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In surgical oncology, decisions regarding the amount of tissue to be removed can have important conse-
quences: the decision between preserving sufficient healthy tissue and eliminating all tumor cells is one to
be made intraoperatively. This review discusses the latest technical innovations for a more accurate tumor
margin localization based on mass spectrometry. Highlighting the latest mass spectrometric inventions,
real-time diagnosis seems to be within reach; focusing on the intelligent knife, desorption electrospray
ionization, picosecond infrared laser and MasSpec pen, the current technical status is evaluated critically
concerning its scientific and medical practice.

Lay abstract: The correct assessment of tumor margins is a key challenge during surgical excision. Latest
developments in research strive for the invention of a method to detect the tumor spread intraoperatively,
enhancing the therapeutic outcome. Techniques coupling potential or established surgical instruments to
mass spectrometric analysis are of great importance in the upcoming market. Methods using electrospray
(desorption electrospray ionization), an electrocautery knife (intelligent knife), a surgical laser (picosecond
infrared laser) and a drop of water (MasSpecPen) applied on the tissue surface are discussed in this review
as new sampling methods.
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The establishment of mass spectrometry-based approaches for intraoperative diagnostics
The most common treatment for cancer is the complete surgical removal of the tumor in combination with
additional therapeutic steps such as chemotherapy and radiation. Usually, for complete solid tumor resection,
the surgeon has to exactly locate the tumor tissue and evaluate its extent based on macroscopic criteria, imaging
techniques and background knowledge about the type of malignancy’s behavior [1–3]. Following the principle
of tissue-conserving surgery [4], the physician is confronted with the narrow window between resecting too much
healthy tissue and not removing all tumor cells. The more precisely the extent of the tumor can be located, the better
the surgeon can circumscribe the excision margins. Even though tissue of affected fields might be histologically
unsuspicious, after tumor resection there is an increased risk of tumor recurrence [5].

These circumstances led to the need for improved intraoperative tumor diagnostics tools. In this review, techniques
based on mass spectrometric approaches such as the intelligent knife (iKnife), desorption electrospray ionization
(DESI), picosecond infrared laser (PIRL) and the MasSpec pen are critically evaluated regarding their potential
to detect the molecular phenotypes of typical biomolecule cancer profiles. Universally, we generated the term
‘intelligent scalpel’ to describe techniques combining a surgical cutting device on-line with mass spectrometry
(MS), equipped with appropriate algorithms for signal processing and interpretation.
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Tumor margin behavior
To excise a tumor in its complete volume, understanding of behavior during its growth is essential. Tumor tissue
is embedded in a ‘transition zone’; cancerous and noncancerous cells are located in the vicinity, complicating the
differentiation between healthy and tumorous tissue macroscopically, especially in early nonvisible tumor stages,
named carcinoma in situ [6].

Broadly, the described transition zones consist of cells in a precancerous state with the same morphology, but
different biochemical properties and therefore functional variabilities. According to the ‘field cancerization theory’,
long-term injuries can promote the growth of carcinogenic alterations [5]. Within this preneoplastic field, histological
changes may occur, but these changes are not always detectable, and therefore undetected tumor cells may remain
in the operation field [7]. For instance, in the case of breast cancer with an invasive carcinoma or a carcinoma
in situ, around 20% of the patients in a three year period need a reoperation to remove the tumor grown from
positive margins, which were not excised during a first breast-conserving surgery [8]. In cancer forms like head and
neck cancer [9–11], gastrointestinal cancer [12], colorectal cancer [13], skin cancer [14] and Barrett’s esophagus [15],
field cancerization has been described. Through the stages of field cancerization, molecular lesions such as genetic
mutations and epigenetic changes can be detected, leading the cells to progress into a cytologically preneoplastic
or premalignant form, hence changes in the composition of other biomolecules than genes can be assumed. Thus,
alterations of the concentration of these biomolecules, including lipids, metabolites and proteins in tumor cells and
margins, may be used for further diagnosis and characterization of tumor margins.

Current state of tumor diagnostics
Currently, most imaging diagnostic tools such as magnetic resonance imaging (MRI), (micro-) computed tomogra-
phy (μCT) or ultrasound, which provide additional information about tumor size, shape and microenvironment,
are used to assist the surgeon in localizing the tumor pre- or post-operatively [16].

Until now, intraoperative diagnostics has been performed by specially trained pathologists using light microscopy
for analysis of frozen sections looking for morphological changes associated with cancer. Determining the tumor
margins by histological imaging has become the gold standard since the invention of the intraoperative frozen
section, first published in 1905 (reviewed in [17]). Although universally applied, histological imaging has some
major drawbacks: it is time-consuming [18], thus extending the time of anesthesia for the patient, it can be
inaccurate due to technical limitations [19], it may be open to subjective interpretation [20–22], and only a certain
number of sampling points are feasible.

Concerning time consumption, the transfer of a biopsy at room temperature to the pathologist is a factor that
should be taken into consideration. After the transfer, prior to the sectioning, several inevitable factors can lead to
the creation of frozen artifacts [23]. These frozen section artifacts result in a decrease of resolution of the microscopic
images and, therefore, it is important to recognize these artifacts to obtain a correct interpretation [23,24].

In addition, potential biomarkers can be converted by enzymatic reactions [25,26], thus reducing the probability
for using them as diagnostic markers. The overall time from resection until microscopic diagnosis amounts is
20–30 min; the tumor tissue is cut near the margin at first to save healthy tissue, so that the time of anesthesia
is even more prolonged if a second or third analysis is requested [18]. Prepared under time pressure, if a patient is
laying on the operation table [27], possible technical problems during slide-preparation are inevitable [8,28]. These
technical challenges may lead to a variation in histopathologic diagnoses from the observer point of view. A study
by van den Brekel et al. highlighted the subjectivity of human evaluation in histological images. Focusing on head
and neck tumors, which are likely to metastasize to adjacent lymph nodes, significant inter- (K = 0.14–0.75)
and intra-observer (K = 0.49–0.95) differences in terms of pathological diagnoses in fresh frozen tissue have been
described [20]. An important prognostic factor for malignancy, the extranodal spread of tumor cells, was determined.
Therefore, lymph nodes were evaluated by ten different pathologists, instructed to evaluate upon their own criteria.
Histologically diagnosed cancer-free fields, adjacent to a tumor, can show functional characteristics of malignant
cancer cells due to various reasons. Therefore, additional and alternative diagnostic methods that analyze tumor
tissue in a faster and more accurate way than histology should be encouraged. With mass spectrometric methods
designed for the operation room, factors such as mechanical damage during slide preparation and microscopically
visible artefacts would not affect the result, since the analysis is based on objective biochemical characteristics such
as the composition of lipids or proteins, not on morphology alone. These mentioned changes of the molecular
phenotype are yet to be taken into account for routine diagnostics, but making use of it could lead to more efficient
and personalized therapies in the future.
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MS-based methods for intraoperative tumor diagnostics
MS has been implemented as a diagnostic tool, being especially used in drug monitoring [29], newborn screening [30]

and in the diagnosis of metabolic diseases [31]. In clinical research, the focus of mass spectrometric analysis has been
on biomarker discovery, including proteomics, lipidomics and metabolomics [32,33].

Among the variety of molecules detectable with MS, metabolites, proteins and lipids have been used so far to
provide useful information to distinguish between cancerous and healthy tissue.

To successfully identify a molecule as a qualified biomarker, the compound should be discriminable from other
molecules, have a low limit of detection and should be interference-proof. Ideally the sample is easy, fast and fresh
to obtain, has a high sensitivity (e.g. ≥ 0.9), specificity (e.g. ≥ 0.9) [34,35] and is a measurement for diagnosis and
prognosis. In general, different classes of molecules could serve the purpose of a biomarker, due to the imbalance
of tumor suppressing and promoting factors in cancer cells, controlling genetic alterations and therefore change of
the composition of lipids, metabolites and proteins. Proteins, for example, participate in all steps of carcinogenesis;
their concentrations, post-translational modifications and 3D structures are fairly unpredictable from genomic
information. One of the biggest challenges to circumvent in the analysis of proteins is the long and complex sample
preparation or chromatographic separation steps, to define a rapid valuable method for the operation theatre [36,37].
Without chromatographic separation, due to the superior ionization and desorption properties of lipids, protein
signals are suppressed. Lipids – as potential biomarkers – are crucial for cellular membranes and are involved
in cellular processes such as apoptosis [38], energy homeostasis and regulation of the molecular machinery [39,40]

that determines size and replication in proliferating cells [41], providing information about cancerous growth. Due
to the simpler sample preparation steps, lipids have proven to be detected reliably. In particular, fatty acids and
phospholipids have been used as the discriminating molecules to distinguish between cancerous and healthy tissue.
All techniques presented in this review [42–55], concentrate on applications using lipid analysis fitted for clinical
application, as shown in Table 1. Based on a variety of sampling methods, the applications differ in their invasiveness
(regarding the amount of tissue being removed), turnover time, cross contamination, preanalytical issues, surface
scanning and cutting ability toward clinical use.

DESI
DESI was introduced in 2004 by the group of Graham Cooks [57], combining electrospray ionization with desorption
ionization under atmospheric conditions. In DESI, a jet of gas and charged microdroplets is created using a standard
pneumatic ESI sprayer. The jet of gas and charged microdroplets is directed onto a sample surface at angle α that
is typically close to 45◦. Analytes are ionized and desorbed from the surface by the charged microdroplets as
a result of electrostatic and pneumatic forces [57]. The gas-phase ions of the desorbed analytes are subsequently
transferred into the MS via an atmospheric pressure ion-transfer line or an extension tube that is mounted in front
of the orifice of the MS. The ion-transfer line or extension tube further enhances the desorption and ionization
process of the analytes [57,58] and guides the ions into the MS where the mass-to-charge ratios (m/z) of molecular
ions and their abundances are measured (Figure 1). By choosing appropriate solvents, DESI is a nondestructive
analysis technique, leaving the area of tissue intact In their 2011 work, Eberlin et al. demonstrated that the use
of N,N-dimethylformamide-containing solvents as compared with acetonitrile and methanol-containing solvents
preserves tissue integrity during DESI analysis [59]. The gentle ionization process transfers analytes such as lipids
and proteins intact into the gas phase [60]. The chemistry of this desorption process can be compared with a solvent
extraction experiment [61]. Depending on the solvent use, different molecules can be analyzed by DESI such as small
molecules [62,63] and lipids [64–67] including cholesterol [68]. Hsu et al. detected intact proteins with masses up to 15
kDa with only minimum sample preparation from tissues by using nanospray desorption electrospray ionization
(nanoDESI) [69], and recently the Eberlin group successfully combined DESI with field asymmetric waveform ion
mobility (FAIMS; DESI-FAIMS-MS) to image proteins from mouse kidney, mouse brain and human ovarian and
breast tissue samples [70]. The use of FAIMS increases signal-to-noise of protein ions and thus improves imaging
contrast and quality. They further demonstrated MS-based on-tissue protein identification using abundant proteins,
which represents an initial step toward in-depth tissue proteomics applications.

DESI is the most extensively used ambient ionization technique for MS imaging (MSI) and MS-based tissue
diagnosis. DESI-MS is an interesting tool which provides a high potential for MS-based cancer diagnostics.
Beneficial for surgical navigation, DESI can be used as an imaging technique. The architecture of the tissue sections
used for the DESI-MS analysis remains largely intact and can subsequently be used for histopathological analysis
by H&E staining [43].
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Figure 1. Schematic figure of mass spectrometry based methods for intraoperative cancer diagnosis (left) with corresponding examples
of mass spectra (right). (A) Desorption electrospray ionization. Left: Schematic representation of desorption electrospray ionization.
Under the influence of high voltage a methanol-water solution is sprayed on the sample surface, dissolving desorbed ions to be
transferred in the atmospheric inlet of the mass spectrometer. Parameters like voltage, gas and liquid flow rate can be set. Right: Average
lipid profile spectrum for all pixels images used for chemical prediction. Reproduced with permission from [45]. (B) iKnife. Left: Schematic
illustration of rapid evaporative mass spectrometry coupled to eligible surgical devices. Surgical ion source and ion transfer setups for
rapid evaporative mass spectrometry experiments are demonstrated using an endoscope, monopolar electrosurgery or commercially
available bipolar electrosurgery. The aerosol is aspirated by an air jet pump through a teflon tube with a maximum of 3 m length. By
histological validation and Principal Component Analysis, in a second run the recognition software differentiates cancer and normal
tissue by comparing signal intensities in the recorded mass spectra. Most of the signals in the spectra represent lipid ions. Right: Mean
spectral intensity for cancer and normal tissues during cutting. Reproduced with permission from [50]. (C) MasSpec pen. Left: A handheld
device (MasSpec pen) is positioned on the sample surface and through the inlet channel a water droplet is exposed for 1 s to extract
molecules from the tissue surface. Then, the channel is closed and after 2 s, gas inlet is opened to transport the water droplet (volume
controlled by a syringe pump) via polytetrafluorethylen (PTFE) tubing driven by vacuum into the mass spectrometer. The system is
triggered by a foot pedal connected to an integrated mass spectrometer inlet. Right: Representative negative ion mode mass spectra
show distinct molecular profiles from normal (average of n = 3 mass spectra) and tumor (average of n = 3 mass spectra) tissues [53]. (D)
Picosecond infrared laser. Left: Current instrument for sampling of tissue with picosecond infrared laser. For cryopreserved samples, the
specimen stage is cooled down to -10◦C, preventing thawing during laser irradiation. The ablation chamber is sealed to capture the
aerosol in its complete volume, achieved by its architecture generating a laminar flow. The aerosol is trapped through PTFE-tubing as a
frozen (cooling trap) or dry (glass fiber filter) condensate within seconds. Instead of the free laser beam a fiber can be utilized to adjust
and operate flexibly. Right: Negative ion mode mass spectrum from picosecond infrared laser condensate of porcine thalamus (upper)
and cerebral cortex (lower) directly infused into the MS without sample preparation.
HV: High voltage; IPA: Isopropyl alcohol; PIRL: Picosecond infrared laser.
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Table 1. Overview about publications analyzing cancer specimen with mass spectrometric tools coupled to intraoperative
sampling mechanisms.
Method Tissue/Organ Sample type Statistical analysis Reference Year

DESI Xenografts from FaDu
cells (SCC)

Frozen tissue, margins
and cell culture

PCA Woolman et al. [42] 2017

DESI Pancreatic cancer tissue
margins

Frozen tissue LASSO Eberlin et al. [43] 2016

DESI Breast cancer tissue
margins

Frozen tissue PCA Calligaris et al. [44] 2014

DESI Glioma Tissue smears PCA, LDA Pirro et al. [45] 2017

DESI Epithelial ovarian
carcinoma

Frozen tissue PCA Dória et al. [46] 2016

DESI Gastric cancer and
associated lymph node
metastases

Frozen tissue RMMC discriminant
analysis, PCA

Abassi-Ghadi et al. [47] 2014

DESI Breast cancer necrosis and
viable regions

Frozen tissue, tissue
smears

PCA, NMF Tata et al. [48] 2016

DESI Surgical glioma patients Tissue smears PCA, LDA Pirro et al. [56] 2017

iKnife, REIMS Colorectal cancer and
colonic adenoma

In vivo patient material
(polypectomy snare)

LDA Alexander et al. [49] 2017

iKnife, REIMS Breast cancer In vivo and ex vivo (fresh
and fresh frozen tissue,
aspirated with monopolar
handpiece)

PCA, LDA St John et al. [50] 2016

iKnife, REIMS Gastric, colorectal, liver,
breast, lung and brain
cancer; healthy and
cancerous tissue

In vivo and ex vivo
(�10 sec after excision)

PCA, LDA Balog et al. [51] 2013

iKnife, REIMS Colon adenocarcinoma
and adematous polyps

Ex vivo biopsy
(polypectomy snare)

PCA Balog et al. [52] 2015

MasSpec Pen Human: breast, lung,
thyroid and ovary cancer
Mouse: BT474 HER2+
breast cancer cells

Human: Ex vivo, fresh
tissue (� 10 sec after
excision). Mouse: in vivo

LASSO,
(Leave-one-patient-out-
crossvalidation),
PCA

Zhang et al. [53] 2017

PIRL and DESI Necrotic and viable LM2-4
human breast cancer
xenografts

Frozen tissue PLS-DA Woolman et al. [54] 2017

PIRL Medulloblastoma
xenografts (six cell lines,
two subgroups)

Frozen tissue, tissue
smears

PLS-DA Woolman et al. [55] 2017

DESI: Desorption electrospray ionization; PCA: Principal component analysis; LASSO: Least absolute shrinkage and selection operator; LDA: Linear discriminant analysis; PIRL: Picosecond
infrared laser; REIMS: Rapid evaporative ionization mass spectrometry; RMMC: Recursive maximum margin criterion analysis; NMF: Non-negative matrix factorization; PLS-DA: Partial least
squares discriminant analysis.

Another electrospray based ambient ionization technique, called probe electrospray ionization, that uses a
solid needle as a sampling probe, has been used for molecular diagnosis of malignant tumors based on imaging
phospholipids and triacylglycerols [71] with high resolutions (0.1–0.5 mm). To ensure optimal conditions, this
method allows for the adjustment of various parameters like the solvent concentration and flow rate, the surface
angle α, the tip-to-surface distance and the voltage applied to the primary capillary [71,72]. Thus, optimal conditions
for different tasks and analytes of interest like lipids or proteins can be established [57,60,71,73]. Clinically, DESI,
as the most extensively used ambient ionization technique so far, has been successfully tested on resected tissue,
frozen sections and fresh tissue smears. In addition to the variety of sample preparation, a broad amount of different
cancerous organs have been analyzed; glandular tissue [48], skin [74], nervous tissue [56,75] and immunological
tissue [47,76].

Tata et al. reported breast cancer viable and necrotic tissue by characterizing the presence of a ceramide ion (m/z
572.48 [Cer(d34:1) + Cl]−) from the viable cancer subregions; the absence of the ion of m/z 391.25 which is
present in small abundance only in viable cancer subregions; and a slight increase in the relative intensity of known
breast cancer biomarker fatty acid ions (m/z 281.25 [FA(18:1)-H]− and 303.23 [FA(20:4)-H]−) [48]. Focusing on
the spatial lipid distribution from tumor adjacent tissue in work by Calligaris et al., a mastectomy breast cancer
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margin study was established [44]. Patient samples (n = 14) from tumor center, margin, 2, and 5 cm away from the
tumor were collected. Fatty acids like oleic acid were more abundant in the cancerous than in the healthy tissues
evaluated by PCA.

Dória et al. focused on differentiation between serous, endometroid and clear cell carcinoma histotype with a rate
>84% (histopathologic routine diagnosis accuracy is around 90%) [46]. Classifying subtypes of epithelial ovarian
cancer by DESI-MSI, one of the most consistent changes in lipid composition is the PA (phosphatidic acid) class,
with most significant higher peaks in the tumor tissue and its associated stroma compared with both controls of
healthy ovary.

A successful attempt to distinguish cancerous samples and their matching lymph node metastases have been
shown by Abbassi-Ghadi et al. in 2014 [47]. Gastric cancerous samples were analyzed compared with their associated
lymph nodes by DESI matched with immunostain-histology. In order to obtain the Specific Molecular Ion Patterns
‘MISP’ to image and differentiate tumorous, metastatic and healthy areas, spectral profiles were subjected to
recursive maximum margin criterion ‘RMMC’ discriminant analysis, for automated classification. Resulting in a
higher abundance of phosphatidylethanolamines and phosphatidylinositol in the metastases than in the primary
tumor, this method would objectify the process of lymph node metastasis identification. The authors also stated
that by system optimization a timeframe of 10–20 min for data acquisition and a resolution of 200 μm – sufficient
to detect micrometastases – could be achieved.

A detection of microscopic skin lesions by DESI-MS has been performed by Margulis et al., showing the
differences in cancerous lesions and healthy tissue of basal cell carcinoma from Mohs micrographic surgery [74]. In
this study, a resolution of 200 μm could be achieved to categorize each pixel as cancerous or healthy, based on 24
molecular ion signals with an overall diagnostic accuracy of 94.1%.

Focusing on gliomas and glioblastomas from human brain tissue samples, in three different projects marker-
specific lipid profiles were analyzed, using DESI-MS [56,75,77–79]. Santagata et al. investigated frozen sections toward
the prognostic lipid marker isocitrate dehydrogenase (IDH) via the tumor metabolite 2-hydroxyglutarate [77].
Based on this study, Jarmusch et al. compared frozen sections to corresponding tissue smears, resulting in the
same chemical information given as in tissue sections [79]. Moreover, similar samples were also used by Jarmusch
et al. to assess the difference between positive and negative ion mode generated results, revealing non-significant
differences toward distinguishing between cancerous and noncancerous tissue in glioma [78]. Furthermore, Yannell
et al. studied the mutation of IDH in 28 human glioma samples to prove that IDH is a powerful diagnostic factor
in malignant gliomas [75]. Due to this groundwork, Pirro et al. investigated intraoperative biopsies from ten glioma
patients, providing tissue smears, resulting in a sensitivity of 93% and a specificity of 83% in distinguishing high
tumor cell percentage areas from healthy tissue by assessing the IDH mutation status within a 3-min timeframe
from sample collection to result [56]. By performing the analysis using smear specimens instead of frozen sections,
the time from sampling to diagnosis has been reduced significantly.

Taken together, DESI-MSI is an effective technology for rapid mapping of lipid distributions on cell membranes,
showing excellent histological specificity and tissue classification. With the advantage of little to no sample prepa-
ration [56,80], enabling the correlation of lipid distribution in two or three dimensions [81], differentiating between
cancerous, metastatic and healthy tissue [47,56,77,79], between different subtypes of cancer [46,82], and also between
viable and necrotic tissue [48], DESI-MSI has a high potential in serving as an intraoperative real-time diagnostic
tool in the future.

REIMS – iKnife
In 2009 the group of Zoltan Takáts developed the ambient ionization technique rapid evaporative MS (REIMS) [83].
In the initial REIMS set-up Schaefer et al. used a commercially available handheld electrosurgical device equipped
with an additional fluid line. The fluid line was used to aspirate the aerosol formed during tissue ablation. The aerosol
was directly transferred with the help of a venturi pump into a MS. Similar to DESI, the REIMS spectra showed
mainly different glycerophospholipids. However, in addition the intact lipids and their degradation products were
also observed in REIMS spectra. The REIMS set-up has been optimized over the years to reduce contamination
and to facilitate an efficient transfer of the aerosol over a distance of 1–2 meters from the surgical site to the
MS [51,52,84]. It was discovered that in REIMS, formation of analyte ions detected in MS analysis takes place in
the atmospheric interface of the MS via a droplet–surface collision phenomenon [85]. This resulted in a further
refinement by implementing a heated collision surface in the atmospheric pressure interface of the MS. This heated
collision surface additionally stops larger particles from entering the mass spectrometer that are generated during
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electrosurgical tissue ablation, due to high thermal energies leading to temperatures in the range of 700◦C, the
surface of the tissue resulting in tissue carbonization and smoke formation. For applications in the operating theatre,
an electrosurgical knife (monopolar or bipolar diathermy knife) is equipped with an evacuation line connected to a
mass spectrometer to transfer the aerosol over a distance of 2–3 m. With a spot size limited by handheld operation,
a resolution of 0.5–2 mm is feasible [84]. During tissue dissection, the aerosol is aspirated, transferred to the MS
and analyzed. The MS-derived lipid profiles are matched against a database of histologically annotated reference
spectra and subjected to a multivariate statistical analysis [51]. The overall time for aerosol transfer, MS analysis and
data classification takes approximately 0.5–2 s [50] and gives the surgeon real-time feedback if the dissected tissue
is healthy or cancerous. The surgical application of the REIMS technology is known as the ‘intelligent knife –
iKnife’ [49–51].

The REIMS – iKnife technology was applied in 2013, a large patient study by Balog et al. to diagnose tumor
margins from different types of cancer was conducted [51]. For database generation, solid tumors and adjacent tissue
of 302 ex vivo patient frozen samples were analyzed, collecting multiple data points by every 1 cm further from
the visible tumor margin, to evaluate the lipidomic state through PCA and LDA statistical analysis. The analysis
of human brain tissue for astrocytoma and metastatic tissue (84 patients with 12 different types of tumors), the
real-time intraoperative interpretation of the results (in reference to histopathology) reached a sensitivity of 97.7%
and a specificity of 96.5% in distinguishing between tumor and metastasis.

In 2016, Takáts et al. published an ex vivo colorectal cancer patient study using the iKnife [49]. Of the 28 recruited
patients, the accuracy rate of the distinction between cancer and normal adjacent tissue amounted up to 90.5%,
while the rate of distinction between cancer and adenoma was 94.4%. It was even possible to differentiate between
the forms of histological subtypes, mucinous adenocarcinoma and regular adenocarcinoma with an AUC of 0.96.
The colorectal cancer areas showed a high intensity for phosphatidylserines and bacterial phosphatidylglycerols,
whereas the healthy tissue had high intensities for plasmalogens and triacylglycerols, and last the adenoma tissue
demonstrated an overexpression of ceramides. However, concerning the human in vivo experiments, which were
also described in this paper, the results were not provided to the clinical team during operation of the five different
patients undergoing polypectomy. There was also no statistical analysis performed due to the small sample volume.

Later on, REIMS was also tested on a large number of fresh and frozen breast specimens (n = 249), tumorous
and healthy samples were differentiated with a sensitivity of 90.9% and a specifcity of 98.8%.

Furthermore, an intraoperative proof-of-principle study was run to determine whether the iKnife ex vivo setup
is applicable for in vivo surgery, by aspirating the electrosurgical aerosol produced sample model [50]. In these six
case studies (n = 5462), 99.27% of the intraoperative spectra were interpretable by the ex vivo generated database.

Tested on patient tissue from three different hospitals, several different types of tumor samples have been analyzed
with the iKnife and REIMS system resulting in a spectral reference library [49–51]. The iKnife is, among the described
methods, the only application which has been applied in vivo on human cancer patients, resulting in real-time
diagnosis sample, since the introduction of REIMS in 2009 [50,83]. Nearly 10 years of development work has
resulted in the iKnife becoming one of the most advanced techniques, approaching real-time diagnostics for the
operating room.

MasSpec pen
Recently, the group of Livia S Eberlin described the development and application of an automated, biocompatible,
disposable handheld device, the ‘MasSpec Pen’, for direct, real-time nondestructive sampling and molecular diagnosis
of tissues by ambient ionization MS [53]. The MasSpec Pen has been optimized to minimize tissue damage and
maximize both tissue-analyte extraction and solvent transfer to the MS device. The optimized handheld pen-sized
probe consists of a syringe pump to deliver a defined water droplet to the sampling probe with a volume of 4–10
μl to dissolve and extract the tissue surface molecules. The sample volume is determined by the diameter of the
reservoir at the probe tip, which is 1.5–5 mm diameter. The single water droplet is retained and exposed to the tissue
surface for 3 s to allow an efficient analyte extraction. The extraction process of the MasSpec Pen is similar to liquid
extraction surface analysis [86], liquid microjunction surface sampling probe [87] and nanoDESI [88]. Compared with
liquid microjunction surface sampling probe and nanoDESI, the MasSpec Pen uses a single solvent drop instead
of a continuous flow. In the initial set-up, the handheld pen is directly connected to a heated metal transfer tube
of a high resolution quadrupole orbitrap MS via a PTFE tube (1.5 m length, inner diameter of 800 μm) [53]. The
movement of the droplet from the reservoir to the MS was driven by the negative pressure of the MS vacuum
system and could be controlled by a pump and two-way pinch valves. Vaporization and ionization of the extracted
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analytes occurs in the inlet region of the mass spectrometer. This process is similar to the described process of
solvent assisted inlet ionization [89]. The mass spectra obtained with the MasSpec pen were similar to the mass
spectra obtained with DESI including metabolites, lipids and proteins [53]. The entire analysis process of analyte
extraction, transfer, MS analysis and tissue classification between healthy and unhealthy tissue takes 10 s and is
supposed to be further reduced in the future.

In their initial publication Zhang et al. used the MasSpec Pen for ex vivo molecular analysis of 20 human cancer
thin tissue sections and 253 human patient tissue samples [53]. The patient tissue samples included normal and
cancerous tissues from four different organs (breast, lung, thyroid and ovary). Zhang et al. generated a histologically
validated database containing mass spectra of rich molecular profiles that were characterized by a variety of potential
cancer biomarkers identified as metabolites, lipids and proteins. Using statistical classifiers built from this database,
Zhang et al. were able to diagnose cancerous and noncancerous tissue with a high sensitivity (96.4%), specificity
(96.2%) and overall accuracy (96.3%). They were also able to predict benign and malignant thyroid tumors and
different histologic subtypes of lung cancer. Notably, the MasSpec pen allowed accurate diagnosis of cancer in
marginal tumor regions presenting mixed histologic composition and accurate in vivo cancer diagnosis during
surgery performed in tumor-bearing mouse models [53].

Since no labeling occurs, the exact margins are not visualized and the exact resection might still be challenging
clinically. Sample carry-over effects in case of endoscopic surgeries in abdominal or chest area could also present
an obstacle: discarding the tip is not an option, therefore, the MasSpec Pen might represent a potential source for
cross contamination. For this special purpose, biocompatible, autoclavable materials like polylactid-co-glycolid, a
common suture material, also used for degradable implants, could be the solution [90].

In the described experiments, working with molecules dissolved from the tissue surface by a droplet of water and
an exposure time of 3 s, the MasSpec Pen represents a noninvasive technique in tumor diagnostics.

PIRL
Lasers, technically capable of cutting tissue at a single cell level, have always been a concept of interest for surgical
procedures. The first CO2-infrared lasers have been used for the excision of sensitive tissue areas with the aim to
irradiate a broad variety of tissue materials with different density. Mainly applied for surgery in the 1990s [91],
the CO2-laser was later integrated in mass spectrometric measurements (double focusing mass spectrometer with
photoplate detection) by laser desorption ionization [92,93].

In 2009, the group of Dwayne Miller introduced a new concept in laser surgery based on a PIRL [94]. PIRL
is specifically tuned to the strong OH vibration stretching band in water molecules to drive ablation processes
faster than nucleation growth or acoustic energy transfer to the adjacent tissue [95]. The energy absorbed by the
tissue-own water molecules is completely converted into translational degrees of freedom rather than being lost to
surrounding tissue through thermal or acoustic transport. This process called ‘desorption by impulsive vibrational
excitation’ [96] drives the water molecules into the gas phase without thermal or shock-wave damage to the ambient
tissue, resulting in cold tissue vaporization [97]. The unique properties of PIRL enable precise and accurate ablation
with minimal cellular damages to the surrounding tissue, significantly reducing scar formation compared with
millisecond infrared lasers commonly used in medical laser surgery [97–104]. Next to the medical application, the
group of Hartmut Schlüter showed that PIRL ablation released proteins intact from tissues without changing their
exact chemical composition and that posttranslational modifications and enzyme activities of the PIRL-ablated
proteins remained unaltered [96]. In another study Kwiatkowski et al. it was shown that due to the ultrafast transfer
of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a
lesser extent to enzymatic degradation reactions using PIRL ablation compared with conventional homogenization
and protein extraction methods [105]. Thus, cold tissue vaporization by PIRL gives a unique access to the in vivo
protein species/proteoform composition [106] of tissues providing a snapshot of the in vivo proteome composition.
The gentle process of PIRL ablation was confirmed by a study of Ren et al. in which they showed that protein
conformations are not significantly disturbed and even large macromolecular structures such as viruses are extracted
intact without losing their biological activity [107]. They further showed that biological samples can be taken down
to the level of individual cells using PIRL offering a finer resolution than the finest biopsy needles, thus having the
potential to enable minimally invasive biopsies.

Recently, the group of Arash Zarrine-Afsar developed a handheld PIRL probe and MS interface [55]. They used
a 2 m long tygon tube (1.6 mm inner diameter) that was connected to the ion transfer tube of a commercial
DESI source (Waters). The temperature of the ion transfer capillary and MS source was sufficient to dissolve
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Table 2. Overview of mass spectrometry-based methods for intraoperative cancer diagnosis.
Quality Method DESI iKnife MasSpec pen DESI-PIRL PIRL

Speed 1 s per sampling
point [108]

�2 s [50] 3 s per sampling
point [53]

5–10 s per sampling
point [55]

�5 s

Cross contamination No Yes No No No

Invasiveness Yes Yes No Yes minimal Yes minimal

Pre-analytical issues Redox reactions can
be assumed [109,110]

Heat degradation,
carbonization

Unlikely Not observed Not observed

Surface scanning No No Yes, discontinuously Yes Yes

Cutting abilities No Yes No No Yes

Resolution Electrospray: 200
μm [47,74]

Blade: 4 mm [50] Probe tip: 1.5–5 mm
diameter [53]

Fibre: 425 μm [54,55] Fibre: 200–250
μm [104,111]
Free beam: 250 μm [97]

Tissue damage Low High Very low Low Low, minimal scar
formation [103]

DESI: Desorption electrospray ionization; PIRL: Picosecond infrared laser.

phospholipids and fatty acids that were released from the tissue with the handheld PIRL probe. Using the handheld
PIRL probe tissue-specific MS profiles were obtained within 5–10 s after tissue ablation, thus enabling real-time
analysis of the ablation plume. In their study Woolman et al. examined breast cancer tissue slices with PIRL coupled
to polarimetric imaging [54]. LM2-4 human breast cancer xenografts from mice were cryopreserved and ablated
10 s with PIRL to be scanned for viable and necrotic tissue areas obtaining real time spectra showing mainly
phospholipids and fatty acids. The authors were able to classify and differentiate necrotic cancer sites from viable
cancers sites in the tissue based on specific molecular profiles using multivariate statistical methods. In another
study, Woolman et al. applied the handheld PIRL probe for ex-vivo differentiation and classification different
medulloblastoma subtypes [55]. The PIRL-MS analysis offered a 98% success rate in subgroup determination
observed over 194 tumor tissues collected from 19 independent tumors. The classification and differentiation
was based on MS profiles containing a variety of fatty acids, glycerophosphates, glycerophosphoglycerols and
glycerophosphocholines applying multivariate statistical methods. In addition, Woolman et al. collected PIRL
ablated tissue material on a filter paper placed in vacuum line of a suction pump unit. The lipids were extracted
from the filter and subjected to high-resolution liquid chromatography–MS (LC–MS) analysis to identify the lipid
species that contributed most to the statistical discrimination between the different medulloblastoma subtypes [55].

Conclusion & future perspective
In the last decade, the field of intraoperative mass spectrometric tools for cancer resection and diagnostics has gained
increased attention. Existing surgical tools have been connected to mass spectrometers for real-time on-line analysis
of cancer tissues. Sample pick-up, sample transfer as well as ambient desorption and ionization were optimized as a
groundbreaking step, allowing immediate analysis of tissues for investigating if the cancer tissue has been completely
removed.

From this development, two categories of tools have emerged: sampling and cutting tools, which are able to resect
and diagnose tissue intraoperatively; and tools providing a diagnosis exclusively, as shown in Table 2 [50,53,55,108].
The first category includes the electrocautery knife coupled to a mass spectrometer, termed iKnife, that provides
real-time information about the tissue while resecting, thereby giving the surgeon an orientation with respect to the
resection margins. The PIRL scalpel coupled to a mass spectrometer is comparable to the iKnife regarding cutting
and detecting tissue molecules in real time. In contrast to the iKnife, the PIRL scalpel has the advantage that the
cells adjacent to the cut will not be damaged. In addition, because PIRL has a fast scanning rate, PIRL-based
systems are a promising intraoperative diagnostic tool for screening surfaces of tissues for the absence of tumor cells.
However, the current analysis time of 5–10 s per spot with a spot size of 200 μm for sampling and data analysis [55]

is comparatively slow for diagnosis of large tissue surfaces in clinical practice. This timeframe is the limiting factor
at this time and presents a challenge that must be overcome in the future for PIRL to be used for diagnostic tissue
surface screening. With a resolution of 4 mm in blade width, the iKnife has a low resolution compared with the
other methods discussed in this review. Thus, the iKnife might produce false negative results due to the dilution of
tumor and healthy cells [49]. Since the iKnife massively damages the tissue adjacent to the cutting area due to very
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high temperatures, it is impossible to be certain by histological investigation of the resected tumor tissue of having
fully removed cancer cells, because morphology is no longer visible in the carbonized area.

The DESI and the MasSpec pen constitute a category of diagnostic tools with which surfaces of tissues can be
analyzed without damaging the cells of the analyzed tissues. As an improvement or substitute for the analysis of
frozen sections, DESI could be used outside the operation room for a rapid diagnosis. The MasSpec pen may be
applied directly to the patient for intraoperative diagnostics. However, scanning of larger tissue surface to acquire
real-time diagnosis is not yet feasible with this method. Analysis with the MasSpec pen only requires the application
of a droplet of water onto the tissue surface without any pressure, therefore being noninvasive.

The MS-pen can achieve online classification of healthy and unhealthy tissue in less than 10 seconds [53]. Tissue
scanning with PIRL has a comparable speed. PIRL is a minimally destructive method of tissue ablation [94–100],
meaning that the cells adjacent to the ablated cells are not damaged, the ablated tissue of course is removed and
thereby destroyed. This is not the case with the nondestructive MasSpec pen method [53], where the analyzed tissue
is available for further diagnostic analysis such as histology. The PIRL-MS platform offers potential for future in
vivo applications where therapy and diagnosis can be performed in parallel in form of a theragnostic tool. The
device as a scalpel can be positioned within the operating room and used as a surgical tool, providing a way to
objectify decisions for the surgeon. However, future experiments are mandatory to prove that PIRL-MS can be
applied to in vivo diagnostics, similar to the MS pen [53].

All diagnostic tools based on ambient ionization techniques described above allow the detection of tissue
molecules with minimal sample preparation. Also, one essential requirement for application of all of these methods
for intraoperative diagnostics for discriminating cancer tissue from healthy tissue is the knowledge of biomarkers,
which can be patterns of signals of lipids. By identifying such biomarkers, the generation of databases for each type
of cancer will help to classify cancerous and healthy tissue. However, technological grounds have been set to make
intraoperative diagnostics of tumors a realistic approach within the next few years.

Executive summary

• The need for exact tumor margin assessment in surgery of cancer tissue is high and therefore accelerating the
development of sensitive diagnostic tools is required.

• Screening for biomarkers with mass spectrometry coupled to scanning devices provides sensitive and specific
tools for intraoperative diagnosis. These tools are either an improvement of the frozen section process or can be
used as a theragnostic cutting instrument simultaneously.

• Described methods vary in invasiveness, cross contamination risk, cutting abilities, speed, chemical reactions
induced by the device, handling qualities, spatial resolution and clinical study status.
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