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A neural network architecture models how humans learn and consciously perform
musical lyrics and melodies with variable rhythms and beats, using brain design
principles and mechanisms that evolved earlier than human musical capabilities, and
that have explained and predicted many kinds of psychological and neurobiological
data. One principle is called factorization of order and rhythm: Working memories
store sequential information in a rate-invariant and speaker-invariant way to avoid using
excessive memory and to support learning of language, spatial, and motor skills. Stored
invariant representations can be flexibly performed in a rate-dependent and speaker-
dependent way under volitional control. A canonical working memory design stores
linguistic, spatial, motoric, and musical sequences, including sequences with repeated
words in lyrics, or repeated pitches in songs. Stored sequences of individual word
chunks and pitch chunks are categorized through learning into lyrics chunks and
pitches chunks. Pitches chunks respond selectively to stored sequences of individual
pitch chunks that categorize harmonics of each pitch, thereby supporting tonal music.
Bottom-up and top-down learning between working memory and chunking networks
dynamically stabilizes the memory of learned music. Songs are learned by associatively
linking sequences of lyrics and pitches chunks. Performance begins when list chunks
read word chunk and pitch chunk sequences into working memory. Learning and
performance of regular rhythms exploits cortical modulation of beats that are generated
in the basal ganglia. Arbitrary performance rhythms are learned by adaptive timing
circuits in the cerebellum interacting with prefrontal cortex and basal ganglia. The same
network design that controls walking, running, and finger tapping also generates beats
and the urge to move with a beat.

Keywords: music, lyrics, melody, rhythm, consciousness, musical beat, Adaptive Resonance Theory, working
memory
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1. INTRODUCTION

1.1. Lyrics, Melodies, Rhythm, and Beat
This article proposes brain design principles, mechanisms, and
architectures that enable humans to learn and consciously
perform lyrics and melodies with variable rhythms and beats.
There are currently a number of excellent articles and books that
discuss facts about music and about how our minds perceive it
(e.g., Gjerdingen, 1989; Howell et al., 1991; Deutsch, 1992, 2013;
Krumhansl, 2000; Repp, 2005, 2006a,b; Levitin, 2006; Zatorre
et al., 2007; Thompson, 2009; Large, 2010; Patel and Iversen,
2014; Large et al., 2015; Nguyen et al., 2018; Rajendran et al.,
2018; Damm et al., 2020). The current article complements
these contributions by developing a neural model of the brain
mechanisms that regulate how humans consciously perceive,
learn, and perform music. The article’s exposition is non-
technical and illustrates its proposals with analyses of specific
melodies and songs.

The article proposes how music builds upon brain
mechanisms that are used in multiple perceptual, cognitive,
and motor processes. It shows how variations of the same types
of neural circuits that can store lyrics or melodies can be used
to oscillate with a beat. These unifying mechanistic insights
contribute to understanding how music may have emerged
through evolution from brain processes that earlier evolved
to carry out more basic psychological functions. Indeed, these
variations have elsewhere been used to qualitatively explain
and quantitatively simulate on the computer many kinds of
psychological and neurobiological data.

1.2. Bach’s Partita No. 1 for Piano
Illustrates That Musical Groupings Are
Short
I will first introduce musical notation to illustrate that many
musical groupings are short. I will then explain how short musical
groupings make possible how we learn and perform music.

Figure 1 copies the first page of Johann Sebastian Bach’s
Partita No. 1. The incomparable Glenn Gould plays it here: https:
//www.youtube.com/watch?v=7pj5r8anMdc. Figure 1 illustrates
the information that musical notation embodies. A brief review
of musical notation is included to make the article accessible to
those who do not read music.

Piano sheet music is organized into two separate rows of notes.
The treble clef, also called the G clef, describes higher sounding
notes, which are usually played with the right hand. The bass clef,
also called the F clef, describes lower sounding notes, which are
usually played with the left hand.

Consider the notes to the right of the treble clef in the top
row of the music. They are linked, or grouped together by
horizontal bars, or beams, either above or below the notes that
they link. These groupings influence how the piece is practiced
and encoded in long term memory.

The first horizontal bars lie above the first four notes printed
in the treble clef. The next horizontal bars lie above the fifth
through eighth notes. Each bar also indicates the relative speed
with which these grouped notes are played. Two bars command

the right hand to play these notes twice as fast as notes that are
linked by one bar, such as the notes below them that are played
by the left hand. Finer structure is depicted among the second
and third notes of the treble clef that are linked by a triple bar
and are therefore played even faster. The jagged line, or chevron,
above the second note commands that note to be played even
more quickly as part of a trill.

The two [ shaped symbols that are printed right after the clefs
define the key: They require that notes b and e be played on the
“flat” black keys that lie on the piano keyboard just before the
white keys for b and e.

The music is further divided by vertical lines, which separate
the music into bars. The C shapes to the right of the clefs and
the [ symbols denote 4/4 time. The upper 4 means that there are
four beats in a bar, and the bottom number 4 says which kind of
note will receive one beat, which, in this case, is the quarter note.
The first black note to be played by the left hand is a quarter note.
Thus, the notes within each bar are played in four beats that are
equally spaced through time.

This segment of music illustrates that groupings are often
short, here four or five notes long, with more notes playable in
a given amount of time at a faster speed. This fact raises basic
questions, including:

• Why are musical groupings so short?
• How do musical key and harmonic relationships constrain

the notes that are played in musical groupings?
• How do variable numbers of notes get fit to an underlying

beat?

1.3. Musical Grouping: Harmonics, Pitch,
Streams, Arpeggios, and Tonality
The kind of grouping that is marked in a piece of music
like Bach’s Partita is influenced by several different kinds of
grouping constraints that are due to the physics of sound and the
properties of hearing.

The physics of sound determines one crucial source of
grouping; namely, the pitch of a sound, or note, in music. The
pitch of a sound is a psychological percept that determines
how high or low the sound is consciously heard in any
piece of music. The perceived pitch typically depends on
the fundamental auditory frequency of the sound, with
higher fundamental frequencies sounding like higher pitches.
Harmonics, or frequencies that are integer multiples of the
fundamental frequency, are overtones that all contribute to the
percept of pitch. Thus the pitch percept is the result of another
form of grouping. In particular, the harmonics that a pitch
percept represents are bound together to learn a pitch category.

Figure 2 (left panel) summarizes the Spatial Pitch NETwork,
or SPINET, model that I developed with Michael Cohen
and Lonce Wyse (Cohen et al., 1995) to explain the brain
processing stages that begin with incoming sounds and end
with pitch categories. The SPINET model was used to
quantitatively simulate many human psychophysical data about
pitch perception, including data about: the phase of mistuned
components, shifted harmonics, dominance region, octave shift
slopes, pitch shift slopes, pitch of narrow bands of noise, rippled
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FIGURE 1 | Page 1 from the score of J. S. Bach’s Partita #1 for piano, BWV 825.

noise spectra, tritone paradox, edge pitch, and distant modes.
The amount of psychophysical data that the model explains and
simulates assured that SPINET could be used to provide inputs to
auditory streaming processes.

Auditory streams are another source of grouping that enables
the Bach Partita, and indeed all other music, to sound like a
continuous flow of sound, even though we consciously hear

only discrete notes through time. Gjerdingen (1994, p. 335) has
discussed the conscious perception of auditory streams during
music, noting that “a great deal of the motion perceived in
music is apparent rather than real. On the piano, for example,
no continuous movement in frequency occurs between two
sequentially sounded tones,” say in an arpeggio, “though a listener
may perceive a movement from the first tone to the second.”
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FIGURE 2 | (left panel) The Spatial Pitch Network, or SPINET, model (Cohen et al., 1995) shows how a log polar spatial representation of the sound frequency
spectrum can be derived from auditory signals occurring in time. This spatial representation allows the ARTSTREAM model to compute spatially distinct auditory
streams. (right panel) The ARTSTREAM model explains and simulates the auditory continuity illusion as an example of a spectral-pitch resonance. Interactions of the
ART Matching Rule and asymmetric competition mechanisms in cortical strip maps explain how the tone selects the consistent frequency from the noise in its own
stream while separating the rest of the noise into another stream. [Reprinted with permission from Grossberg et al. (2004)].

Properties of arpeggio playing were modeled by Gjerdingen
(1994) using a neural model of apparent motion in vision that
was introduced and developed by Grossberg and Rudd (1989,
1992).

Apparent motion in vision occurs when a discrete series
of lights that are placed in a linear row turn on sequentially
through time. When the spacing of the lights, and the timing
with which they are sequentially lit, are within an appropriate
range, one perceives a continuous motion between them in the
order in which they are lit. Analogously, apparent motion in
music occurs when a discrete series of tones that are organized
tonotopically in a linear row turn on sequentially through time
within an appropriate range of rates. The brain mechanism
that causes both percepts is the same; namely, when each light
or tone is turned on, it activates a Gaussian receptive field
that is centered at that light or tone. Gaussian receptive fields
are ubiquitous in our brains. Successive activations, within an
appropriate range of rates, of lights or tones whose Gaussian
receptive fields overlap across space can cause a traveling wave
of continuous activation to flow across each network from the
first to the second light or tone. I call this traveling wave a G-
wave, or Gauss-wave. Remarkably, a simple process like a G-wave
has psychophysical properties that are observed during long-
range apparent motion in vision, and during arpeggio playing in
music. For example, if the ISI, or interstimulus interval, between

the first and second tone decreases, then the traveling wave
speeds up to smoothly interpolate the two tones. If the frequency
difference between the two tones increases, but the ISI stays fixed,
then the traveling wave again speeds up to smoothly interpolate
the two tones. Since the second tone turns on only after the
first tone turns off, these scaling properties raise interesting
conceptual and philosophical questions that are settled by how
a G-wave works.

The apparent movement from one tone to another allows
us to enjoy music. In both vision and audition, it also has an
important survival function: In vision, it enables our brains to
continuously track a moving object, such as a prey or predator,
as it runs with variable speed in a forest, while intermittently
disappearing behind occluding cover. In audition, it enables our
brains to continuously track a temporally discrete sequence of
acoustically similar sounds, as during the performance of a piano
sonata or a string quartet.

Our conscious recognition of a pitch percept is not fully
modeled by the SPINET model. It is more fully modeled by
the ARTSTREAM model (Figure 2, right panel) of how our
brains can track multiple streams of sound through time, such
as voices or instruments during music (Grossberg, 1999, 2021;
Grossberg et al., 2004). The ARTSTREAM model incorporates
the SPINET model as the front end of a larger neural architecture
with enhanced capabilities, including conscious recognition of
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changing pitch sounds in an auditory stream. In ARTSTREAM,
the event that supports conscious recognition of a pitch percept
is modeled by a spectral-pitch resonance that creates an emergent
bound state between a pitch category and the harmonic spectrum
of sounds that it categorizes. Such a resonance emerges when the
bottom-up adaptive filter that activates a learned pitch category
within the Pitch Stream Layer triggers read-out of a top-down
learned expectation back to the pitch’s frequency spectrum across
the Spectral Stream Layer. When these bottom-up and top-down
signals continue to cycle, they give rise to a resonant state between
the pitch category and its harmonics. Although the pitch category
is just a symbolic representation of the sound, the resonant
bound state that it enables, supports a conscious percept of
the sound spectrum.

Such a resonant state can drive learning in the bottom-up
adaptive filter, leading to selective activation of its pitch category,
and in the top-down expectation, leading to selective activation
of the harmonics that support the pitch category’s activation.

The ARTSTREAM model also explains how a top-down
expectation focuses attention upon the pitch’s harmonics while
synchronizing and gain-amplifying their activation. It does this
because each top-down expectation obeys the ART Matching
Rule. The ART Matching Rule is embodied within a circuit
that has been mathematically proved necessary to stabilize the
learning and memory of any recognition category, including a
pitch category (e.g., Carpenter and Grossberg, 1987, 1991).

A spectral-pitch resonance can flow through time between
successively activated pitch categories as part of an auditory
stream, as in the groupings described in Section 1.2 while
discussing the Bach Partita.

An auditory stream is thus a percept that is caused when a
G-wave is formed due to Gaussian receptive fields interacting
across a topographically organized map of pitch categories in
response to inputs to displaced positions across the map through
time. One difference between apparent motion in vision and
apparent motion in music is illustrated by the interactions
between harmonics that occur during arpeggio playing. Due to
these harmonic interactions, arpeggio playing of, say, the notes
C E G C with increasing frequency, illustrates tonal music in
which C E and G together form a “tonic triad” and end in the
“tonic,” or key note, C.

1.4. Grouping by Working Memories and
Learned Plans
In addition to grouping by pitch categories and auditory streams,
our brains can temporarily store the sequences of words and
notes that make up the lyrics and melodies of music, even before
we can learn to perform them from memory.

The type of brain circuit that can temporarily store a sequence
of events is called a working memory. Because a working memory
can perform a stored sequence in the order that it occurs, it
embodies a third kind of grouping. To date, it has been shown
that a single canonical circuit design, suitably specialized, can
store auditory, linguistic, spatial, and motor sequences in working
memory, including sequences with repeated items, as in the
sequence ABACBD. This type of Item-Order-Rank, or IOR,

working memory will be described in more detail in Section 3.
Lyrics and melodies, possibly with repeated words and notes, can
both be stored in suitably specialized IOR working memories.

Sequences that are temporarily stored in working memory can
be learned using list categories, which I also call list chunks. List
chunks are a fourth kind of musical grouping. Just as harmonics
can resonate with pitch categories in a spectral-pitch resonance,
items that are stored in working memory can resonate with
their list chunks in an item-list resonance. An item-list resonance
supports learning of the list chunk that selectively categorizes the
resonating list.

Although a spectral-pitch resonance supports conscious
recognition of a pitch, it does not support conscious hearing
of it. Conscious perception and recognition are each supported
by different resonances. A surface-shroud resonance supports
conscious seeing of a visual object or scene, and a stream-
shroud resonance supports conscious hearing of an auditory
object or stream. During vision, when a feature-category
resonance and its corresponding surface-shroud resonance are
simultaneously active, we can both consciously recognize and
see the corresponding object. During audition, when a spectral-
pitch resonance and the corresponding stream-shroud resonance
are simultaneously active, we can both consciously recognize and
hear the corresponding pitch.

These various resonances are part of a classification of
the resonances that support conscious seeing, hearing,
feeling, and knowing (or recognition) that are explained in
Grossberg (2017b, 2021).

1.5. Issues Illustrated by Other Songs:
Factorization of Order and Rhythm
These and related issues and processes are illustrated by the
following two songs: The Alphabet Song1, and the song Smoke
Gets In Your Eyes, with music by Jerome Kern and lyrics by Otto
Harbach2.

English-speaking children typically learn the Alphabet Song:
A B C D E F G (pause) H I J K (L M) (N O) P (pause),. . .. This
notation connotes that each of the letters A, B,. . ., F and H, I, J,
K is typically performed on a single beat, G and P are followed
by a pause—that is, a silent beat with no letter performed—and
the pairs of letters L, M and N, O are performed within a single
beat. Moreover, the speed of performance can be volitionally
increased or decreased without disrupting the relative timing of
the letters. The letters can also be performed under volitional
control with a different melody and/or rhythm. The Alphabet
Song hereby raises questions about how a sequence of items
is stored, learned, and performed in a given order, and with a
prescribed melody and beat.

The beat is the steady pulse that you feel throughout a piece of
music, like a clock’s tick, whether or not a musical note is played
on any particular pulse. The rhythm is the actual pattern in time
of the musical notes, which in a song also describes the times
when the song’s words are sung.

1https://www.youtube.com/watch?v=dpGYmYC3p0I
2https://www.youtube.com/watch?v=57tK6aQS_H0
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The words of the Alphabet Song can be performed with
different rhythms due to our brain’s ability to factorize order
and rhythm information. The phrase factorization of order
and rhythm denotes the fact that a sequence which is
stored invariantly in an IOR working memory can be flexibly
performed at a variety of rhythms under volitional control
(Grossberg, 1986, 2003). Because of the factorization of order and
rhythm, rate-invariant and speaker-invariant working memory
representations (the “order”) can be flexibly performed in a rate-
dependent and speaker-dependent way (the “rhythm”) that is
under volitional control. In the special case of music, one must
then explain how the lyrics that are stored in invariant working
memories may be performed with different learned rhythms.

Such an invariant working memory representation both
greatly reduces the amount of memory storage that is needed
for storage, and makes it possible to learn the stored sequence’s
meaning, which is coded by list chunks and their many learned
associations throughout our brains. In contrast, were every
language utterance stored in a rate-dependent and speaker-
dependent way, then learning the meaning of one such
representation would not generalize to any other representation.
Indeed, learning from one teacher whose words are uttered
with a given rate using a given frequency range (e.g., female)
could not be understood when another teacher said the same
words at a different rate or using a different frequency range
(e.g., male). Language learning, among other skills, would then
become impossible.

To avoid this catastrophe, order information is temporarily
stored using a canonical IOR working memory circuit design
whose specializations are capable of temporarily storing auditory,
linguistic, spatial, or motoric sequences, including sequences with
repeated sequences of letters such as ABACBD, repeated words in
lyrics, or repeated pitches in songs. IOR working memories are
used ubiquitously in our brains because they can quickly store,
stably learn, and flexibly perform sufficiently short sequences of
arbitrary kinds of information, including sequences that include
repeated items (Grossberg, 1978a, 2017b, 2021; Grossberg and
Pearson, 2008; Silver et al., 2011).

An example from speech illustrates the main idea that the
process of factorization of order and rhythm embodies. You
can ask: “How ARE you today?” or, just as easily, “HOW
are YOU today?”, where the capital letters indicate a different
rhythmic emphasis and duration. In past modeling analyses,
this factorization property has been used to explain how speech
can be performed with different rhythms (e.g., Grossberg et al.,
1997a; Boardman et al., 1999). These studies immediately apply
to performing the speech that constitutes lyrics with different
rhythms. The current article extends this analysis to propose how
lyrics and pitches can simultaneously be performed with different
rhythms, including a regular beat that is generated in the basal
ganglia; how learning and performance of more general, but still
regular, rhythms is regulated by prefrontal cortical modulation of
the beat; and how arbitrary performance rhythms are learned by
adaptive timing circuits in the cerebellum as they interact with
prefrontal cortex and basal ganglia. Moreover, the same type of
circuit that controls beats also controls such basic motor skills as
walking, running, and finger tapping.

1.6. Regular Rhythms, Counting, and
Storing Repeated Words and Notes
The song Smoke Gets in Your Eyes begins with the phrase: “They
asked me how I knew my true love was true.” The melody of
this phrase poses two challenges to understanding how each
brain learns and controls the performance of music. The first
challenge is due to the fact that different words in the lyrics are
performed with different timing. For example, the words “they,”
“knew,” and the second occurrence of “true” are all held for four
beats, while the remaining words are performed within one beat.
How do we store, learn, and perform repeated words in a phrase
with different timing? When learning to play this piece on an
instrument like the piano, one strategy that piano teachers use
is to ask their students to count the number of beats before
the next note is played. That leads to the basic question: How
do we count? A review of how humans count will be given in
Sections 3.14 and 3.15.

A second challenging feature of the lyrics for Smoke Gets in
Your Eyes is that the word “true” is repeated in two different
places, each performed with different timing. These lyrics hereby
illustrate the general cognitive problem of storing, learning, and
performing sequences of items or events with repeated elements,
such as ABACBD, and to do so with their own timing. Performing
the same word more than once, with different timing at each
occurrence, in a single song is a particularly good example of why
I call our ability to do this factorization of order and rhythm.

1.7. Lyrics and Pitches Working
Memories
Multiple working memories exist in our brains to temporarily
store sequences of different kinds of information. Figure 3
summarizes the ARTSPEECH model of two working memories
that are needed for speech perception and recognition (Ames
and Grossberg, 2008). This architecture illustrates the fact that
working memories occur after a series of preprocessing stages.
The rightmost stream includes a Speaker Normalization stage
to convert speech to a speaker-independent form before speech
item categories are learned and stored in working memory.
A truly invariant working memory that could be used as
a basis for learning language meaning would need to also
preprocess incoming signals to make them rate-invariant. How
rate-invariant speech representations are formed was modeled
in Boardman et al. (1999) and Grossberg et al. (1997a). These
mechanisms can readily be incorporated into the rightmost
stream of Figure 3. The leftmost stream uses pitch categories to
identify speakers.

Keeping in mind that multiple preprocessing stages are needed
before any working memory in the brain is activated, let us
return to a discussion of the working memories that are used
to represent music. The IOR working memory that stores
the sequences of words in a song is called a lyrics working
memory. List chunks are learned from sequences of words
that are stored in the lyrics working memory. List chunks are
recognition categories that are selectively activated by specific
sequences of words that are stored in working memory due to
learned changes in the adaptive filter from the working memory

Frontiers in Systems Neuroscience | www.frontiersin.org 6 April 2022 | Volume 16 | Article 766239

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-766239 April 8, 2022 Time: 11:47 # 7

Grossberg Learning and Performance of Music

FIGURE 3 | The ARTSPEECH architecture. ARTSPEECH consists of two parallel cortical processing streams, one devoted to speaker identification and the other to
speaker meaning. Speaker identification can be learned from a speaker-dependent and rate-dependent representation of speech prosody. Speaker meaning can be
learned from a speaker-normalized and rate-normalized representation of speech Item-Order-Rank information. Both streams process their distinct representations
in working memories and reciprocally interact with chunking networks of similar design. [Reprinted with permission from Ames and Grossberg (2008)].

level to the list chunk level (Figure 4A). The corresponding
list chunks during speech perception are denoted by Speaker
Independent Recognition Categories in Figure 3. Each list chunk
can, in turn, learn to activate the sequence of lyrics words
that it codes via learned changed in the top-down pathways
from the list chunk level to the working memory level. These
pathways are called top-down learned expectations (Figure 4A).
As each lyrics list chunk is activated in its turn, it can use
its top-down learned expectation to read-out its lyrics into
working memory, from which they can be performed under
volitional control.

A different working memory temporarily stores the sequence
of pitches that constitute the melody of the song. This is the
pitches working memory. The lyrics working memory and the
pitches working memory are activated in parallel when listening
to someone singing a song with those lyrics and melody. Just
as the righthand stream of Figure 3 can represent lyrics, the
lefthand stream of Figure 3 can represent pitches. As in the case
of the lyrics working memory, a bottom-up adaptive filter from
the pitches working memory can learn to activate pitches list
chunks (cf. Speaker Identity Recognition Categories in Figure 3)
and top-down pathways from a pitches list chunk to the pitches
working memory can learn a top-down expectation whereby

to read-out the sequence of pitches that it codes across the
pitches working memory.

How these various processes work will be explained in
Section 4. Additional learned associations enable the name of the
piece of music, whether read via vision or heard via audition, to
activate temporally ordered series of lyrics and pitches list chunks
under volitional control. Volition is also needed to control finer
aspects of performance. For example, the words that take up four
beats in Smoke Gets in Your Eyes can be sung quickly−within a
single beat that is followed by three beats filled with silence−or
can be sustained throughout all four beats. This fact illustrates
the distinction between the circuitry that controls the timed
performance of the song as a whole, and the circuitry that
modulates each word’s performance during the allotted timing
using volitionally regulated breath control and emphasis.

2. IS MUSIC SPECIAL?

2.1. An Analysis Based on Shared Brain
Designs
A great deal has been written about how music may have emerged
during evolution, how it compares with language, and how it
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FIGURE 4 | (A) Hierarchy of speech processing levels. Interactions among three speech processing levels are capable of working memory storage, learning, stable
memory, and performance of word sequences with repeated words. Each level consists of an Item-Order-Rank working memory. The second and third levels are, in
addition, multiple-scale Masking Fields that can store sequences of variable length. All the levels are connected by Adaptive Resonance Theory bottom-up adaptive
filters and top-down learned expectations and their attentional focusing and memory stabilization capabilities. The first level stores sequences of item chunks. Its
inputs to the second level enable that level to store list chunks of item chunks. The inputs of the second level to the third level enable it to store list chunks of list
chunks, in particular sequences of words that may include repeated words. [Reprinted with permission from Grossberg and Kazerounian (2016)]. (B) Macrocircuit of
the cARTWORD laminar cortical model for conscious speech perception shows a hierarchy of levels responsible for the processes involved in speech and language
perception. Each level is organized into laminar cortical circuits. Deep layers (6 and 4) process and store inputs, whereas superficial layers (2/3) group distributed
patterns across the deeper layers into categories, or chunks. The lowest level processes acoustic features (cell activities Fi and Ei ) and item chunks (cell activities
C(I)

i ), whereas the higher level is responsible for storing of sequences of acoustic items in working memory (activities Yi and X i), and representing stored sequences

of these items as list chunks (activities C(L)
j ) in a Masking Field. [Reprinted with permission from Grossberg and Kazerounian (2011)].

has contributed to the development of social cognition, among
other topics (e.g., Howell et al., 1991; Levitin, 2006; Thompson,
2009; Deutsch, 2013; Dowling and Tighe, 2014; Schulkin and
Raglan, 2014; Tan et al., 2018). Essentially all of these observations
have described psychological or neurobiological data about what
happens during musical experiences.

The current article supplements this kind of descriptive
knowledge with mechanistic neural explanations of how we learn
and perform music. It hereby provides new insights about issues
such as:

• Is music special to humans? If so, how?
• What similarities and differences exist between the neural

mechanisms that control music perception and production
vs. those that control language perception and production?

• How do musical rhythm and beat compare with other
rhythmic activities?

• How can we perceive and perform music in different
musical keys?

The discussion in Section 1 already touches on some
of these issues. The remainder of the article will propose
answers by describing brain design principles, mechanisms, and
architectures that are needed to learn and consciously perform
lyrics and melodies with variable rhythms and beats. It can
thereby demonstrate how variations of the same brain design
principles and mechanisms that control musical experiences
are also used to accomplish other perceptual, cognitive, and
motor competences than music. Although music has a unique
place in our personal and cultural experiences−and has special
properties due to its underlying harmonic structure−it also
builds upon variations and specializations of other mental
capabilities. Indeed, this article applies and specializes biological
neural models that have been developed over the past 40 years
to explain perceptual, cognitive, and motor processes other than
music. Grossberg (2021) explains these concepts and models in
greater detail and with many more scholarly references to other
models and relevant data than I can present here.
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3. STORING AND LEARNING EVENT
SEQUENCES WITH REPEATS: WORKING
MEMORY AND LIST CHUNKING

This section will review neural models of how working memories
are designed and work in the brain. For reasons that will be
explained below, the same kind of model circuit has successfully
explained data about linguistic, motor, and spatial working
memories. The lyrics of a song are an example of a linguistic
working memory. The present article adds a pitches working
memory to this list since pitches, no less than lyrics, obey the
same laws that govern all of these types of working memory. This
shared design of the working memories that encode lyrics and
melodies enables our brains to coordinate the performance of a
song’s words with its pitches using a prescribed rhythm.

3.1. Linking Working Memory Items and
List Chunks
The Item-and-Order neural model of working memory (WM)
proposes that an incoming sequence of inputs that is received
through time by our brains is stored as an evolving spatial
pattern of item activities (Figure 5; Grossberg, 1978a,b). This
name Item-and-Order model summarizes that its individual
nodes, or cell populations, represent list items, while the
temporal order of the items is stored by the spatial pattern of
activity across the nodes. Item activities are sustained through
time by recurrent excitatory neural signals from the item
representations to themselves, balanced by recurrent inhibitory

signals across multiple items; see Section 3.12. These stored
spatial patterns of item representations are, in turn, unitized
through learning into list chunk representations at the next
processing level (Figure 4).

An item, or more precisely item chunk, selectively responds
to prescribed patterns of activity across the distributed feature
detectors within a prescribed time interval (e.g., a phoneme,
musical note, or musical chord). A list chunk selectively responds
to prescribed sequences of item chunks that are stored in working
memory (e.g., a word or familiar grouping in the lyrics of a
song). Thus, the item chunks of an Item-and-Order WM mediate
between distributed feature patterns and list chunks. Properties
of these functional units, interacting via bottom-up and top-
down interactions, have been supported by their successful
explanations and predictions of psychophysical data about speech
perception, including immediate serial recall; immediate and
delayed free recall; continuous-distracter free recall; long-term
recency, word frequency, and word superiority effects; list
length and list strength effects; presentation variability; phonemic
similarity; and non-word lexicality (Grossberg, 1978a,b, 1984,
1986, 2003; Grossberg and Pearson, 2008). These functional units
and their interactions will herein be used to explain how musical
information is temporarily stored.

In particular, as will be explained below, just the three
interacting processing levels shown in Figure 4A can store, learn,
and perform lyrics that include repeats, such as “our true love was
true.” This kind of example illustrates that our brains do not need,
nor do they possess, many processing levels to store, learn, and
perform sequential behaviors; cf. Figure 1 in Grossberg (2018).

FIGURE 5 | An Item-and-Order working memory is defined by a recurrent on-center off-surround network whose cells obey the membrane equations of
neurophysiology, also called shunting laws (Hodgkin and Huxley, 1952; Hodgkin, 1964; Grossberg, 1973, 1980a; Carpenter, 1977a,b, 1979). Excitatory connections
are in green. Inhibitory connections are in red. A primacy gradient of activity is stored in working memory in this figure (dashed rectangles denote relative cell
activities). Two simultaneously converging inputs are needed to fire a competitive selection cell. One input is a specific input from the corresponding working memory
cell. The other input is a nonspecific input called a rehearsal wave. The working memory cell with the largest activity can fire the corresponding competitive selection
cell when a rehearsal wave is on. Its output signal also activates a specific inhibitory feedback signal that shuts the competitive selection cell off, and thus allows the
next most active working memory cell to be rehearsed next. Competitive selection cells are called polyvalent cells in the subsequent exposition. [Adapted from
Grossberg (2013a)].
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3.2. Correct Temporal Order Is Stored in
Working Memory by a Primacy Gradient
How does a spatial pattern that is stored in an Item-and-Order
WM get performed in its correct temporal order? Performing
musical notes in their correct order is, of course, essential in all
musical performance. Correctly ordered performance occurs if
the items in working memory are stored by a primacy gradient
(Figure 5). For example, when a sequence “A-B-C” of items is
stored by a primacy gradient, cells that store item ‘A’ have the
highest activity, cells storing ‘B’ have the second highest activity,
and cells storing ‘C’ have the least activity. Then the list ABC can
be performed in the correct order because the item chunk with
the highest activity is performed first, the item chunk with the
second highest activity is performed second, and so on, until all
items in the sequence are performed.

3.3. Rehearsal Waves and
Inhibition-of-Return
A primacy gradient that is stored in working memory does
not have to be immediately performed. Performance occurs in
response to a volitional signal that is called a rehearsal wave.
The basal ganglia where the volitional signal originates has no

knowledge about what is stored in working memory in prefrontal
cortex, or PFC (Figure 6). A rehearsal wave is therefore delivered
uniformly, or nonspecifically, with equal activity from the basal
ganglia to the entire PFC WM (Figure 5). The rehearsal wave
enables read-out of stored activities by opening a rehearsal gate.
The item chunk with the highest activity is read out fastest
because it exceeds its output threshold fastest. Its output signal
also self-inhibits its WM representation via a specific inhibitory
feedback pathway (Figure 5), leading to inhibition-of-return that
prevents perseverative performance of the most active item
(Grossberg, 1978a,b; Posner and Cohen, 1984; Posner et al.,
1985; Klein, 2000). Each item representation self-inhibits as it is
rehearsed until no active items are left in WM.

3.4. Item-and-Order, Competitive
Queuing, and Primacy Models
Since the Item-and-Order WM model was introduced, many
modelers have applied it (e.g., Houghton, 1990; Boardman and
Bullock, 1991; Bradski et al., 1994; Page and Norris, 1998; Bullock
and Rhodes, 2003; Grossberg and Pearson, 2008; Bohland et al.,
2010). For example, Page and Norris (1998) have used a Primacy
Model to explain cognitive data about word and list length,
phonological similarity, and forward and backward recall effects.

FIGURE 6 | (left panel) The LIST PARSE laminar cortical model of working memory and list chunking includes circuits to model the brain regions that are marked in
red. (right panel) The model’s Cognitive Working Memory circuit is proposed to occur in ventrolateral prefrontal cortex. The Motor Working Memory, VITE Trajectory
Generator, and Variable-Rate Volitional Control circuits model how other brain regions, such as dorsolateral prefrontal cortex, motor cortex, cerebellum, and basal
ganglia, interact with the Cognitive Working Memory to control working memory storage and volitional control of variable-rate performance of item sequences.
[Adapted with permission from Grossberg and Pearson (2008)].
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Houghton (1990) called the model Competitive Queuing when
he also used it to explain cognitive data.

3.5. Item-and-Order Model Explains
Psychological and Neurophysiological
Data
Subsequent psychophysical and neurophysiological experiments
confirm that, as predicted, item order is encoded by relative
activity levels and is reset by self-inhibition. For example, Farrell
and Lewandowsky (2004) studied the latency of human responses
that follow serial performance errors. They found that (p. 115):

“Several competing theories of short-term memory can
explain serial recall performance at a quantitative level.
However, most theories to date have not been applied to
the accompanying pattern of response latencies. . .Data from
three experiments. . .rule out three of the four representational
mechanisms. The data support the notion that serial order

is represented by a primacy gradient that is accompanied by
suppression of recalled items [italics mine].”

Electrophysiological experiments of Averbeck et al. (2002)
studied macaque monkeys performing arm movement sequences
that copy geometrical shapes. The data curves at time zero in
the four graphs in Figure 7Aa exhibit the primacy gradients
of four lists that were stored in dorsolateral prefrontal cortex.
These curves also show that the most active cells are read-out
earliest and self-inhibit to permit read-out of the entire list in the
stored order. The data were simulated (Figure 7Ab) by an Item-
and-Order working memory in the LIST PARSE laminar cortical
model (Figure 6; Grossberg and Pearson, 2008). These properties
also occur in the Item-Order-Rank, or IOR, generalization of
Item-and-Order working memories that can temporarily store
sequences of pitches that may include repeated notes, as in
the first four phrases of Bach’s Partita #1; see Figure 1 and
Section 3.14. Figure 7A shows that LIST PARSE successfully
models a dorsolateral prefrontal motor working memory that can
quantitatively simulate neurophysiological data about sequential

FIGURE 7 | (Aa) Neurophysiological data that conform to Item-and-Order working memory properties were recorded in a series of sequential copying experiments
in monkeys [Adapted with permission from Averbeck et al. (2002)]. Each of the four figures shows a primacy gradient in working memory whose most active cell is
performed first as its activity self-inhibits, followed by the next most active cell, and so on. When only the last item remains, it has the highest activity because it was
freed from inhibition by earlier items. (Ab) The LIST PARSE laminar cortical model of working memory and list chunking simulates these data. [Reprinted with
permission from Grossberg and Pearson (2008)]. (B) Circuit illustrating how Item-and-Order stored working memory item chunks (M, Y, S, E, L, F) activate list chunks
(such as MY and MYSELF) in a Masking Field network. Masking Field cells respond selectively to lists of item chunks of variable length. How this happens is
summarized in the text. [Reprinted with permission from Grossberg (2020b)].
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recall of stored motor sequences. LIST PARSE was also shown
in Grossberg and Pearson (2008) to model a prefrontal linguistic
working memory in the ventrolateral prefrontal cortex that
quantitatively simulates psychophysical data about immediate
serial recall, and immediate, delayed, and continuous distractor
free recall, among other data properties.

3.6. Bowed Gradients, Grouping, and
Chunking
Not all sequences of items that are stored in a working memory
can be recalled in their correct temporal order. Only primacy
gradients have this property. How and when primacy gradients
occur thus clarifies how music is typically performed in the
correct temporal order.

Free recall tasks illustrate how a sequence of items can be
performed in an incorrect order. During free recall, a list is
recalled in whatever order comes to mind after hearing it just
once (e.g., Murdock, 1962). If the stored list is too long, a
bowed serial position curve is often observed. Here, items at the
beginning and the end of the list are recalled earliest, and with the
highest recall probability.

Grossberg (1978a,b) noted that these free recall properties
have a natural explanation if the pattern of cell activities that
stores the list items in working memory is also bowed, with
the first and last item chunks having the largest activities, while
those in the middle having less activity. Then, the item chunk
with the largest activity is read out first, whether at the list’s
beginning or end, and self-inhibits its item representation to
prevent preservation (Figure 5). Then the next largest item chunk
is read out, and so on in the order of stored relative activity.

As in free recall data, items at the beginning and end of the
list are recalled with greater probability because larger activities
can better survive perturbations due to internal cellular noise
and attentional fluctuations. Transpositions of recall order by
items close together in the list are explained by the fact that
they have similar stored activities, so their relative size, and thus
temporal order, can more easily be reversed by internal noise or
attentional fluctuations.

These facts about when primacy or bowed gradients are stored
in working memory constrain strategies for storing all sorts of
sequences in working memory, including lyrics and pitches, so
that they can be learned and performed in the correct order.
To understand this issue better, answers will be provided to the
following questions:

• What are the longest lists that our brains can store in
working memory in the correct temporal order?

• Why can only relatively short lists be stored with the correct
temporal order?

In an Item-and-Order working memory, these questions
become:

• What is the longest primacy gradient that the working
memory can store?

• Why is it so short?

3.7. Memory Spans Constrain Musical
Groupings: The Magical Numbers Four
and Seven
What is the longest primacy gradient that can be stored? The
answer to this question constrains all strategies for learning
to correctly perform skilled sequences, whether during speech
production, dance movements, spatial navigation, or musical
performance. The upper bound during free recall has been called
the Magical Number Seven, or immediate memory span, of 7 ± 2
items (Miller, 1956).

The explanation in Grossberg (1978a) of the immediate
memory span distinguished it from the then new concept of
transient memory span. The transient memory span was predicted
to be the longest list for which a primacy gradient may be
stored in short-term memory solely as the result of bottom-up
inputs, and without the benefit of learned expectations being
read-out top-down from active list chunks. The immediate
memory span, in contrast, was predicted to arise from the
combined effect of bottom-up inputs and top-down read-out
from learned expectations.

My article Grossberg (1978a) proved that read-out of top-
down expectations can only increase the maximal primacy
gradient that can be stored, thereby predicting that the immediate
memory span exceeds the transient memory span. Given the
known estimated immediate memory span of approximately
seven items, the transient memory span was estimated to
be approximately four items. There should thus also be a
Magical Number Four when top-down effects are removed.
This prediction was experimentally supported by data of Cowan
(2001) who demonstrated a working memory capacity of 4 ± 1
items when influences of long-term memory and grouping effects
were minimized in his experimental design.

The Magical Numbers Four and Seven for storage of items
in working memory shed mechanistic light on the maximum
length of musical groupings that can readily be performed in the
correct order. In particular, these constraints clarify how the small
number of notes in each of the groupings that occur in Bach’s
Partita Number 1 (Figure 1) facilitate how this exquisite piece of
music is stored, learned, and performed in the correct order.

3.8. LTM Invariance Principle: Working
Memory Supports Stable List Chunk
Learning
Why is the transient memory span so short? My answer to this
question is, basically, that it does not pay to store item sequences
in working memory if they cannot be learned. In other words,
temporary storage of sequences in working memory is useful
only if it can support stable learning of list chunks, and read-
out during performance by those list chunks of the sequences
in working memory that they code. In the case of music, list
chunks need to be learned from both lyrics working memories
and pitches working memories. It will also be shown below how
list chunks that encode rhythms are learned.

Upon realizing the paramount importance of learning, in
Grossberg (1978a,b). I derived Item-and-Order working memory
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circuits from hypotheses that ensure their ability to support
learning and stable memory of list chunks. When this insight
is applied to music, it clarifies that musical groupings are short
both to store them in working memory for possible immediate
performance in the correct temporal order, as well as to chunk
them via learning for future performance in that order.

Item-and-Order working memories embody two simple
postulates that enable their list chunks to be learned and
stably remembered: the LTM Invariance Principle and the
Normalization Rule. These postulates were used to derive
mathematical equations for Item-and-Order working memories,
and to mathematically prove how they generate primacy and
bowed gradients.

The LTM Invariance Principle prevents storage of longer
lists of events in working memory (such as MYSELF) from
causing catastrophic forgetting of previously learned list chunks
of shorter lists (such as MY, SELF, and ELF). In particular, if
bottom-up inputs activate a familiar list chunk, such as the word
MY, then storing in working memory the remaining portion
SELF of the novel word MYSELF during the next time interval
will not cause forgetting of the learned weights that activate
the list chunk of MY. When applied to music, this Principle
enables larger groupings of notes to be learned without forgetting
previously learned smaller groupings.

Incremental refinements of these models have been made
over the years (e.g., Bradski et al., 1992, 1994), eventually
leading to models of how the layered circuits in the prefrontal
cortex compute IOR working memories, among other properties
necessary to achieve higher-order properties of biological
intelligence (Grossberg and Pearson, 2008; Silver et al., 2011;
Grossberg, 2013a, 2018, 2021).

3.9. Stable List Chunking Exploits
Classical Laws for Adaptive Filtering and
Competition
Stable list chunks can be learned because, as new inputs are stored
in working memory, the relative activities, or ratios, of previously
stored working memory activities are preserved, even if the newly
arriving inputs may change their total activities. As a result, the
relative activities of previously learned adaptive weights, or LTM
traces, are also preserved. This happens because the bottom-
up signals in the axons from the working memory to the list
chunks are multiplied by the LTM traces before the net signals
activate list chunks.

For example, in the conscious ARTWORD, or cARTWORD,
model of conscious speech perception (Figure 4B; Grossberg and
Kazerounian, 2011), the LTM traces are computed in synaptic
knobs at the ends of bottom-up axons, in abutting postsynaptic
membranes, or both. These synaptic knobs are represented by
black-filled hemidisks in Figure 4B. The open squares abutting
the hemidisks denote that these synapses can habituate in
an activity-dependent way. A habituated synapse releases less
chemical transmitter than an unhabituated one in response to
an input signal of a fixed size. Habituation helps the network to
reset itself in response to new inputs, so that old responses do not
perseverate for too long.

The bottom-up adaptive signals from multiple axons are
added up at each recipient list chunk. The total input to a list
chunk thus multiplies a pattern, or vector, of activities times a
pattern, or vector, of LTM traces. By preserving relative activities,
the relative sizes of these total inputs to the category cells do
not change through time; thus, nor do the corresponding LTM
patterns that track these activities when learning occurs at their
category cells. That is why SELF does not recode a previously
learned category for MY when MYSELF is presented through
time. The bottom-up LTM-gated pathways from the working
memory to the list chunking level constitute the adaptive filter
pathways depicted in Figure 4.

The words MY, SELF, and MYSELF can be replaced by the
words in lyrics or the pitches in a melody. Larger groupings
of musical elements can hereby be learned without forcing
forgetting of previously learned subgroupings of them.

The Normalization Rule means that the total WM activity
has a maximal value that is approximately independent of the
number of stored items. Thus, storing more items in WM
forces each item to be stored with less activity. As storage of
more items in working memory converts a primacy gradient
into a bowed gradient, normalization forces the stored item
activities to become smaller. Normalization mechanizes the
limited capacity of WM.

An adaptive filter can activate multiple cells that code list
chunks. These cells compete to choose a winning cell, or small
set of cells, that receive the largest inputs (Figure 7B). The
winning cells code list chunks that have the most support
from their bottom-up inputs in the current context. Winning
cells drive learning whereby their abutting LTM traces track
the bottom-up input patterns that they filter. This adaptive
tuning process enables them to fire more selectively to the
input patterns that activated them, leading to the name
competitive learning for this kind of category learning network
(Grossberg, 1976a,b, 1978a; Willshaw and von der Malsburg,
1976; Rumelhart and Zipser, 1985).

3.10. Masking Fields Can Learn and
Perform Musical Groupings of Variable
Length
The example of MY and MYSELF illustrates that list chunks
can selectively represent lists of variable length in order to
learn language, music, or motor skills like dancing, playing
the piano, and navigating routes in space. The category
cells that occur in Masking Field networks support learning
and storage of variable-length list chunks (Figure 7B). To
accomplish this, a Masking Field consists of a multiple scale,
self-similar, recurrent shunting on-center off-surround network
(Cohen and Grossberg, 1986, 1987).

Masking field cells develop with multiple sizes, or scales,
due to activity-dependent growth during development. During
development, item chunks are endogenously active during a
critical period, leading to the growth of bottom-up connections
from the item chunk level to the list chunk level. These
connections grow accordingly to a probabilistic law whereby
variable numbers of connections contact list chunks across
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the network. List chunks that receive bottom-up inputs from
more item chunks can code longer lists. They also receive
larger total inputs, on average, through time. During the
network’s development, input activity triggers self-similar cell
growth whereby both cell bodies and their connections grow
proportionally. This growth continues until the total activity
density is reduced to a threshold intensity. The net result is
a Masking Field wherein longer lists are coded by larger cells
with stronger recurrent inhibitory interneurons within the list
chunk level (red connections in Figure 7B), and stronger top-
down excitatory priming pathways to the item chunk level (green
connections in Figure 7B).

Masking Field nodes are list chunks in the second and
third processing levels in Figure 4A. When representing
language or lyrics, the first level can represent letters, the
second level words, and the third level sequences of words.
As noted above, because the second and the third levels are
also Item-Order-Rank working memories, the words coded
at the second level can include repeated letters, as in the
words “repeated” and “letters,” and the sequences coded at
the third level can include repeated words, as in the phrase
“our true love was true.” The same is true for pitches. Then
the first level can code musical notes or chords, the second
level can code short pitch sequences that may contain repeated
chords, and the third level can code sequences of pitch
phases in a melody.

3.11. A Universal Design for Linguistic,
Motor, Spatial, and Musical Working
Memories
If all linguistic, motor, spatial, and musical working memories
obey the LTM Invariance Principle and the Normalization Rule,
then they should all share a similar design. Both psychological
and neurobiological data support this prediction. Models that
explain and simulate linguistic, motor, and spatial working
memory data include the laminar cortical LIST PARSE model
[Figure 6 (right panel); Grossberg and Pearson, 2008] that
uses a prefrontal linguistic working memory to explain and
quantitatively simulate psychophysical data about immediate
serial recall, and immediate, delayed, and continuous distractor
free recall. Note the cortical layers 5/6, 4, and 2/3 in the
Cognitive Working Memory in Figure 6 (right panel). LIST
PARSE also describes a prefrontal motor working memory
that quantitatively simulates neurophysiological data about
sequential recall of stored motor sequences (Figure 6, left and
right panels).

The lisTELOS model (Silver et al., 2011) incorporates LIST
PARSE as a prefrontal spatial IOR working memory that
quantitatively simulates psychological and neurophysiological
data about the learning and planned performance of saccadic
eye movement sequences. lisTELOS models how several parietal
and prefrontal cortical areas interact together and with three
basic ganglia gating circuits. These cortical areas include the
Supplementary Motor Area, or SMA, and pre-SMA, whose
damage degrades performance of stored sequences in working
memory (Shima and Tanji, 2000; Kennerley et al., 2004;

Zatorre et al., 2007; Nachev et al., 2008). Due to the homology
between linguistic, motor, and spatial working memories, the
results apply to any sequentially organized behaviors, including
musical behaviors.

3.12. Recurrent Shunting On-Center
Off-Surround Networks Embody Working
Memories
The LTM Invariance Principle and Normalization Rule are
realized by a type of circuit that occurs ubiquitously throughout
our brains. It is a recurrent on-center off-surround network
of cells that obey the membrane equations of neurophysiology,
otherwise called shunting dynamics (Figure 5). How these
networks process ratios (LTM Invariance Principle) and conserve
total activity (Normalization Rule) was mathematically proved in
Grossberg (1973); also see reviews in Grossberg (1978a, 1980b,
2013b, 2021).

In such a network, excitatory feedback due to recurrent
on-center interactions (green arrows in Figure 5) helps to
store an evolving spatial pattern of activities in response to
a sequence of inputs, while recurrent off-surround shunting
interactions balance the on-center to store input relative activities
(horizontal red arrows in Figure 5), thereby generating the
desired properties of contrast normalization and conservation
of total activity.

A rehearsal wave from the basal ganglia (Figure 6)
reads-out the highest stored activity first, and self-
inhibitory feedback prevents its perseverative performance
(Figure 5), while the network gradually renormalizes its
activity through time.

The effects of recurrent inhibition can be seen in the data
and simulation summarized in Figure 7A: After the next-to-last
item is performed, the cell activity that stores the last item is no
longer inhibited by other cells, so it becomes more active than
previously active cells.

3.13. Recurrent Shunting Networks Also
Control Beat and Gamma Oscillations
Remarkably, the oscillatory circuits that control musical beat (see
Section 5) are also recurrent on-center off-surround networks
with cells that obey shunting dynamics. What distinguishes
them from working memories are the following kinds of
differences:

First, the beat oscillator does not include self-inhibitory
interneurons to prevent cyclic performance (Figure 5), although
they may include self-inhibitory interneurons as part of a
recurrent shunting off-surround.

Second, and more important, the beat oscillator is driven
by a sufficiently large arousal, or GO, signal that converts it
from a phasically responsive network to one that oscillates,
much as the same corticospinal circuitry can regulate standing
and walking. Sufficiently aroused working memories can
also oscillate, albeit with faster alpha, beta, gamma, and
theta oscillations, during perceptual and cognitive processing
(Grossberg, 2017a,b, 2021). This kind of oscillator can thus
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support a range of oscillatory periods, depending upon
parameter choices.

3.14. Item-Order-Rank Coding:
Numerical Hypercolumns Store Lists
With Item Repetitions
How do working memories store lists with repeated items? This
competence is needed to store lyrics with repeated words, and
melodies with repeated pitches. For this to occur, a working
memory must be able to selectively store items with sensitivity
to their list position, or rank.

Cognitive data demonstrating sensitivity to rank include
spoonerisms, during which words or syllables in similar
positions, but in different words, are interchanged; e.g., “hissed
my mystery lesson” (Henson, 1998). Neurophysiological data

from cells in prefrontal cortex also exhibit rank sensitivity
(Barone and Joseph, 1989; Kermadi and Joseph, 1995; Funahashi
et al., 1997; Averbeck et al., 2003: Ninokura et al., 2004; Inoue and
Mikami, 2006).

How is rank information incorporated into an Item-Order-
Rank working memory model that can store item repeats
at arbitrary list positions; e.g., ABACBD? Grossberg and
Pearson (2008) proposed that an Item-Order-Rank working
memory in prefrontal cortex derives rank selectivity via a
parietal-to-prefrontal projection from the analog number map
that exists in parietal cortex. This prediction built upon a
model of the parietal number map called the Spatial Number
Network, or SpaN, model (Figure 8; Grossberg and Repin,
2003). SpaN simulates how the parietal number map may
control the ability of animals and humans to estimate and
compare small numerical quantities without requiring that they

FIGURE 8 | (A) The SpaN model simulates how spatial representations of numerical quantities are generated in the parietal cortex. See text for details. (B) Behavior
numerosity data and SpaN model simulation of it. The responses to increasingly large numerical inputs activate different, but contiguous, positions in the analog
number map, with larger numbers generating responses further to the right on the map. The larger variance of responses to larger numbers is called the Weber Law.
All these properties obtain in both the data and the model simulation. (C) The Extended SPaN, or ESpaN, model extends SpaN to be able to learn and perform
place-value numbers. Interactions from the What cortical stream to the Where cortical stream accomplish this extension. In particular, previously learned phonetic
categories in the What stream become associated with corresponding locations of the SpaN spatial number map in the Where stream. (CA) The striped area shows
the location of the primary number map. This is extended into parallel strips all of whose cells also respond to the inputs to the primary number map. (CB) An
example of where the association for seven-ty is learned in this strip map. The size of the solid circles encodes weight magnitude; the strongest association for
seventy is arises at the spatial location where both the associations for categories seven and ty are present. [Reprinted with permission from Grossberg and Repin
(2003)].
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count these quantities with numbers (Rickard et al., 2000;
Naccache and Dehaene, 2001).

Figure 8A summarizes how SpaN works. Each event in a
sequence activates a transient detector that generates an input
burst (see the series of rectangular inputs denoted by xz). These
bursts are added to an accumulator (see the series of steps
denoted by y). This stored total input is broadcast uniformly
across the spatial number map. Cells at different positions in the
number map have thresholds and sensitivities that increase from
left to right across the map (see the sigmoid signal functions).
As a result, small inputs selectively activate cells near the left
of the map, whereas larger inputs activate positions to the
right. Increasingly large inputs activate a series of unimodal
response profiles centered at positionally displaced positions
toward the right.

Figure 8B shows the close fit of the model’s response
profiles to numerosity data collected during animal conditioning

experiments. The response profiles of SpaN model parietal
neurons are also matched by neurophysiological data of Nieder
and Miller (2004a).

Nieder and Miller (2004b) also reported a prefrontal
projection in vivo from the parietal number map. In the
SpaN model, this parietal-prefrontal projection uses the
ordered number map in the parietal cortex to embed
numerical hypercolumns within the prefrontal working
memory. This prediction has not yet been tested using
neurophysiological methods.

Figure 9 describes how the parietal number map projects to
hypercolumns in the prefrontal cortex (see red activity profile and
red pathways). Each item in the list is stored in a different position
in its hypercolumn if it is repeated more than once. Each item’s
hypercolumn representation is denoted by a circle in Figure 9,
and each of its four hypercolumn positions is denoted by a pie-
shaped region within this circle and is numbered from 1 to 4.

FIGURE 9 | Circuit for encoding a conjunction of item, order, and position in sensory and motor working memory. Cells in the sensory and motor working memories
need a second input that codes positional information in order to fire. The model proposes that number maps in parietal and frontal cortex provide this positional
information. The circles with numbers represent cortical hypercolumns, each coding a different sensory or motor event, with positions (for illustration) 1, 2, 3, and 4.
The sensory working memory supports learning of list chunks. The list chunks learn to attentively prime the Item-Order-Rank motor working memory during reactive
performance of a sequence of actions. During planned performance, cells in the motor working memory fire their motor commands when they receive a list chunk
priming signal and the correct positional, or rank, input from the corresponding number map. The lower part of the figure illustrates how transient inputs in response
to each sensory event are integrated into a signal proportional to the total number of sensory inputs that have occurred in the sequence. This integrated signal
generates a uniform input to all the cells in the parietal number map. The signal functions with variable thresholds and slopes in the number map cause distinct
populations of cells to get activated as a larger number of transients is stored. The number map cells broadcast their positional information to the sensory working
memory. A similar scheme occurs in the motor working memory. [Reprinted with permission from Grossberg and Pearson (2008)].
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For example, consider how a numerical hypercolumn can
store and perform in its correct order the short list ABAC: Item
A is stored in positions 1 and 2 within its hypercolumn, item
B is stored in position 1 within its hypercolumn, and item C is
stored in position 1 within its hypercolumn. A primacy gradient
of activity can store the temporal order of a short list, whether
or not it has repeated items. In response to the list ABAC, for
example, each of the successively activated map positions would
have a progressively smaller activity stored in working memory.
The recurrent on-center off-surround network that stores items
in such an Item-Order-Rank working memory can still have
self-excitatory feedback from each cell population to itself, and
a broad off-surround that inhibits all other populations equally
across the hypercolumns. When self-inhibitory feedback inhibits
the last-performed item, the next item is performed, as usual,
until the entire list ABAC is performed.

The numerical hypercolumns are represented by segmented
circles in Figure 9 for convenience. They are more realistically
represented by strips in a cortical map. Taken together, the totality
of these strips across a cortical region provides our first example
of a strip map.

3.15. Keeping Time by Counting:
Place-Value Numbers
Sometimes we keep time in music by counting using numbers.
Grossberg and Repin (2003) showed how number names may
get associated with the spatial number map (Figure 8C). First,
number names get learned in the What, or ventral, cortical
stream as part of language development and learning. Then
these number names get linked via associative learning with
a corresponding spatial numerical map representation in the
Where, or ventral, cortical stream. Grossberg and Repin (2003)
also explained and simulated how this associative What-to-
Where map can learn representations of larger numbers, called
place-value numbers, such as “twenty,” “thirty,” or “one hundred.”
To accomplish this extension, the primary spatial number map
(shown as a vertical striped bar in Figure 8CA) is extended to a
set of horizontal strips, each of which extends the representation
of its number in the primary map. Then associative learning
from the number names to the number map takes place
(Figure 8CB), as illustrated by the number seventy. These
horizontal strips constitute another example of a strip map, a
general brain design that will be seen below to have multiple
functions in music.

3.16. Strip Maps: A Cortical Design With
Multiple Uses in Music
Both place-value numbers and working memories with repeated
items are coded in the cerebral cortex using strip maps. Indeed,
strip maps occur throughout our brains. The orientation columns
within cortical area V1 are the most famous example of strip
maps. Here each strip, or hypercolumn, includes map positions
that respond selectively to objects with different orientations at
the position that it codes, and the entire cortical map contains
multiple strips that together are sensitive to all visible positions
(Hubel and Wiesel, 1962, 1963).

In general, a strip map represents one feature throughout its
extent (e.g., position), as well as another feature in an ordered
array of positions throughout the strip (e.g., orientation). In
addition to strip maps that represent orientation columns, place-
value numbers, and cognitive working memories that can code
repeated items, strip maps also occur in models of auditory
streaming and speaker-normalized speech (Grossberg et al., 2004;
Ames and Grossberg, 2008).

All of these strip maps are relevant to music. For example,
auditory streams can separate and track the instruments that we
hear during a string quartet. Place-value numbers can be used
to identify a piece of music, such as the BWV (Bach Works
Catalogue) number of a particular piece of music by Bach, or
the page number of a particular composition in a book of music.
The exposition in the next section will show how specialized strip
maps can also represent musical lyrics, pitches, and rhythms.

4. STORING, LEARNING, AND
PERFORMING MUSICAL LYRICS,
PITCHES, AND RHYTHMS

4.1. Storing and Performing a Phrase of
Lyrics During Bidirectional Learning With
Its List Chunk
This section will propose how a grouping of lyrics or melody
can be stored in working memory and performed with a regular
rhythm whose delays can be learned by counting the beats
between notes. It is proposed how the counting process for one
word or note delays the performance of the next word or note for
the correct duration.

This explanation builds upon the fact that an Item-
Order-Rank working memory (IOR WM) can use numerical
hypercolumns to store words or notes that may occur in multiple
positions within a short enough grouping; e.g., “our true love
was true.” To be learned and performed in the correct order, a
grouping of lyrics or notes must be short enough to be stored as a
primacy gradient (Figures 1, 5, 7A).

In Figure 5, the rehearsal wave acts at a processing stage
that occurs after the items that are stored by a WM gradient
compete to choose the largest activity. A rehearsal wave allows
this winning activity to be read out for performance, even as
it self-inhibits its WM representation using a specific inhibitory
feedback pathway. Figure 10 begins to use the above foundation
to explain how the lyrics of a song can be performed with a
learned and possibly variable rhythm, as illustrated by the songs
described above. The same mechanisms and circuits can be used
in a parallel architecture to explain how the melody of a song can
be performed along with the lyrics.

Figure 10A repeats the circuit in Figure 5 using a notation that
will be convenient for representing a larger cognitive architecture
in the auditory cortex whose rhythmic performance is regulated
by volitional control from the basal ganglia and cerebellum. In
Figure 10A, excitatory connections are depicted by green arrows
and inhibitory connections are depicted by red connections that
end in red disks. The two cells that are represented by black
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FIGURE 10 | (A) When a rehearsal wave R (blue disk) turns on, the item that is stored in working memory can be rehearsed while it self-inhibits its working memory
representation. Relative activity amplitudes are represented by the sizes of vertical blue rectangles. Triangular cells are polyvalent. (B) Filled diamond summarizes key
stages in choosing items to be rehearsed and associating them with bottom-up adaptive filter and learned top-down expectations. (C) Recursive read-out, under
volitional control, from the hierarchy of processing stages that represents the lyrics of a song. Green represents excitatory connections. Red represents inhibitory
connections. Blue disks represent volitional gain control signals. See the text for details.

disks at the top of Figure 10A interact via a recurrent shunting
on-center off-surround network and can thus store an activity
pattern in WM. The blue vertical bars of unequal height illustrate
the activity pattern that is currently stored in WM by this
network. Everything that is written below generalizes to networks
with an arbitrary finite number of cells.

The WM network in Figure 10A outputs via a non-recurrent,
or feedforward, on-center off-surround network to a pair of
cells that are denoted by black triangles. This feedforward
competitive network chooses the larger activity that is stored in
WM for further processing, while inhibiting the smaller activity.
This competition results in allowing only one cell at the next
processing stage to receive a positive input; namely, the cell
beneath the one that has been storing the larger activity in WM.

The black triangles denote polyvalent cells that can fire
only when they receive converging inputs from specific and
nonspecific input sources. The specific input comes from the
WM network. The nonspecific input comes from the blue cell
(population). Activating this blue cell occurs when rehearsal is
desired. Activating the blue cell releases a rehearsal wave that
is represented by the horizontal green arrow. Only one of its
excitatory output pathways is shown. In fact, the blue cell sends
equal excitatory signals to all of the polyvalent cells whenever it
fires. It is thus a source of nonspecific arousal.

The polyvalent cell that receives both a specific and a
nonspecific input can then fire. It then can send a signal along its

output pathway, which is denoted by a downward facing green
arrow. This signal also activates a recurrent specific inhibitory
interneuron, which shuts off the WM cell that activated it.
When this WM is silenced, so too are its feedforward inhibitory
signals that competitively silence outputs from the rest of the
WM network. Because the rehearsal wave is brief, all additional
outputs from the WM network are prevented.

The circuit on the left hand side of Figure 10B summarizes a
single cell in the WM network and all of its output connections.
This unit will be repeated multiple times in larger cognitive
architectures. In order to facilitate drawing such architectures, it
is denoted in various other figures as the filled green diamond
on the right hand side of Figure 10B. The left hand side of
Figure 10B also includes bidirectional adaptive pathways at the
next processing stage. These pathways are drawn in light, rather
than dark, green because the rest of the circuit with which these
adaptive pathways interact is not shown. Both the bottom-up and
top-down pathways are adaptive and are thus denoted by green
hemidisks. This notation will also be used in larger architectures.

4.2. Learning Lyrics in a Hierarchical
Cortical Architecture: Recursive Read-In
Previous articles have modeled how sequences of items
that are stored in WM can be encoded by learned list
chunks at the next processing stage (Bradski et al., 1994;
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Grossberg and Kazerounian, 2011, 2016; Kazerounian and
Grossberg, 2014). A volitional gain control source initiates
the storage process. This gain control process can act
iteratively to learn a hierarchy of ever-more-complex sequential
representations. Figure 4A summarizes a three-level processing
hierarchy that can learn phrases and sentences with repeated
items. The volitional gain control process that regulates such
storage and learning was omitted from this figure, but can be
studied in the articles cited above. The top level in Figure 4A
corresponds to the Phrase Chunks level in Figure 10C.

4.3. Rehearsing Lyrics From a
Hierarchical Cortical Architecture:
Recursive Read-Out
Figure 10C incorporates the network components in
Figures 10A,B into a hierarchical cortical architecture that
can represent WM storage and fluent read-out of the lyrics of
an entire song using multiple cortical processing areas. The
top-most list chunk in this figure is a Lyrics Chunk. When
its top-down learned expectation pathways are activated by a
rehearsal wave R, it reads out Phrase Chunks that are stored
in WM (for sufficiently short songs) as a primacy gradient.
When the top-down learned expectation pathway of the most
active Phrase Chunk are activated by a rehearsal wave R
(recall Figures 10A,B), it reads out Word Chunks that are
stored in WM as a primacy gradient of the words in that
phrase. Similarly, when the top-down learned expectation
pathway of the most active Word Chunk is activated by
a rehearsal wave R, it reads out the Item Chunks which
constitute that word, again in a primacy gradient. Each
Item Chunk, in turn, can read out the distributed pattern of
features that it codes.

Each rehearsal wave node R is quickly inhibited by activation
of the processing level whose chunk it activates. These inhibitory
signals are activated by inhibitory gain control signals from the
red disks that alternate with the blue rehearsal wave sources R.

For example, activating a Phrase Chunk sends excitatory
signals to its Word Chunks. The most active Word Chunk is
chosen by the circuit in Figures 10A,B. When that Word Chunk
also receives a rehearsal wave from the rehearsal node R at its
level, it can fire. In addition to sending top-down excitatory
priming signals to the Item Chunk level, it also activates the
inhibitory gain control node at its level, which inhibits the
rehearsal node R at the Phrase Chunk level and thus terminates
read-out of the next-most-active Phrase Chunk. This process of
brief activation occurs at each level, terminated by an inhibitory
gain control signal at the level just below.

When all the Items of an Item Chunk are rehearsed, the Item
level can no longer activate an inhibitory gain control signal.
Then a rehearsal wave can activate the currently most active Item
Chunk, whose Items can be rehearsed in the same way. This
process continues until all the Item Chunks of a Word Chunk
are rehearsed. Then the next Word Chunk can be read out, and
the process repeats itself until all the Word Chunks of a Phrase
Chunk are rehearsed. And so on up the hierarchy until all the
lyrics are performed.

The volitional rehearsal processes V and R in Figure 10
are regulated by the basal ganglia, whose substantia nigra pars
reticulata (SNr) opens gates that release perceptual, cognitive, and
motor processes (Hikosaka and Wurtz, 1983, 1989; Alexander
and Crutcher, 1990; Mink and Thach, 1993; Alexander et al.,
1996; Mink, 1996; Grahn and Brett, 2007, 2009; Grahn and Rowe,
2009, 2013; Chapin et al., 2010; Fujioka et al., 2010; Kung et al.,
2013; Grossberg, 2016). Activating R is controlled by the basal
ganglia direct pathway, whereas inhibiting R is controlled by the
basal ganglia indirect pathway. Brown et al. (1999, 2004) describe
a detailed neural model of basal ganglia circuitry that explains
and simulates anatomical and neurobiological data about how
this part of the brain works.

The polyvalent cells that fire in response to converging specific
and nonspecific inputs have been a design feature in brains for
many thousands, if not millions, of years, ranging from command
cells in invertebrates to cells that regulate reinforcement learning,
motivated attention, and decision-making in vertebrates. See
Grossberg (1970, 1971, 1972a,b, 1974, 1978b, 2021) for neural
models of such circuits. Whether the nonspecific input is
excitatory, as in the simplified circuits of Figure 10, or an
inhibitory signal whose activation disinhibits a tonically closed
gating signal, as occurs throughout the basal ganglia (Alexander
and Crutcher, 1990; Alexander et al., 1996), is a detail that will not
be further discussed here.

4.4. Auditory Streaming, Speaker
Normalization, and Learning What Lyrics
Mean
Before discussing how lyrics can be learned and performed
at different rhythms and beats, I will further develop the
topic that was begun in Sections 1.3 and 1.7 of auditory
streaming and speaker normalization in order to clarify how
lyrics, or indeed any auditory communications, including
language, can be learned by listening to a speaker whose
sounds are uttered with different acoustic frequencies than our
own voice produces.

Speaker normalization enables us to understand speech
spoken by children, women, and men in different frequency
ranges than our own. In particular, when babies babble sounds,
they hear their own babbled sounds and use them to learn
an associative map between their heard sounds and the motor
commands that generated them. This kind of interaction is called
a circular reaction by Piaget (1963). Babies use this associative
map to learn how to imitate adult language sounds and thus to
begin learning language.

Speaker normalization makes this possible. Without speaker
normalization, the sounds that are produced by women and men
could not activate the associative map that a baby learns, since
it would have been learned between the sound frequencies that a
baby can babble and the motor commands that made them. By
first normalizing the sounds that the baby babbles, the associative
map is learned between normalized sounds and these motor
commands. Then sounds heard in different frequency ranges
from women and men are also normalized, so that they can also
activate the associative map to enable the baby to begin to imitate
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and learn the language utterances of other individuals. These
language utterances include the lyrics of songs.

Before a baby or adult can process the sounds from an acoustic
source, such as a speaker or singer, auditory streaming must first
occur. Auditory streaming is also called auditory scene analysis
(Bregman, 1990). It enables the sounds from multiple acoustic
sources, including both voices and instruments, to be separated
and tracked through time, including through intervals of noise
or overlapping frequencies from multiple acoustic sources. Only
after acoustic sources like voices are separated can they be
individually normalized.

The above facts raise the question: How can brain evolution
be smart enough to discover auditory streaming and the
speaker normalization that follows it? Remarkably, both auditory
streaming and speaker normalization seem to use homologous
neural circuits. The ARTSTREAM model of auditory streaming
(Figure 2; Grossberg et al., 2004) simulates how auditory streams
are separated using strip maps, asymmetric competitive circuits,
and ART category learning circuits. The circuits within the
NormNet model of speaker normalization (Figure 11; Ames
and Grossberg, 2008) replicate, in specialized form, the auditory
streaming circuits whose outputs they process. NormNet hereby
clarifies how auditory streaming supports speech normalization.

In particular, NormNet uses strip maps (Figure 11A) to
simulate the transformation from speaker-dependent to speaker-
normalized language representations (Figure 11B). After speech
is transformed to become speaker-invariant (that is, normalized)
and rate-invariant, it is in a form where our brains can learn and
recognize language meanings from multiple speakers—without
having to relearn them for each speaker and speech rate. These
speaker-normalized spectral representations can be encoded
through learning by speech item categories using Adaptive
Resonance Theory circuits, which can quickly learn and stably

remember them using both bottom-up and top-down adaptive
pathways (Figure 11C). These speech item categories then input
to an IOR working memory (Figure 3) whose primacy gradients
can be categorized into syllable, word, and sentence list chunks.

NormNet was tested by simulating synthesized steady-state
vowels from the Peterson and Barney (1952) vowel database
and achieved accuracy rates similar to those achieved by human
listeners. Vowels are, of course, the speech sounds that are most
similar to musical pitches.

4.5. Changing Musical Key: Speaker
Normalization and Relative Pitch
A basic issue in music is how to play or sing the same piece of
music in a different key. I propose that a striking homology exists
between normalizing speech and changing musical key. Just as
speaker normalization uses a variant of the circuit that controls
auditory streaming, changing a musical key uses a variant of
the circuit that controls speaker normalization. Both processes
shift all frequencies by a given amount, whether for purposes
of speaking language or performing music. In Figure 11, this
frequency is called the anchor frequency. Moreover, auditory
streaming, speaker normalization, and changing musical key
all use strip maps.

In particular, by normalizing speech, one can recognize
a language utterance independent of its absolute pitches. By
changing musical key, one can recognize a melodic utterance
independent of its absolute pitches. In both processes, one
can still hear the speech or music frequencies as they are
uttered, while also recognizing their invariant meaning via
parallel processing streams (Figure 3). Speaker normalization
and changing musical key thus seem to use homologous circuits
that each specialize mechanisms of auditory streaming. This

FIGURE 11 | The NormNet model (Ames and Grossberg, 2008) shows how speaker normalization can be achieved using specializations of the same mechanisms
that create auditory streams. See the text for details.
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homologous mechanism also makes it possible for the meanings
of words sung in a different key to be understood.

4.6. Rehearsing a Phrase of a Melody’s
Pitches at the Correct Rhythm
Having summarized how the order information of both lyrics and
pitches may be stored in their respective working memories, the
next issue is how they are performed at a desired rhythm. This
issue will be discussed for the case of lyrics, leading to the ability
to perform the words of a song at a learned rhythm. The same
kind of analysis applies to the pitches with which the song is sung.

As noted in Section 1.3, a phrase of lyrics or melody can
be stored in working memory and performed with a rhythm
whose variable delays can be regulated by counting (Figure 8) the
number of beats between notes, while inhibiting the performance
of the next word or note for the correct duration until the count
for the last word or note is complete.

Figure 8 summarizes part of the circuit in the parietal
cortex that controls counting. The production of counts, whether
vocally or unvocally, requires that this circuit interacts with
prefrontal cortical circuits that regulate sequential performance
of any list of items (Section 3) and with motor cortical circuits
that read out the counting behaviors. As noted in Section 4.3,
all of these processes are regulated by the substantia nigra pars
reticulata (SNr) of the basal ganglia, which opens gates that
release perceptual, cognitive, and motor processes.

The SNr also prevents the performance of behaviors whose
gates are not open while counting is occurring. This happens
using competitive interactions among the gating pathways. In
particular, read-out of the next word in a lyric is prevented while
counting the number of beats during which the current word is
being performed.

4.7. Adaptively Timed Classical
Conditioning: Cerebellar Spectral Timing
How are temporally discrete counts converted into a learned
duration that is continuously read out during skilled performance
while a given word is being performed? This process is controlled
by adaptively timed learning within the cerebellum, which is
known to be important in learning adaptively timed behaviors
that include musical performance (Thach, 1998; Ramnani and
Passingham, 2001; Sakai et al., 2002; Doyon et al., 2003; Ivry,
1997; Ivry et al., 2003; Penhune and Doyon, 2005; Ramnani, 2006;
Zatorre et al., 2007).

Adaptively timed learning by the cerebellum builds upon
the Spectral Timing model, wherein a spectrum of cells that
each react at different rates can together, as a population, learn
to adaptively time movements that occur over a time span
of hundreds of milliseconds or several seconds (Figure 12).
Spectral timing circuits have also modeled adaptively timed
learning by the hippocampus (Grossberg and Schmajuk, 1989;
Grossberg and Merrill, 1992, 1996) and the basal ganglia
(Brown et al., 1999, 2004), which contribute to dance movements
in different ways, the former by regulating timed movements
through space, and the latter by regulating when perceptual,
cognitive, and movement gates open and close. The model

was progressively developed until it could quantitatively
simulate experimental facts about the biochemical processes
that span such long times, notably the metabotropic glutamate
receptor, or mGluR, system, with the spectrum specified by
a Calcium gradient. Fiala et al. (1996) used this mGluR
model to quantitatively simulate behavioral, neuroanatomical,
neurophysiological, biophysical, and biochemical data about
adaptively timed learning by the cerebellum. It has also
been shown that the spectral timing circuits in basal ganglia,
cerebellum, and hippocampus all share variations of the
same circuit design.

Figure 12A summarizes how a learned sensory or cognitive
representation sends trainable signals to both the cerebellar
cortex and subcortical nuclei. In this figure, the sensory
representation selectively responds to a conditioned stimulus,
or CS, during a classical conditioning experiment. Classical
conditioning is an ancient kind of learning that occurs
across multiple species, ranging from invertebrates like Aplysia
californica through rabbits to humans (Kamin, 1968; Smith,
1968; Millenson et al., 1977; Carew et al., 1981; Buonomano
et al., 1990; Buonomano and Mauk, 1994; Woodruff-Pak et al.,
1996). During classical conditioning, the CS starts out as a signal
that may activate no learned associations. If the CS is paired
on sufficiently many trials with an unconditioned stimulus, or
US, which occurs after a delay of from 50 to several hundred
milliseconds after the CS, then the CS can learn to activate
some of the consequences that the US originally caused. During
classical conditioning, the US acts like a positive or negative
reinforcer, such as food or shock.

The trainable CS-activated signals to the cerebellar cortex are
carried by parallel fibers that end in Purkinje cells (Eccles et al.,
1967; Fiala et al., 1996). Learning that occurs at the parallel
fiber/Purkinje cell synapses is called Long Term Depression, or
LTD, because pairing at Purkinje cells of a CS-activated signal
along a parallel fiber with a teaching signal along a US-activated
climbing fiber causes the adaptive weight at the end of the active
parallel fiber to decrease, or be depressed (Ito and Kano, 1982).
Because Purkinje cells are tonically active, a smaller learned signal
from a parallel fiber will activate target Purkinje cells less. These
Purkinje cells will consequently inhibit their target subcortical
nuclear cells less, thereby disinhibiting them and releasing a
timed output signal downstream via the subcortical nucleus to
which the trained Purkinje cells project.

Figure 12B provides a more detailed insight into properties
of adaptively timed learning at the Purkinje cell synapses. I have
called this kind of learning spectrally timed learning, or spectral
timing for short (Fiala et al., 1996; Grossberg and Merrill, 1996),
because a signal down the parallel fiber has multiple branches that
activate a spectrum of cells, each of which reacts at a different
rate (Figure 12Ba). Learning occurs at the synapses of each cell’s
output pathway. More learning occurs in cells that are more
active at times when the CS and US signals are paired. In the
computer simulation results of Figure 12B, the most learning
occurs at the interstimulus interval, or ISI, between the CS and
US, which is 400 milliseconds. These learned weights multiply
their signals in the spectrum, leading to a spectrum of learned
signals that are largest at the ISI (Figure 12Bb). When all of these
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FIGURE 12 | (A) Schematic of how learning in the cerebellum occurs. [Reprinted from Grossberg and Merrill (1996)]. (B) Summary of a computer simulation showing
how the cerebellum learns adaptively timed responses over a duration of hundreds of milliseconds using the population response of a tunable spectrum of cells
whose individual peak responses occur at different times during this time interval. [Adapted from Grossberg and Schmajuk (1989)]. See the text for details.

signals are added up at a fixed ISI, unimodal output signals are
created which peak at the ISI, such as those shown in Figure 12Bc
during the first five learning trials.

When the ISI is varied, the learning curves at multiple ISIs
look like the curves in Figure 12Bd. These curves become
broader as the ISI increases. This property is called the Weber
Law (Smith, 1968). Note also that the envelope of all the curves
has an inverted-U shape. The Weber Law is a signature of spectral
timing wherever it occurs.

4.8. Learning to Perform Timed Lyrics
Using Cerebellar Spectral Timing
When counting signals that occur regularly in time activate
training inputs via climbing fibers to a cerebellar spectrum
then, as Figure 12 shows, the Purkinje cell output will learn
to remain small throughout that time interval. In this way,
training inputs that occur discretely in time are converted into
a learned spectrum that remains small throughout a timed
duration during which it disinhibits its target cerebellar nuclear
cells (Figure 13A).

How is the correctly learned timed duration linked to a given
word in a song’s lyrics? This requires an interaction between
multiple brain regions, including the thalamus, cerebral cortex,
cerebellum, and basal ganglia (Grossberg and Paine, 2000; Bostan

and Strick, 2010; Bostan et al., 2013; Gao et al., 2018; Hintzen
et al., 2018). Figure 13A shows how a Phrase Chunk, which can
code for a learned word, can accomplish this. As in Figure 13C,
such a Phrase Chunk can read out its series of words into an IOR
working memory. It can also, in parallel, read out an array of
pathways that activate a band of parallel fibers into the cerebellum
(Figure 13A). Before reaching the cerebellum, each pathway
inputs to a polyvalent cell that also receives an excitatory input
from a Word Chunk in working memory when it generates an
output signal in order to be rehearsed. Convergent signals from
the Phrase Chunk and the Word Chunk at this polyvalent cell
can fire it, so that its output signal to the cerebellum only samples
counting inputs when a particular word in a prescribed phrase of
lyrics in a song is being rehearsed. In this way, for example, when
the word “true” in the phrase “my true love is true” (Section 1.7)
is read out of working memory, it can learn to be performed with
two different durations at its two locations in the phrase.

Figure 13B shows that the disinhibited cerebellar nuclear cell
inputs to a polyvalent cell (triangle in blue) which also receives
a volitional signal V from the basal ganglia. When both inputs
are on, the polyvalent cell can fire and support rehearsal of the
word using the LIST PARSE circuit in Figure 6. LIST PARSE
can control timed read out of a word at variable speeds by
using acceleration and deceleration signals to control a smooth
transition to the next sound in the word as performance of the
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FIGURE 13 | (A) Sequences of Word Chunks that are stored in working memory in the auditory cortex interact via adaptive bottom-up and top-down pathways in
an ART circuit to learn Phrase Chunks. Each Phrase Chunk emits parallel pathways to polyvalent cells. Each polyvalent cell also receives a specific input from a
particular Word Chunk. This polyvalent cell thus responds selectively to its Word Chunk when it is currently being performed as part of a prescribed phrase of lyrics.
The polyvalent cell activates parallel fibers to the cerebellum where they learn an adaptively timed duration to perform that word in a lyric. Climbing fibers are teaching
signals that drive adaptively timed learning using Long Term Depression, or LTD, in (parallel fiber)—(Purkinje cell) synapses. During such a trained duration, Purkinje
cell outputs are depressed and their target subcortical nuclear cells are disinhibited. (B) Circuitry whereby cerebellar adaptive timing regulates the learned durations
between successive words in a lyric. (C) Circuitry whereby cerebellar adaptive timing regulates timed performance by the hierarchy of processing stages in the
auditory cortex that represent a song’s lyrics. See the text for details.

previous sound is almost completed by a Vector Integration to
Endpoint, or VITE, motor trajectory controller. This happens in
the following way.

This Vector Integration to Endpoint, or VITE, model and
its extensions (e.g., Bullock and Grossberg, 1988, 1991; Bullock
et al., 1993) were originally used to explain and quantitatively
simulate psychophysical and neurobiological data about arm
movement reaches. VITE dynamics have also been shown to
play a role in controlling other types of movements, including
movements to play musical instruments, and movements of the
speech articulators that are used to sing (Guenther, 1995; Jacobs
and Bullock, 1998; Bohland et al., 2010).

The individual movements that are controlled by LIST PARSE
in Figure 6 (right panel) use a VITE model circuit. In such a
circuit, a present position vector Pi computes the current position
of a limb, and a target position vector Ti computes the desired final
position of the limb. Pi is subtracted from Ti (dashed red line
between them) to compute a difference vector Di that codes the
direction and distance of the desired straight movement. Then Di

is multiplied by a volitional GO signal G to determine an outflow
movement speed vector DiG that is integrated through time by Pi
until Pi equals Ti, at which time the desired target position has
been reached and the difference vector equals zero. Increasing G
increases movement speed.

LIST PARSE can interact with a VITE trajectory generator to
smoothly perform a sequence of straight movements at variable
speeds, such as a skilled sequence of arm movements, dance, or
sounds in a word. Given that this can be achieved at variable
speeds by varying the size of a volitional signal V, how do the
circuits in Figure 6 know when an ongoing straight movement
is almost complete, so that the next straight movement can begin
to be rehearsed from working memory in a smooth way?

In Figure 6, the rehearsal signal R that controls read-out of
successive movement commands from motor working memory
is regulated by a signal (B – A) that is activated by cells that
slowly (B) and more quickly (A) time-average outflow velocity
signals DG. Due to the bell shape of the velocity vector DG for
each straight movement, (B – A) is sensitive to whether DG is
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increasing, and thus accelerating in its growth, or decreasing, and
thus decelerating. Because of the bell shape of DG, (B – A) is
initially negative, thereby keeping R off, but (B – A) becomes
positive toward the end of the movement, thereby initiating a
smoothly interpolated rehearsal of the next movement in the
performance of the word. As schematized in Figure 13C, then
the next word in the phrase can be rehearsed with its learned
timing until the entire musical phrase has been performed with
the rhythm of the song.

The rate at which such movement trajectories may be
completed in response to a GO signal G of a given size helps to
determine the “resonance” frequency of performing a sequence of
such movements. This kind of circuit may clarify how preferred
performance rates during walking and running are linked to
rates of musical performance. Various studies have suggested that
“people can synchronize their walking movements with music
over a broad range of tempi, but that this synchronization is most
optimal in a rather narrow range around 120 BPM [beats per
minute]. This finding can be connected with previous findings
indicating that most music has a tempo in this range” (Styns et al.,
2007, p. 784).

5. BASAL GANGLIA CONTROL OF
PERIODIC DYNAMICS, INCLUDING
BEATS

A great deal has been written about the psychology and
neurobiology of musical beat in both normal, or typical,

individuals and clinical patients, including how it engages
sensory, cognitive, emotional, and motor systems in both
musicians and non-musicians (e.g., Jones, 1976; London, 2004;
Buhmann et al., 2017; Rajendran et al., 2017; Tal et al., 2017;
Beier and Ferreira, 2018; Lenc et al., 2018; Slater et al., 2018;
Lagrois et al., 2019; Toiviainen et al., 2019), and models have been
proposed to clarify the underlying mechanisms (e.g., Lerdahl and
Jackendoff, 1983; Large, 2010; Large et al., 2015). It has also
been shown that interactions exist across rhythmic circuits that
oscillate with very different frequencies, such as circadian and
motor circuits (Ivanov et al., 2007).

I will not review this extensive literature here. Rather, I
will briefly note how the same kind of recurrent shunting
on-center off-surround network that has above been used to
explain and simulate multiple types of data can also create
beat-like oscillations whose frequency can be regulated by
volitional signals.

5.1. Finger and Gait Oscillations:
Shunting Recurrent Competition With
Slow Inhibition
The circuit in Figure 14A is defined by a recurrent shunting
on-center off-surround circuit (Grossberg et al., 1997b). It can
oscillate in response to external volitional inputs I1 and I2 because
the inhibitory interneurons in its off-surround vary more slowly
through time than the self-excitatory cells in the on-center. As a
result, the recurrent on-center can rapidly amplify the activity of
its cell, followed by slow inhibition that shuts it down, after which
another cell can get activated.

FIGURE 14 | A recurrent shunting on-center off-surround network models data about synchronization of bimanual tapping. Bifurcation from anti-phase to in-phase
oscillation occurs in response to anti-phase inputs of increasing frequency. See the text for details. [Reprinted from Grossberg et al. (1997b)].
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FIGURE 15 | A pair of interacting recurrent shunting on-center (+ signs) off-surround (– signs) networks model the central pattern generator, or CPG, that controls
quadruped movement gaits. Movement gait transitions are activated by an increasing volitional GO signal. Cells that emit excitatory signals are denoted by open
circles. Inhibitory interneurons that emit inhibitory signals are denoted by closed disks. (A) Self-inhibitory feedback is labeled by the parameter D0, inhibition between
forelimbs and between hindlimbs is labeled by D1, inhibition between matched forelimbs and hindlimbs is labeled by D2, and inhibition between crossed forelimbs
and hindlimbs is labeled by D3. (B) Computer simulation of how increasing the GO signal, when it is combined with GO signal modulation of the inhibitory
coefficients, triggers an ordered series of gaits (walk, trot, pace, and gallop). [Reprinted with permission from Pribe et al. (1997)].

This kind of oscillator has been used to simulate oscillatory
movements of fingers and legs. Concerning finger movements,
Yamanishi et al. (1980) described a bimanual finger tapping task
whereby subjects were required to start from a stable posture
before periodically tapping keys in time to visual cues that
occur at an increasing frequency (Figure 14B). When one of the
periodic inputs I1 or I2 is missing, then the recurrent interactions
continue to oscillate, as in the missing beat phenomenon
(Tal et al., 2017).

Figure 15A describes a recurrent shunting on-center off-
surround network for control of quadruped locomotion from the
spinal cord (Pribe et al., 1997). Here, opening an appropriate
gate in the SNr disinhibits a GO signal. Increasing the GO
signal causes the circuit to generate gaits and gait transitions
that are familiar in quadrupeds like cats (walk-trot-pace-gallop;
Figure 15B), humans (walk-run), and elephants (amble-walk). In
the case of music, such a circuit can control a beat that can be sped
up or slowed down under volitional control.

5.2. A Similar Design for Beat and
Movement Circuits Explains How They
Synchronize
Recurrent shunting on-center off-surround circuits, such as those
in Figures 14, 15, may be used to generate musical beats, while

also clarifying how synchronization of musical beat circuits can
occur with similarly designed motor circuits that enable us to
move with the beat (Wallin et al., 2000; Phillips-Silver and
Trainor, 2007; Trainor, 2007; Zatorre et al., 2007; Sowiński and
Bella, 2013; Burger et al., 2014; Schaefer and Overy, 2015). The
observation that music can induce movement goes back at least
to Aristotle who asserted that movement “follows” sound (von
Helmholtz, 1954; Phillips-Silver and Trainor, 2007).

6. CONCLUDING REMARKS

Two of the main insights of this article are the following: First, all
the brain circuits that process lyrics, melodies, rhythms, and beats
are specializations of a shared neural design; namely, recurrent
shunting on-center off-surround networks. Second, these various
networks arose early during human evolution to achieve more
basic survival demands.

Periodic oscillations are used by our brains to support multiple
rhythmic activities. The same types of oscillatory circuits that
control periodic motor behaviors, such as walking and running,
are also proposed to support musical beats, thereby clarifying the
strong urge to move with the beat.

Regular rhythms can be learned using cortical modulation of
beats that are generated in the basal ganglia. Arbitrary rhythms,
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whether regular or irregular, can be learned when
cerebellar adaptively timed learning circuits interact with
cortical and basal ganglia mechanisms. The type of
spectral timing found in the cerebellum also controls
many kinds of adaptively timed brain processes, ranging
from classical conditioning in invertebrates to musical
performance by humans.

Emotional, cognitive-emotional, and expectation violation
processes in music are not analyzed in this article, but neural
models to help do this in future studies are summarized in the
Supplementary Information.
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