of domestic species is low in these locations but probably not null. This should,
however, not represent an important issue since the dominating risk factors in the two areas are
proximity to water and proximity to wildlife, both risk factors with the lowest weights in the model.
No pigs were recorded from the FAO dataset in the North of Togo, which was not representative of the
true density according to the local experts (personal communications). The risk of occurrence of IDV
in the North of Togo is thus probably underestimated because of these missing data.

Finally, in the risk factors, we chose to differentiate “proximity to water” and “cattle markets”,
despite both being gathering risk factors. We rationalize this as they were given different levels of risk
as underlined by the experts’ answers. Indeed, cattle in cattle markets were coming from throughout
Togo and sometimes from other countries, whereas cattle and other species at water areas were coming
from a much more limited geographic area.

The validation of knowledge-driven models like MCDA is very challenging because of the absence
of complete epidemiological data, which in itself is often a driving factor to why the MCDA approach
is used in the first place. Despite this challenge, spatial MCDA has been validated in several studies in
different countries and on different diseases (for example avian influenza in Asia and African swine
fever and Rift valley fever in Africa), underlining the benefit of using this method for risk-based
surveillance [22,23,34–36]. In our study, the visual comparison of risk maps with serological results
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from the field showed that most of the sampled areas with negative results were at low risk of IDV
occurrence whereas the positive samples were in high and low risk areas of the maps. Positive
serological results in low risk areas can be explained by the fact that ruminants are bred to an older age
in Togo than in western production systems, resulting in a higher probability to identify a seropositive
ruminant which could have been infected by IDV months or years earlier and possibly in another
location. Because of the non-random approach used to collect the field samples, it was not possible
to calculate the exact IDV seroprevalence for each sampled area, which is necessary to more fully
validate the map. Some risk areas were not sampled, including the area with the highest risk (0.75)
in the North-West of Togo. Moreover, no samples were collected in cattle, the main host of the virus,
in cattle markets, and in the North of Togo, high risk areas. Nevertheless, the highest titers in cattle
were observed in samples collected during the transhumance period at a transhumance area, which is
consistent with transhumance as a risk factor for IDV occurrence.

Clinical signs in cattle are not specific of IDV, and IDV surveillance represents a significant financial
and human cost. Thus, any method that helps to optimize future surveillance is valuable in aiding the
understanding of IDV circulation in Africa and its evolution. Despite several limits, spatial MCDA is
rapid to implement and can be very useful to identify areas where surveillance should be focused.
In this context, the use of risk maps is a powerful tool to maintain an efficient surveillance with a
better-balanced cost–benefit ratio.
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