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Gastric cancer is a highly malignant tumor with poor survival rate. Ferroptosis, a newly defined regulated cell death, is closely
related to several tumors. Introduction of ferroptosis is promising for cancer treatments. However, the predictive role of
ferroptosis in GC remains elusive. In this study, we screened the ferroptosis-related genes which were differentially expressed
between normal and GC tissues. Then, based on these differentially expressed genes (DEGs), the least absolute shrinkage and
selection operator (LASSO) and multivariate Cox regressions were applied to construct the 10-gene prognostic signature (SP1,
MYB, ALDH3A2, KEAP1, AIFM2, ITGB4, TGFBR1, MAP1LC3B, NOX4, and ZFP36) in TCGA training dataset. Based on the
median risk score, all GC patients in TCGA training dataset and GSE84437 testing dataset were classified into a high- or low-
risk group. GC patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk
group (P < 0:001). Combined with the clinical characteristics, the risk score was proven as an independent factor for predicting
the OS of GC patients. Besides, the GC patients in the high- or low-risk group showed significantly different GO and KEGG
functional enrichments, somatic mutation, fractions of immune cells, and immunotherapy response. Then, the expression
levels of these genes in signature were further verified in the GC cell lines and our own GC samples (30-paired tumor/normal
tissues). Furthermore, the effects of ferroptosis inducer Erastin on these 10 ferroptosis-related genes in GC cell lines were also
explored in our study. In conclusion, our study constructed a prognostic signature of 10 ferroptosis-related genes, which could
well predict the prognosis and immunotherapy for GC patients.

1. Introduction

Gastric cancer (GC) is one of the most common malignant
tumors in the world, ranking fifth for incidence (1,089,103
cases) and fourth for mortality (768,793 cases) globally in
2020 [1]. Besides, the incidence rate of GC is the highest in
digestive malignant tumors in China [2]. Due to the compre-
hensive treatments in the last few decades, including curative
surgery, chemoradiotherapy, targeted therapy, and immuno-
therapy, the prognosis of GC patients has improved a lot.
However, most patients are diagnosed at advanced stages;
the overall survival (OS) rate of 5 years remains less than
40% [3]. Currently, the prognosis of GC patients was based

on the TNM staging system; nevertheless, the patients at the
same stage could show obviously different prognosis. There-
fore, it is necessary to identify novel and reliable biomarkers
to accurately predict prognosis, to find potential therapeutic
targets, and finally to improve the outcomes of GC patients.

Distinct from apoptosis, ferroptosis is a newly defined
form of programmed cell death characterized by iron-
dependent peroxide lipid accumulation, inducing reactive
oxygen species (ROS) production and subsequent cell death
[4]. Emerging evidence has demonstrated that ferroptosis
plays a critical role in the redox status, cell metabolism,
and multiple diseases, such as ischemia-reperfusion injury,
neurodegenerative and neuropsychiatric diseases, and
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diverse kidney diseases [4–6]. More importantly, ferroptosis
dysfunction has been implicated in the process of various
tumors, including glioma [7], lung cancer [8], breast cancer
[9], renal cell carcinoma [10], colorectal cancer [11], and
gastric cancer [12]. Ferroptosis is inhibited in various
tumors, resulting in uncontrolled proliferation of tumor
cells, and is also involved in immunotherapy and drug
sensitivity. Therefore, ferroptosis can serve as a promising
interventional target to induce tumor cell death. Recent
studies also identified some key ferroptosis-related gene sig-
nature, such as glutathione peroxidase 4 (GPX4), solute car-
rier family 7 member 11 (SLC7A11), nuclear respiratory
factor 2 (NRF2), and cysteine dioxygenase type 1 (CDO1),
which are closely related to cancer progression and patients’
prognosis [13–16]. However, only few studies to date
focused on the role of ferroptosis in GC, and whether
ferroptosis-related genes are related to patients’ prognosis
and clinical treatments still needs to be fully elucidated.

In this study, we constructed and validated a ferroptosis-
related gene signature, which could well predict the progno-
sis of GC patients. We further performed pathway and func-
tional enrichment analysis to study the underlying
mechanisms. The clinical value of the risk model based on
this ferroptosis-related gene signature was also explored in
immune microenvironment and tumor mutation burden of
GC. In addition, the effects of ferroptosis inducer Erastin
on these 10 ferroptosis-related genes in GC cell lines were
also explored in our study.

2. Materials and Methods

2.1. Collection of Data. The RNA sequencing (RNA-seq)
data and corresponding clinical characteristics and molecu-
lar information of gastric cancer (GC) samples (normal:
32, tumor: 375) in training cohort (TCGA-STAD) were
downloaded from The Cancer Genome Atlas (TCGA) data-
base by the “TCGAbiolinks” R package in February 2021.
Similarly, the RNA-seq data of 174 normal human stomach
samples in the Genotype-Tissue Expression (GTEx) data-
base was downloaded from the University of California
Santa Cruz (UCSC, https://xenabrowser.net/datapages/).
Besides, the gene expression data and corresponding clinical
information of the external validation cohort (GSE84437, n
= 433; GSE29272, n = 268; normal: 134, tumor: 134) were
downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/). Furthermore, the
somatic mutation data of the TCGA-STAD was downloaded
from the websites (https://portal.gdc.cancer.gov/). The 261
ferroptosis-related genes were downloaded from the FerrDb
website (http://www.zhounan.org/ferrdb/), updating on 10
March 2021 [17].

2.2. Screening of Candidate Gene. The RNA-seq data of
TCGA and GTEx datasets was normalized into the tran-
scripts per million (TPM) data. And the scale function in
the dplyr R package was employed to further normalize the
RNA-seq data (TPM normalized). Batch correction was per-
formed using the sva R package. Then, the RNA-seq data of
the 261 ferroptosis-related genes was extracted to perform

subsequent difference analysis. Differentially expressed gene
(DEG) analysis between the normal and tumor tissues was
performed by limma R package, screening out the
ferroptosis-related differentially expressed genes (FDEGs).
And the results of the FDEGs were visualized by ggplot2 R
package. Then, univariate Cox regression analysis was per-
formed to screen out the overall survival- (OS-) associated
FDEGs which were identified as the candidate genes for
subsequent establishment of prognostic ferroptosis-related
gene signature.

2.3. Establishment and Validation of a Prognostic
Ferroptosis-Related Gene Signature. In order to minimize
the risk of overfitting, the least absolute shrinkage and selec-
tion operator (LASSO) regression was utilized to establish a
gene prognostic signature and further screen the 10 potential
hub genes from the FDEGs by the glmnet R package. Then,
the protein-protein interaction (PPI) network was con-
ducted to reveal the interaction of proteins among the pro-
tein coding between the 10 genes by the STRING database
(http://www.string-db.org/). In order to explore the connec-
tion of the transcriptional level among these 10 candidate
genes, the igraph and reshape2 R packages were utilized to
construct correlation network of these 10 candidate genes.
The multivariate Cox regression analysis based on these 10
genes was utilized to establish the prognostic ferroptosis-
related gene signature. The regression coefficients of genes
and their corresponding mRNA expressions were utilized
to calculate the risk scores of patients. The formula of risk
score was established as follows: score =∑ðcorresponding
mRNA expressions × regression coefficientsÞ. The median
value of risk scores was utilized as the cutoff value to divide
GC patients into the high- and low-risk subgroups. To test
the distribution of different groups, the principal component
analysis (PCA) was performed by the Rtsne and ggplot2 R
packages. The survival curves were performed to analyze
the prognostic status between the high- and low-risk groups
by the survminer R package. And the time-dependent
receiver operating characteristic curve (ROC) was per-
formed to evaluate the predictive value of the prognostic
signature by the survival and timeROC R package. Besides,
the univariate and multivariate Cox regression analysis was
also performed to evaluate the independent prognostic value
of the prognostic signature. Furthermore, nomograms of the
training and testing groups were constructed to predict the
survival probability of GC patients in 1, 2, and 3 years, and
their corresponding nomogram calibration curves were also
constructed based on the multivariate Cox regression analy-
sis by the rms R package.

2.4. Functional Enrichment Analysis. The OmicShare tools, a
free online platform for data analysis (https://www.omicshare
.com/tools), was employed to perform Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis with P < 0:05 and normalized enrichment score > 1
based on the DEGs between the high- and low-risk groups.
The Gene Set Enrichment Analysis (GSEA) software
(https://www.gsea-msigdb.org/gsea/login.jsp/) was also
utilized to further reveal the significantly enriched pathways
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of these DEGs. Furthermore, the maftools R package was uti-
lized to explore and visualize the MAF files of somatic muta-
tion data and also calculate the tumor mutation burden
(TMB) scores of patients in the training group.

2.5. Immunotherapy Targets and Immune Infiltration
Analysis. To explore the potential relationship between the
10-gene signature and the immune cell infiltration, Tumor
Immune Estimation Resource (TIMER) which is a platform
for analyzing the abundance of the six immune infiltration
cells (macrophages, dendritic cells, neutrophils, CD4+ T
cells, CD8+ T cells, and B cells) in malignant tumors was
applied to evaluate the associations between the 10 hub
genes and the infiltrating immune cells by Pearson correla-
tion analysis and Student’s t-test. And the estimate R pack-
age was utilized to explore the relationship between the
risk scores and immune cell infiltration. Besides, considering
the significant roles of more immune cells in the tumor
microenvironment, the abundance of 22 infiltrating immune
cell types in each tumor sample was calculated by CIBER-
SORT. Furthermore, the expression of the target genes
which have been reported to be related to the immunother-
apy was compared between different risk groups.

2.6. Expression Verification of the 10 FDEGs in the Datasets,
Cell Lines, and Gastric Cancer Specimen. The differential
expression levels of the 10 FDEGs between the normal and
tumor stomach tissues in the training and testing groups
were compared by the Wilcoxon rank-sum test. Besides,
the results of the differential expression levels of the 10
FDEGs were verified by Gene Expression Profiling Interac-
tive Analysis (GEPIA) tools (http://gepia.cancer-pku.cn/
detail.php). Furthermore, a total of 30-paired normal/tumor
GC specimenswere recruited fromRuijinHospital (Shanghai,
China) following the guidelines set by the Ethical Committee
of Ruijin Hospital. The tumor and adjacent normal stomach
tissues were fixed by 10% formalin and embedded by paraffin.
The optimum sections of tissue specimens were selected and
deparaffinized, and immunohistochemistry (IHC) was imple-
mented as the following antibodies: SP1 (Abcam, ab124804),
NOX4 (Abcam, ab109225), AIFM2 (Proteintech, 20886-1-
AP), and TFAP2C (Proteintech, 60027-1-lg). Finally, GES1,
HGC-27, and MGC-803 cell lines were also applied to verify
the expression of all the 10 FDEGs using real-time PCR.

2.7. Gastric Cancer Cell Lines and Cell Culture. GES1, HGC-
27, and MGC-803 cell lines were obtained from the Ameri-
can Type Culture Collection (ATCC, Manassas, VA) and
stored at the Shanghai Institute of Digestive Surgery. All
the three cell lines were cultured in RPMI-1640 medium
(Meilunbio, China) supplemented with 10% fetal bovine
serum (Sunrise, Uruguay) in a humidified atmosphere at
37°C with 5% CO2.

2.8. Cytotoxicity Assay. For cytotoxicity assay, HGC-27 and
MGC-803 cells were seeded in 96-well plates at a density
of 5000/well and cultured in a humidified atmosphere at
37°C with 5% CO2 for 12h. The ferroptosis inducer Erastin
(Selleck, USA) was dissolved in dimethyl sulfoxide (DMSO)
to a total concentration of 40mM. The working concentra-

tions were diluted to 0, 0.75, 1.5, 3, 6, 12, 25, and 50μM,
and six wells were applied for each concentration. Cell pro-
liferation was assessed using the Cell Counting Kit-8 (CCK-
8; Meilunbio, China). The optical density (OD) values were
measured at the 450nm absorbance using a microplate
reader. Then, the half maximal inhibitory concentration
(IC50) values of each cell line were calculated, and the
inhibition curve was plotted by ggplot2 R package.

2.9. Reactive Oxygen Species (ROS) Measurement. HGC-27
and MGC-803 cells were cultured in 6-well and 12-well
plates for 24h. Firstly, different working concentrations of
Erastin (5, 10, and 20μM) were added to each well and
treated for another 48 h. Then, these cells were washed twice
with PBS and incubated with fresh RPMI-1640 medium
containing 10μM 2′,7′-dichlorofluorescin diacetate (DCF;
Sigma, D6883, USA) at 37°C with 5% CO2 for 30min. The
cells in 12-well plates were washed twice with PBS, and then,
the different ROS fluorescence intensity of these cells was
compared by the fluorescence microscope. In addition, the
cells in 6-well plates were also washed twice with PBS and
trypsinized (Meilunbio, China). The harvested cells were
resuspended in PBS at 106-107 cells/ml, and their ROS levels
were measured using flow cytometry with emission at 515-
545 nm and excitation at 488nm.

2.10. RNA Isolation and Real-Time PCR. Total RNA was
extracted from culture cells using RNA isolator (Vazyme,
China). 1μg of total RNA was reverse transcribed into com-
plementary DNA (cDNA) using HiScript III RT SuperMix
for qPCR with gDNA wiper (Vazyme, China). Then, real-
time PCR was performed using ChamQ™ Universal SYBR
qPCR Master Mix (Vazyme, China). The cycler protocol
was 5min at 95°C, 40 cycles of 15 s at 95°C, 60 s at 60°C, and
5min at 72°C [18]. All primers were synthesized by Tsingke
(Beijing, China) and listed in Table 1. The mRNA expression
levels of the 10 candidate genes were calculated using the
2−ΔΔCt method and normalized against that of GAPDH.

2.11. Western Blot. Cells were washed twice with PBS and
then lysed with RIPA buffer containing 1% PMSF on ice
for 30min and transferred to the centrifuge tubes for centri-
fugation at 12000 rpm for 20min at 4°C. The BCA assay
(Beyotime, China) was used to quantify the proteins, and
the equal amounts of protein were separated by 10% SDS-
PAGE, transferred onto the PVDF membranes, and incu-
bated with appropriate antibodies (SP1: Abcam, ab124804,
1 : 1000; NOX4: Abcam, ab109225, 1 : 1000; AIFM2: Protein-
tech, 20886-1-AP, 1 : 1000; and TFAP2C: Proteintech,
60027-1-lg, 1 : 1000) overnight at 4°C. Then, samples were
incubated with anti-horseradish peroxidase-linked IgG sec-
ondary antibody (Proteintech, SA00001-1 and SA00001-2,
1 : 5000) at room temperature for 1 h and detected using
chemiluminescence detection system (Tanon, China).
Immunoreactive bands were measured using the sensitive
ECL kit (Meilunbio, China).

2.12. Statistical Analysis. All the statistical analysis was con-
ducted by the R software (version: 3.6.3) in this article. All P
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values of statistical data were based on two-sided statistical
tests. P < 0:05 was considered to be statistically significant.

3. Results

3.1. Identification of the FDEGs. Firstly, the batch effect
between the GTEx and TCGA cohorts had been corrected
and the results are shown in Figures 1(a) and 1(b). Then, a
total of 166 ferroptosis-related genes were proven to differ-
entially express between the 206 normal and 375 tumor
stomach samples (∣log2FC ∣ >0:5 and false discovery rate
ðFDRÞ < 0:01). The volcano and heat map plots were
drawn to show the different expressions of ferroptosis-
related genes between the normal and tumor samples
based on |log2FC| and FDR (Figures 1(c) and 1(d)).

3.2. Establishment of Ferroptosis-Related Prognostic
Signature. 36 samples without complete OS or OS time
information in TCGA training group and 136 samples
whose OS time over 9 years were eliminated. Then, 29
ferroptosis-related genes were correlated with OS by the uni-
variate Cox analysis (P < 0:05) in the training group and 18
of them were differentially expressed between normal and
tumor tissues (Figures 2(a) and 2(b)). LASSO Cox regression
analysis was utilized to construct a prognostic signature
using the expression value of the 18 prognostic FDEGs men-
tioned above. Then, a 10-gene signature (SP1, MYB,
ALDH3A2, KEAP1, AIFM2, ITGB4, TGFBR1, MAP1LC3B,
NOX4, and ZFP36) was filtered out by the minimum value
of lambda (λ) (Figure 2(c)). The coefficients of these genes

are shown in Figure 2(d). And the full names, function,
and coefficients of these 10 genes are shown in Table S1.
According to the value of coefficients and hazard ratio
(HR), the genes TGFBR1, MAP1LC3B, NOX4, and ZFP36
were considered as the risk genes, while the genes SP1,
MYB, ALDH3A2, KEAP1, AIFM2, and ITGB4 as the
protective genes. The protein interaction network among
these 10 genes indicated that NOX4, SP1, and KEAP1 were
the hub genes (Figure 2(e)). The gene correlation among
them is shown in Figure 2(f). Besides, the risk scores of the
signature were applied to predict prognosis in GC patients and
median risk score was utilized to classify patients into the
high- or low-risk groups, which was calculated as follows: risk
score = ð−0:181Þ × expression of SP1 + ð−0:085Þ × expression
of MYB + ð−0:076Þ × expression of ALDH3A2 + ð−0:075Þ ×
expression of KEAP1 + ð−0:031Þ × expression of AIFM2 + ð
−0:026Þ × expression of ITGB4 + ð0:072Þ × expression of T
GFBR1 + ð0:138Þ × expression of MAP1LC3B + ð0:148Þ ×
expression of NOX4 + ð0:345Þ × expression of ZFP36.

3.3. Evaluation and Validation of Ferroptosis-Related Gene
Signature. As shown in Figure S1, PCA of the training and
testing groups revealed that the patients in different risk
groups could be distributed in two discrete directions. The
high-risk GC patients were more likely to die earlier than
low-risk patients from the results of the scatterplots
(Figure 3(a)) and heat maps (Figure 3(b)). Besides, the
Kaplan-Meier survival curve (Figure 3(c)) indicated that
patients with low-risk scores may have a better prognosis
than patients with high-risk scores in the training group.
The sensitivity and specificity of the risk scores to predict
prognostic features were determined from the time-
dependent ROC curves by calculating the areas under the
curve (AUC). And the risk scores presented the potential
ability of predicting the OS status (1-year AUC = 0:722, 2-
year AUC = 0:704, and 3-year AUC = 0:680) in Figure 3(d).
In order to avoid the contingency of TCGA results, patients
in the testing group were also classified into the low- and
high-risk groups based on the median risk score. Similar to
all the results above, patients with high-risk scores had a
higher probability to encounter death earlier and had worse
overall survival outcome than those with low-risk scores
(Figures 3(e)–3(h)).

3.4. Analysis of Independent Prognostic Factors. The univar-
iate and multivariate Cox regression analysis was applied to
evaluate whether the risk score was the independent prog-
nostic factor of GC patients. Firstly, in the training group,
the results of the univariate Cox regression analysis showed
that the risk score (P < 0:001, HR = 3:154, 95%CI = 2:104
− 4:728) and other clinical parameters, including T stage
(P = 0:044, HR = 1:634, 95%CI = 1:014 – 2:633), N stage
(P = 0:025, HR = 1:648, 95%CI = 1:065 – 2:548), and TNM
stage (P < 0:001, HR = 1:515, 95%CI = 1:207 – 1:902), were
significantly associated with OS (Figure 4(a)). Then, the
multivariate Cox regression analysis indicated that the risk
score (P < 0:001, HR = 3:626, 95%CI = 2:362 – 5:566) and
TNM stage (P = 0:005, HR = 1:622, 95%CI = 1:155 – 2:277)
were the independent prognostic factors of the OS

Table 1: Real-time PCR primer sequences.

Gene Sequence

SP1
Forward primer: TGCCTTTTCACAGGCTCGAA

Reversed primer: TTGTGTGGCTGTGAGGTCAA

MAP1LC3B
Forward primer: TTCGAGAGCAGCATCCAACC

Reversed primer: GATTGGTGTGGAGACGCTGA

KEAP1
Forward primer: ACGGGACAAACCGCCTTAAT

Reversed primer: GTCCAGGAACGTGTGACCAT

AIFM2
Forward primer: TGCACCGGCATCAAGATCAA

Reversed primer: AATGGCGTAGACGTTGCTGT

MYB
Forward primer: GATCCTGGCTCCCTACCTGA

Reversed primer: CCAGTGGTGTGAGCAGAAGA

ALDH3A2
Forward primer: GGGATGGGAGCTTATCACGG

Reversed primer: CACAGCGGCTACAATACCCA

ITGB4
Forward primer: TGTCCATCCCCATCATCCCT

Reversed primer: CCCGATGGAGAGCGTAGAAC

TGFBR1
Forward primer: GTGACAGATGGGCTCTGCTT

Reversed primer: AAGGGCCAGTAGTTGGAAGT

NOX4
Forward primer: AGCTGCCCACTTGGTGAACGC

Reversed primer: TCAGGCCCGGAACAGTTGTGA

ZFP36
Forward primer: CCACCCCAAATACAAGACGGA

Reversed primer: CAGGTCTTCGCTAGGGTTGT

GAPDH
Forward primer: TGAAGGTCGGAGTCAACGG

Reversed primer: CCTGGAAGATGGTGATGGG
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(Figure 4(b)). Similar to the results above, in the testing
group, the risk score was also verified to be the independent
prognostic factors of the OS (Figures 4(c) and 4(d)).

3.5. Construction and Validation of the Nomogram
Prediction Model. In order to predict the survival probability
of GC patients at 1, 2, and 3 years, the clinicopathological
characteristics, including grade, N stage, T stage, TNM stage,
and risk score, were applied to construct the nomogram
prediction model in the training group (Figure 4(e)). The

corresponding calibration curves were shown to perform
the good prediction in the observations in 1-3 years
(Figure 4(f)). Thus, the nomogram incorporating clinical
features and the risk score was stable and accurate and
may be applied in the clinical evaluation of GC patients.

3.6. Analysis of Functional Enrichment. In order to further
explore the signature-related downstream molecular biolog-
ical functions and pathways, the GO enrichment and KEGG
pathway analyses were performed by the DEGs between the
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Figure 2: Continued.
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Figure 2: (a) Forest plot shows the results of the univariate Cox regression analysis between the expression and prognosis of ferroptosis-
related genes in the training group. (b) Venn plot identifies the FDEGs that were correlated with prognosis. (c) The log lambda value
and the 10 prognostic ferroptosis-related genes with nonzero coefficient. (d) Bar plot shows the coefficient of each gene. (e) PPI network
constructed by STRING to indicate the interactions among these 10 genes. (f) The network plot shows the correlation among these 10 genes.
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high- and low-risk groups in the training and testing group.
The results of GO enrichment analysis indicated that DEGs
could be enriched in several tumorigenesis-related molecular
functions, such as cell junction, metabolic process, immune
system process, and catalytic activity in both the training
and testing groups (Figures 5(a) and 5(b)). Similarly, several
tumorigenesis-related pathways were also enriched based on
KEGG pathway analysis, including cell cycle, regulation of
actin cytoskeleton, DNA replication, ECM-receptor interac-
tion, and focal adhesion (Figures 5(c) and 5(d)). Meanwhile,
cell cycle, focal adhesion, and ECM-receptor interaction
were enriched by the GSEA software and shown in
Figures 5(e) and 5(f). In summary, all results of the func-
tional enrichment analysis indicated that the risk score of
the ferroptosis-related gene signature was significantly
related to tumorigenesis of GC.

3.7. Analysis of Somatic Mutation. Somatic mutations were
closely related to the tumorigenesis of gastric cancer. To fur-
ther explore the relationship between somatic mutation and
risk score, simple nucleotide variation data of the high- and
low-risk groups in TCGA cohort was downloaded and ana-
lyzed. The gene mutation information of the GC patients

was shown in the bar and waterfall plots. Titin (TTN)
(47%), tumor protein P53 (TP53) (43%), and LDL receptor-
related protein 1B (LRP1B) (25%)were the top three geneswith
the highest mutation frequencies in the high-risk group and
TTN (58%), TP53 (49%), and mucin 16, cell surface-
associated (MUC16) (36%) in the low-risk group
(Figures 6(a) and 6(b)), while TP53was relatively highmutated
in the low-risk group (Figures 6(c) and 6(d)). The forest plot
was drawn to show the difference of gene mutation distribu-
tions between the high- and low-risk groups (Figure 6(e)).
Besides, tumor mutation burden (TMB) was calculated and
analyzed in both groups, indicating that TMB level was signif-
icantly higher in the low-risk group (Figure 6(f)).

3.8. Analysis of Tumor Microenvironment and
Immunotherapy Response. According to the results of the
functional enrichment analysis, immune process was signif-
icantly different between the high- and low-risk GC patients
(Figure S2). Thus, TIMER and CIBERSORT analysis was
utilized to further explore the relationship between risk
score and tumor microenvironment. Firstly, the results of
TIMER analysis indicated that the 10 FDEGs were
associated with all 6 immune infiltration cells (purity, B

0 50 100 150 200 250 300 350

Patients (increasing risk socre)

Ri
sk

 sc
or

e

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

High risk
Low risk

0 50 100 150 200 250 300 350

10

8

6

4

2

0

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

Patients (increasing risk socre)

(a) (b)

TCGA-STAD GSE84437

(e) (f)

(c) (d) (g) (h)

Dead
Alive

Type

0

1

2

SP1

ZFP36

MYB

NOX4

AIFM2

ITGB4

KEAP1

ALDH3A2

MAP1LC3B

TGFBR1
−2

−1

Type

Low
High

++++ +++++++++

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Su
rv

iv
al

 p
ro

ba
bi

lit
y

p < 0.0001
Log−rank

Time in days

0
1
2
3

0 1 2 3 4 5 6 7 8 9 10

Time in days

Number of censoring

+
+

Risk
High
Low

N
.ce

ns
or

169 94 36 18 7 5 3 2 2 2 0

170 130 62 29 16 9 4 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10

Time in days

Number at risk

Ri
sk

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

1−Specificity

AUC at 1 years: 0.722
AUC at 2 years: 0.704
AUC at 3 years: 0.680

Se
ns

iti
vi

ty

0 50 100 150 200 250 300

Patients (increasing risk socre)

Ri
sk

 sc
or

e

−1

0

1

2

3

low risk
High risk

0 50 100 150 200 250 300

Su
rv

iv
al

 ti
m

e (
ye

ar
s)

0

2

4

6

8

Patients (increasing risk socre)
Dead
Alive

Type

SP1

ZFP36

MYB

NOX4

AIFM2

ITGB4

KEAP1

ALDH3A2

MAP1LC3B

TGFBR1

0

1

2

−2

−1

Type

Low
High

+++++++ ++ + + ++++++++ +++ ++
+

++++++

++++ ++ ++++++ +++++ + +++++ + ++
++

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Log−rank

p = 0.022

Time in days

183 147 109 90 64 53 42 20 9 2 0

114 104 84 67 48 42 29 19 13 4 0

0 1 2 3 4 5 6 7 8 9 10

Ri
sk

Number at risk

Time in days

0
1
2
3
4
6

0 1 2 3 4 5 6 7 8 9 10

N
.ce

ns
or

Number of censoring

Time in days

+
+

Risk
High
Low

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Se
ns

iti
vi

ty

1−Specificity

AUC at 1 years: 0.575
AUC at 2 years: 0.590
AUC at 3 years: 0.570

Figure 3: (a) The OS status and OS risk score plots of these 10 genes in the TCGA-STAD training dataset. (b) The heat map of these 10
genes between the high- and low-risk groups in the TCGA-STAD training dataset. (c) Kaplan-Meier survival curves for the OS between
the high- and low-risk groups in the TCGA-STAD training dataset. (d) AUC of time-dependent ROC curve for the risk score in the
TCGA-STAD training dataset. (e) The OS status and OS risk score plots of these 10 genes in the GSE84437 testing dataset. (f) The heat
map of these 10 genes between the high- and low-risk groups in the GSE84437 testing dataset. (g) Kaplan-Meier survival curve for the
OS between the high- and low-risk groups in the GSE84437 testing dataset. (h) AUC of time-dependent ROC curve for the risk score in
the GSE84437 testing dataset.
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Figure 4: Continued.
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cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and
dendritic cell), especially for NOX4, AIFM2, and SP1 genes
(Figure S3). Meanwhile, CIBERSORT was also applied to
estimate the different infiltration abundance of 22 immune
cells between the high- and low-risk groups in the training
group. The results showed that mast cells resting, B cells
naive, dendritic cells resting, and monocytes were
downregulated in the low-risk groups, while NK cells
resting, macrophages M0, and T cells follicular helper were
significantly upregulated (P < 0:05, Figures 7(a)–7(c)).
Besides, the correlation analysis of risk score with common

immune checkpoints (ICPs), including cytotoxic T
lymphocyte-associated protein 4 (CTLA4), programmed
cell death 1 (PDCD1) (PD1), CD274 (PD-L1), hepatitis A
virus cellular receptor 2 (HAVCR2), and lymphocyte-
activating 3 (LAG3), was performed to estimate the
immunotherapy responses through the 10-gene signature.
As expected, the gene expression levels of most ICPs were
significantly upregulated in the high-risk group (Figure 7(d)).

3.9. Validation of the Expression Levels of the 10 Ferroptosis-
Related Genes. Compared to normal tissues, the expression
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Figure 4: The forest plots show the results of the univariate and multivariate Cox regression analysis regarding OS in (a, b) the TCGA-
STAD training and (c, d) the GSE84437 testing datasets. (e) Nomograms for predicting 3-year survival in the TCGA-STAD training
dataset. (f) Calibration curves for the nomogram predicting 1- to 3-year survival in the TCGA-STAD training dataset.
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Figure 5: Continued.
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levels of SP1, MYB, KEAP1, AIFM2, ITGB4, TGFBR1,
MAP1LC3B, and NOX4 were significantly upregulated, while
the expression of ALDH3A2 and ZFP36 was downregulated
in GC tumor tissues in the training group (Figure 8(a)). The
same results were also verified by GEPIA (Figure 8(b)). Sim-
ilarly, compared to the normal gastric cell GES1, most of
these 10 genes were also differentially expressed in GC cell
lines (HGC-27 and MGC-803) using real-time PCR
(Figure 8(c)). Besides, we further validated the mRNA or pro-
tein expression of these 10 genes in GSE29272 and Human
Protein Atlas (HPA) datasets in Figure S4. Furthermore, the
expression levels of hub genes SP1, KEAP1, AIFM2, and
NOX4 were further verified in our GC samples. The results
showed that the expression of SP1, KEAP1, AIFM2, and
NOX4 all increased in tumor tissues (Figure 8(d)).

3.10. Analysis of the Effects of Ferroptosis Inducer Erastin on
the 10 Ferroptosis-Related Genes in Gastric Cancer Cell Lines.
To explore the effects of the 10 ferroptosis-related genes,
gastric cancer cell lines HGC-27 and MGC-803 were treated
by different working concentrations of Erastin. The results of
cell cytotoxicity assay indicated that Erastin could signifi-
cantly inhibit the cell proliferation of HGC-27 and MGC-
803 in a dose-dependent manner. The IC50 value of them
was all around 10μM (Figures 9(a) and 9(d)). Then, accord-
ing to their IC50, different concentrations of Erastin (5, 10,
and 20μM) significantly increased the ROS both in HGC-
27 and MGC-803 cell lines (Figures 9(b), 9(c), 9(e), and
9(f)). In addition, after 10μM concentration of Erastin treat-
ment for 48 h, the mRNA expression levels of these 10 genes
in HGC-27 and MGC-803 cell lines were all investigated by
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real-time PCR. The results indicated that the mRNA expres-
sion levels of eight genes (AIFM2, ALDH3A2, KEAP1,
MAP1LC3B, MYB, NOX4, SP1, and TGFBR1) were
decreased and two genes (ITGB4 and ZFP36) were increased
after being treated with Erastin. However, in the HGC-27
cell line, there was no statistical difference in the mRNA
expression level of SP1. ITGB4 and MAP1LC3B genes were
also not statistically different in MGC803-Erastin cell line
(Figures 9(g) and 9(h)). In addition, similar to the mRNA
expression results, the different protein expression levels of

the hub genes (AIFM2, KEAP1, NOX4, and SP1) were fur-
ther confirmed by western blot except AIFM2 and SP1 in
the HGC-27 cell line (Figure 9(i)). In summary, the potential
roles of these 10 ferroptosis-related gene markers could also
be verified in cell line experiment.

4. Discussion

In this study, the expression level of the ferroptosis-related
genes in GC tumor and normal tissues and their associations

0.0 3.8

FSTL5

EBF3
PKDREJ
ZDBF2
ZNF462
ZNFX1
PCLO

LAMA1
VCAN

GOLGB1
FRAS1
MKI67

NEB

ZNF569
ARID1A
ZFHX4

2
0
0
1
1
3
5
2

19
12
4
3
5
2
8
0
0

24
13

High

16
11
11
14
14
19
23
17
45
35
22
20
24
18
30
13
13
55
40

Low (n = 170) v/s high (n = 167)

Log odds ratio

−3.8

DAAM1
SLTM

PROX1

Low p-value
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎
⁎⁎⁎

High
Low

(e)

0

1

2

Type

TM
B 

(lo
g1

0)

High Low

Type
High
Low

4.2e−07

−2

−1

(f)
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Figure 7: (a) Bar plot shows the proportion of 22 tumor-infiltrating immune cells (TICs) between the high- and low-risk groups in the
TCGA-STAD training dataset. (b) Heat map shows the correlation between 22 TICs in the TCGA-STAD training dataset. (c) The
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with OS were systematically investigated. A novel prognostic
gene signature was established and validated in an external
cohort. The independent prognostic factor, functional enrich-
ment, somatic mutation, tumor microenvironment, and
immunotherapy response analysis were performed and indi-
cated that the ferroptosis-related gene signature can effec-
tively predict the prognosis and clinical status for GCpatients.

Ferroptosis is involved in various diseases, especially in
malignant tumors [19]. Recently, several studies [12,
20–22] have proven that some ferroptosis-related genes play

key roles in the process of tumorigenesis and progression of
GC, but whether ferroptosis could predict the prognosis and
clinical status of GC patients remains largely unknown. Usu-
ally, TNM stage system or some serum biomarkers, includ-
ing CEA, CA19-9, and CA125, are used to monitor the
progress and predict the prognosis of GC patients. However,
these approaches are not satisfactory with low accuracy and
high nonspecificity; especially, there is higher heterogeneity
in GC patients. Meanwhile, with the impressive progress of
bioinformatics and RNA-seq, many scholars around the
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Figure 8: (a) The boxplot shows the expression levels of the 10 FDEGs between the normal and tumor tissues in TCGA datasets. (b) The
boxplots from the GEPIA dataset verify the expression levels of the 10 FDEGs in GC patients. (c) The boxplot indicates the different
expression levels of these 10 FDEGs in GC cell lines by real-time PCR. (d) Representative immunohistochemistry images of AIFM2,
KEAP1, NOX4, and SP1 in GC tissues and corresponding normal tissues. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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world have constructed some ferroptosis-related gene sig-
nature by public databases to further explore key molecu-
lar markers and better methods to accurately predict the
prognosis and drug sensitivity in several malignant
tumors, including uveal melanoma, lung cancer, hepatocel-
lular carcinoma, pancreatic cancer, and glioma [23–26].
However, few studies on gene signature had been con-
structed in gastric cancer.

In this study, we first screened the key ferroptosis-related
DEGs in GC from the public databases. As expected, more
than half of the ferroptosis-related genes were differentially
expressed between adjacent nontumorous and tumor tissues
in GC patients, suggesting ferroptosis plays a significant role
in GC. Then, 29 of them were proven related to OS by the
univariate Cox analysis, indicating that constructing a prog-
nostic signature with these FDEGs is feasible and reasonable.
Using the LASSO Cox analysis, the novel prognostic signa-

ture integrating 10 ferroptosis-related genes was identified,
including SP1, MYB, ALDH3A2, KEAP1, AIFM2, ITGB4,
TGFBR1,MAP1LC3B, NOX4, and ZFP36. To further explore
the role of these genes in GC, we summarized their main
molecular functions based on the results of this study and
previous studies.

SP1, a key member of the transcription factor SP family,
plays important roles in tissue development, cell differentia-
tion, and tumor molecular biology [27]. SP1 can directly
positively regulate glutathione peroxidase 4 (GPX4), which
is able to significantly influence the level of lipid peroxida-
tion and inhibit ferroptosis [28]. AIFM2 belongs to the anti-
ferroptotic genes and is renamed as ferroptosis suppressor
protein 1 (FSP1). Recent studies indicated that AIFM2 plays
a significant role in ferroptosis and can act parallel to GPX4
to inhibit ferroptosis [29, 30]. ALDH3A2 is involved in pre-
venting cellular oxidative damage by oxidizing long-chain
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Figure 9: The IC50 curve shows the cytotoxicity assay of (a) HGC-27 and (d) MGC-803 cell lines treated with Erastin. The flow cytometry
and fluorescence microscope plots verify the different ROS levels of (b, c) HGC-27 and (e, f) MGC-803 cell lines treated with Erastin. The
boxplots indicate the different mRNA expression levels of these 10 FDEGs in (g) HGC-27 and (h) MGC-803 after being treated with 10μM
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aliphatic aldehydes. A recent study showed that ALDH3A2
can protect progenitor and leukemic stem cells from ferrop-
tosis. Inhibiting GPX4 expression can further enhance the
ferroptosis-inducing influence of ALDH3A2 depletion [31].
Different from other types of tumors, the expression of
GPX4 is positively correlated with the prognosis of GC
patients [12]. Thus, the potential role of SP1 and FSP1 dur-
ing the process of ferroptosis in GC patients remains to be
further explored. MYB has also been reported as an impor-
tant transcription factor in solid tumors, which can regulate
ferroportin expression, iron-related cellular activities, and
tumor cell growth by modulating myeloid zinc-finger 1
[32]. Notably, a specific study indicated that MYB could
inhibit Erastin-induced ferroptosis which was restrained
through interacting with CDO1 in GC cells [13]. KEAP1
interacts with nuclear factor erythroid 2-related factor 2
(NRF2) in a redox-sensitive manner, and the interaction
can promote the expression of gamma-glutamylcysteine
synthetase [33]. In recent study, the NRF2-KEAP1 pathway
is activated and upregulates SLC7A11 to inhibit ferroptosis
when the expression of KEAP1 is downregulated [34].
ITGB4, a member of the integrin family, mediates cell-cell
adhesion or cell growth and plays a significant role in the
biology of invasive carcinoma by associating with integrin
alpha 6 (ITGA6) subunit [35]. Besides, it has been reported
that the induction of ferroptosis depends on cell clustering
in matrix-detached cells that lack ITGB4 and ITGA6 expres-
sion [36]. TGFBR1, also known as the activin receptor-like
kinase (ALK4/5), is involved in oxidative stress responses
[37]. In renal proximal tubular epithelial cells, the ALK4/5
signaling pathway has been proven to be correlated with fer-
roptosis and blockade of the ALK4/5 signaling pathway can
suppress ferroptosis [38]. Recent evidences demonstrated
that autophagy facilitates ferroptosis by degrading antifer-
roptosis factors [39]. MAP1LC3B [40] and ZFP36 [41], key
proteins of autophagy, have been considered to be correlated
with ferroptosis. NOX4 is the core enzyme in mediating
lipid peroxidation and promoting ferroptosis, and inhibition
of NOX4 can significantly block ferroptosis [42, 43]. In
summary, although these 10 genes were all correlated with
ferroptosis, few studies were performed to explore their
molecular functions during the process of ferroptosis in
GC. Thus, to make these results more scientific, we also
choose the 4 hub genes (SP1, KEAP1, AIFM2, and NOX4)
of these 10 genes to further verify their expression levels in
the GC cell lines and our 30-paired GC tissues by real-time
PCR and immunohistochemistry. In summary, similar to
the gene expression level of public databases and related
studies, the expression level of them was also upregulated
in GC cell lines and tissues.

Based on risk score of the 10-gene signature, GC patients
can be divided into the low- and high-risk groups. Low-risk
GC patients were proven to have the better prognosis and
significantly longer OS than high-risk patients in both the
training and testing groups. Furthermore, a series of analysis
was applied to further explore the prognostic value of the
signature; the results showed that the risk score was the
independent prognostic factor of the OS in GC patients.
Accurate nomogram prediction models can also be con-

structed based on the risk score. In summary, these results
reveal a favorable predictive efficacy of the signature in both
the training and testing groups. Meanwhile, we performed
GO, KEGG, and GSEA analysis to identify the enriched bio-
logical process and pathway based on the DEGs in the high-
and low-risk patients. The results showed that the cell
cycle, ECM-receptor interaction, PI3K-Akt signaling path-
way, and tumorigenesis-related pathways were significantly
enriched both in the training and testing groups. Consis-
tent with our results, recently, Lin et al. [44] reported that
dihydroartemisinin can cause cell cycle arrest in head and
neck carcinoma (HNC) cells by inducing ferroptosis. Some
studies [45, 46] also demonstrated that epigenetic repro-
gramming of EMT promotes ferroptosis in HNC cells
and gambogenic acid-induced ferroptosis inhibits the
EMT in melanoma cells. Yi et al. [47] found that mutation
of PI3K-Akt signaling could protect cancer cells from oxi-
dative stress and ferroptosis.

Recent studies [48, 49] have proven that somatic muta-
tion and tumor immunemicroenvironment significantly cor-
relate with tumorigenesis, tumor progress, and drug
resistance in GC patients. Wang et al. demonstrated that
IFNγ released by CD8+ T cells could inhibit expression of
glutamate-cystine antiporter system xc-, then induce tumor
cell lipid peroxidation and ferroptosis, and finally improve
antitumor efficacy of immunotherapy [50]. Besides, Hung
et al. reported that tyrosine-protein kinase receptor TYRO3
(TYRO3) overexpression elicited anti-PD-1/PD-L1 resis-
tance through protecting tumor cells from immunotherapy-
induced ferroptosis [51]. However, the specific mechanisms
of ferroptosis in tumor immunotherapy are largely unknown.
In order to explore the potential mechanism of this signature,
we further performed somatic mutation, tumor microenvi-
ronment, and immunotherapy response analysis. To our sur-
prise, the somatic mutation frequency of the low-risk GC
patients was higher than that of the high-risk patients and
the TMB level was significantly higher in the low-risk group
indicating that low-risk GC patients may be more sensitive to
immunotherapy and can benefit from the immunotherapy.
Based on the TMB results, we also confirmed that there were
significant differences in the signature and immune check-
points between the high- and low-risk groups. Low-risk
patients had a better response to immunotherapy, suggesting
that the signature has the potential to predict the immuno-
therapy response in GC patients. Meanwhile, the infiltration
abundance of immune cells was significantly different
between the low- and high-risk groups in this study. Most
of the immune cells were highly infiltrated in the high-risk
patients, while the abundance of NK cells was higher in the
low-risk group. Previous reports indicated that increased
abundance of NK cells can bring better immunotherapy effi-
cacy [52], further suggesting the low-risk GC patients have a
better response to immunotherapy. In fact, the relationship
between ferroptosis and cancer immunotherapy has been
reported in 2019 [50, 53], showing the sensitivity of tumor
cells to ferroptosis is parallel to immune functions, which
may be the reasonable explanation for the better response
to immunotherapy in low-risk patients. But the exact mech-
anisms of how these 10 ferroptosis-related genes interact to
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affect tumorigenesis and immune process are still unclear
and further studies are demanded.

With the gradual understanding of the role of ferroptosis
in various cancers, different ferroptosis inducers have been
developed as anticancer therapies, such as sulfasalazine,
sorafenib, and Erastin [54, 55]. Erastin, first identified as kill-
ing tumor cells expressing oncogenic RAS, is a classical agent
to induce ferroptosis by suppressing cystine/glutamate anti-
porter (xCT) and leading to decreased cysteine and then
inhibiting the function of glutathione peroxidase 4 (GPX4)
[4]. To evaluate whether these key genes play key roles in
ferroptosis of GC, we applied Erastin to trigger ferroptosis
in two GC cell lines, HGC-27 and MGC-803. Using CCK-
8 assay, we detected significant lethal toxicity to both GC cell
lines by Erastin at low concentration, showing IC50 value
was 7.46 and 10.79μM, for HGC-27 and MGC-803, respec-
tively. Increased ROS level is one of the features for ferrop-
tosis. After treatment with Erastin, both cell lines showed
obvious increased ROS signal by flow cytometry and fluores-
cence microscope, indicating Erastin-induced cell death
could be attributed to ferroptosis. Besides, we also explored
whether the expression of these key ferroptosis-related genes
was regulated by Erastin during ferroptosis. Not surpris-
ingly, most of the genes were dysregulated at mRNA or
protein expression level, while the underlying mechanism
was still not clear. Therefore, these ferroptosis-related gene
could be targeted to induce cancer cell ferroptosis for future
personalized therapy.

5. Conclusion

Ferroptosis has great potential clinical value in tumor treat-
ments. However, the relationship between ferroptosis and
tumors such as GC remains largely unclear. Thus, we
systemically explored the key ferroptosis biomarkers in GC
and constructed a novel ferroptosis-related gene signature
which could effectively predict the prognosis of GC patients.
Besides, we also further explored the signature-related
downstream molecular biology functions and pathways,
demonstrating the potential clinical value of this signature
in somatic mutation and immunotherapy. In addition, all
results had been verified by various external datasets and
expression of 4 hub genes was verified in our own clinical
samples. Finally, the novel prognostic signature constructed
in this study needs further validation and the underlying
mechanisms of ferroptosis in GC should be explored in
future studies.
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The RNA sequencing (RNA-seq) data and corresponding
clinical characteristics and molecular information of gastric
cancer samples in training cohort (TCGA-STAD) were
downloaded from The Cancer Genome Atlas (TCGA) data-
base by the “TCGAbiolinks” R package in February 2021.
The RNA-seq data of normal human stomach samples in
GTEx database was downloaded from the University of
California Santa Cruz (UCSC, https://xenabrowser.net/
datapages/). Besides, the gene expression data and corre-

sponding clinical information of the external validation
cohorts (GSE84437, GSE29272) were downloaded from the
GEO database (https://www.ncbi.nlm.nih.gov/). Further-
more, the somatic mutation data of the TCGA-STAD was
downloaded from the websites (https://portal.gdc.cancer
.gov/). The 261 ferroptosis-related genes were downloaded
from the FerrDb website (http://www.zhounan.org/ferrdb/),
updating on 10 March 2021.

Ethical Approval

The study was conducted according to the guidelines of the
Declaration of Helsinki, approved by the Ethical Committee
of Ruijin Hospital (Shanghai, China).

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

S.Z. and J.S. were responsible for conceptualization; Y.S. and
S.Z. were responsible for methodology; Y.S. and S.L. were
responsible for software; H.J. and L.H. were responsible for
validation; B.A. was responsible for resources; G.Y. was
responsible for data curation; Y.S. and S.Z. were responsible
for writing—original draft preparation; J.S. and M.Z. were
responsible for writing—review and editing; J.S. was respon-
sible for supervision; S.Z. and J.S. were responsible for fund-
ing acquisition. All authors have read and agreed to the
published version of the manuscript. Yanfei Shao, Hongtao
Jia, and Shuchun Li contributed equally to this work.

Acknowledgments

We thank Dr. Jianming Zeng (University of Macau) and Dr.
Xinyi Liu (Shanghai Jiao Tong University School of Medi-
cine), and all the members of their bioinformatics teams,
for generously sharing their experience and codes. This
research was funded by the National Nature Science Foun-
dation of China (NSFC) (Grant Nos. 8210111994 and
81871984), the Shanghai Science and Technology Commis-
sion Science and Technology Innovation Action Clinical
Innovation Field (Grant No. 18411953200), the Youth
Science and Technology Innovation Studio of Shanghai Jiao
Tong University School of Medicine, and the Youth Cultiva-
tion Project of Ruijin Hospital (Grant No. KY2021611).

Supplementary Materials

Figure S1: PCA plots of the TCGA-STAD training and
GSE84437 testing datasets. Figure S2: KEGG circular and
pathway annotation plots of the TCGA-STAD training and
GSE84437 testing datasets. Figure S3: the diagrams of the
correlation analysis between these 10 FDEGs and the
immune infiltration level in TCGA dataset by TIMER.
Figure S4: validation of the mRNA or protein expression of
these 10 genes in GSE29272 (except AIFM2) and HPA
(except NOX4) datasets. Table S1: full names, function,
and coefficients of the 10 genes. (Supplementary Materials)

27Oxidative Medicine and Cellular Longevity

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.zhounan.org/ferrdb/
https://downloads.hindawi.com/journals/omcl/2021/7007933.f1.zip


References

[1] H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics
2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: a Cancer Jour-
nal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.

[2] M. Cao, L. Li, and D. Sun, “Epidemiological trend analysis of
gastric cancer in China from 2000 to 2019,” Chin J Dig Surg,
vol. 20, no. 1, pp. 102–109, 2021.

[3] S. Zheng, Z. Zhang, N. Ding et al., “Identification of the angio-
genesis related genes for predicting prognosis of patients with
gastric cancer,” BMC Gastroenterology, vol. 21, no. 1, p. 146,
2021.

[4] S. J. Dixon, K. M. Lemberg, M. R. Lamprecht et al., “Ferropto-
sis: an iron-dependent form of nonapoptotic cell death,” Cell,
vol. 149, no. 5, pp. 1060–1072, 2012.

[5] T. Hirschhorn and B. R. Stockwell, “The development of the
concept of ferroptosis,” Free Radical Biology & Medicine,
vol. 133, pp. 130–143, 2019.

[6] H. Wang, Y. Cheng, C. Mao et al., “Emerging mechanisms and
targeted therapy of ferroptosis in cancer,” Molecular Therapy,
vol. 29, no. 7, pp. 2185–2208, 2021.

[7] S. Zhuo, Z. Chen, Y. Yang, J. Zhang, J. Tang, and K. Yang,
“Clinical and biological significances of a ferroptosis-related
gene signature in glioma,” Frontiers in Oncology, vol. 10,
p. 590861, 2020.

[8] Y. Lai, Z. Zhang, J. Li et al., “STYK1/NOK correlates with fer-
roptosis in non-small cell lung carcinoma,” Biochemical and
Biophysical Research Communications, vol. 519, no. 4,
pp. 659–666, 2019.

[9] Y. Ding, X. Chen, C. Liu et al., “Identification of a small mole-
cule as inducer of ferroptosis and apoptosis through ubiquiti-
nation of GPX4 in triple negative breast cancer cells,” Journal
of Hematology & Oncology, vol. 14, no. 1, p. 19, 2021.

[10] W. H. Yang, C. C. Ding, T. Sun et al., “The hippo pathway
effector TAZ regulates ferroptosis in renal cell carcinoma,” Cell
Reports, vol. 28, no. 10, pp. 2501–2508.e4, 2019, e4.

[11] P. Chen, X. Li, R. Zhang et al., “Combinative treatment of β-
elemene and cetuximab is sensitive to KRAS mutant colorectal
cancer cells by inducing ferroptosis and inhibiting epithelial-
mesenchymal transformation,” Theranostics, vol. 10, no. 11,
pp. 5107–5119, 2020.

[12] L. Zhao, Y. Peng, S. He et al., “Apatinib induced ferroptosis by
lipid peroxidation in gastric cancer,” Gastric Cancer, vol. 24,
no. 3, pp. 642–654, 2021.

[13] S. Hao, J. Yu, W. He et al., “Cysteine dioxygenase 1 mediates
erastin-induced ferroptosis in human gastric cancer cells,”
Neoplasia, vol. 19, no. 12, pp. 1022–1032, 2017.

[14] T. Liu, L. Jiang, O. Tavana, and W. Gu, “The deubiquitylase
OTUB1 mediates ferroptosis via stabilization of SLC7A11,”
Cancer Research, vol. 79, no. 8, pp. 1913–1924, 2019.

[15] Y. Liu, X. Zhang, J. Zhang, J. Tan, J. Li, and Z. Song,
“Development and validation of a combined ferroptosis
and immune prognostic classifier for hepatocellular carci-
noma,” Frontiers in Cell and Development Biology, vol. 8,
p. 596679, 2020.

[16] Y. Wei, H. Lv, A. B. Shaikh et al., “Directly targeting glutathi-
one peroxidase 4 may be more effective than disrupting gluta-
thione on ferroptosis-based cancer therapy,” Biochimica et
Biophysica Acta - General Subjects, vol. 1864, no. 4, article
129539, 2020.

[17] N. Zhou and J. Bao, “FerrDb: a manually curated resource for
regulators and markers of ferroptosis and ferroptosis-disease
associations,” Database, vol. 2020, article baaa021, 2020.

[18] S. Zhang, C. Yu, X. Yang et al., “N-myc downstream-regulated
gene 1 inhibits the proliferation of colorectal cancer through
emulative antagonizing NEDD4-mediated ubiquitylation of p
21,” Journal of Experimental & Clinical Cancer Research,
vol. 38, no. 1, p. 490, 2019.

[19] M. Tang, Z. Chen, D. Wu, and L. Chen, “Ferritinophagy/fer-
roptosis: iron-related newcomers in human diseases,” Journal
of Cellular Physiology, vol. 233, no. 12, pp. 9179–9190, 2018.

[20] C. Li, Y. Tian, Y. Liang, and Q. Li, “Retracted article: Circ_
0008035 contributes to cell proliferation and inhibits apoptosis
and ferroptosis in gastric cancer via miR-599/EIF4A1 axis,”
Cancer Cell International, vol. 20, no. 1, p. 84, 2020.

[21] H. Zhang, T. Deng, R. Liu et al., “CAF secreted miR-522 sup-
presses ferroptosis and promotes acquired chemo-resistance
in gastric cancer,”Molecular Cancer, vol. 19, no. 1, p. 43, 2020.

[22] X. Sun, S. Yang, X. Feng et al., “The modification of ferroptosis
and abnormal lipometabolism through overexpression and
knockdown of potential prognostic biomarker perilipin 2 in
gastric carcinoma,” Gastric Cancer, vol. 23, no. 2, pp. 241–
259, 2020.

[23] X. Gao, M. Tang, S. Tian, J. Li, and W. Liu, “A ferroptosis-
related gene signature predicts overall survival in patients with
lung adenocarcinoma,” Future Oncology, vol. 17, no. 12,
pp. 1533–1544, 2021.

[24] X. Du and Y. Zhang, “Integrated analysis of immunity- and
ferroptosis-related biomarker signatures to improve the prog-
nosis prediction of hepatocellular carcinoma,” Frontiers in
Genetics, vol. 11, p. 614888, 2020.

[25] S. W. Kim, Y. Kim, S. E. Kim, and J. Y. An, “Ferroptosis-related
genes in neurodevelopment and central nervous system,” Biol-
ogy (Basel), vol. 10, no. 1, p. 35, 2021.

[26] B. Tang, J. Zhu, J. Li et al., “The ferroptosis and iron-
metabolism signature robustly predicts clinical diagnosis,
prognosis and immune microenvironment for hepatocellular
carcinoma,” Cell Communication and Signaling: CCS, vol. 18,
no. 1, p. 174, 2020.

[27] T. Hirose and H. R. Horvitz, “An Sp1 transcription factor
coordinates caspase-dependent and -independent apoptotic
pathways,” Nature, vol. 500, no. 7462, pp. 354–358, 2013.

[28] G. C. Forcina and S. J. Dixon, “GPX4 at the crossroads of lipid
homeostasis and ferroptosis,” Proteomics, vol. 19, no. 18, arti-
cle e1800311, 2019.

[29] S. Doll, F. P. Freitas, R. Shah et al., “FSP1 is a glutathione-
independent ferroptosis suppressor,” Nature, vol. 575,
no. 7784, pp. 693–698, 2019.

[30] K. Bersuker, J. M. Hendricks, Z. Li et al., “The CoQ oxidore-
ductase FSP1 acts parallel to GPX4 to inhibit ferroptosis,”
Nature, vol. 575, no. 7784, pp. 688–692, 2019.

[31] R. Z. Yusuf, B. Saez, A. Sharda et al., “Aldehyde dehydrogenase
3a2 protects AML cells from oxidative death and the synthetic
lethality of ferroptosis inducers,” Blood, vol. 136, no. 11,
pp. 1303–1316, 2020.

[32] Y. Chen, Z. Zhang, K. Yang, J. du, Y. Xu, and S. Liu, “Myeloid
zinc-finger 1 (MZF-1) suppresses prostate tumor growth
through enforcing ferroportin-conducted iron egress,” Onco-
gene, vol. 34, no. 29, pp. 3839–3847, 2015.

[33] J. J. Qin, X. D. Cheng, J. Zhang, and W. D. Zhang, “Dual roles
and therapeutic potential of Keap1-Nrf2 pathway in

28 Oxidative Medicine and Cellular Longevity



pancreatic cancer: a systematic review,” Cell Communication
and Signaling: CCS, vol. 17, no. 1, p. 121, 2019.

[34] Z. Fan, A. K. Wirth, D. Chen et al., “Nrf2-Keap1 pathway pro-
motes cell proliferation and diminishes ferroptosis,”Oncogene,
vol. 6, no. 8, article e371, 2017.

[35] J. S. Sung, C. W. Kang, S. Kang et al., “ITGB4-mediated meta-
bolic reprogramming of cancer-associated fibroblasts,” Onco-
gene, vol. 39, no. 3, pp. 664–676, 2020.

[36] C. W. Brown, J. J. Amante, and A. M. Mercurio, “Cell cluster-
ing mediated by the adhesion protein PVRL4 is necessary for
α6β4 integrin-promoted ferroptosis resistance in matrix-
detached cells,” The Journal of Biological Chemistry, vol. 293,
no. 33, pp. 12741–12748, 2018.

[37] R. Derynck and Y. E. Zhang, “Smad-dependent and Smad-
independent pathways in TGF-β family signalling,” Nature,
vol. 425, no. 6958, pp. 577–584, 2003.

[38] K. Fujiki, H. Inamura, T. Sugaya, and M. Matsuoka, “Blockade
of ALK4/5 signaling suppresses cadmium- and erastin-
induced cell death in renal proximal tubular epithelial cells
via distinct signaling mechanisms,” Cell Death and Differenti-
ation, vol. 26, no. 11, pp. 2371–2385, 2019.

[39] X. Qin, J. Zhang, B. Wang et al., “Ferritinophagy is involved in
the zinc oxide nanoparticles-induced ferroptosis of vascular
endothelial cells,” Autophagy, pp. 1–20, 2021.

[40] J. Li, J. Liu, Y. Xu et al., “Tumor heterogeneity in autophagy-
dependent ferroptosis,” Autophagy, pp. 1–14, 2021.

[41] Z. Zhang, M. Guo, Y. Li et al., “RNA-binding protein
ZFP36/TTP protects against ferroptosis by regulating autoph-
agy signaling pathway in hepatic stellate cells,” Autophagy,
vol. 16, no. 8, pp. 1482–1505, 2020.

[42] I. Poursaitidis, X. Wang, T. Crighton et al., “Oncogene-selec-
tive sensitivity to synchronous cell death following modulation
of the amino acid nutrient cystine,” Cell Reports, vol. 18, no. 11,
pp. 2547–2556, 2017.

[43] M. W. Park, H. W. Cha, J. Kim et al., “NOX4 promotes ferrop-
tosis of astrocytes by oxidative stress-induced lipid peroxida-
tion via the impairment of mitochondrial metabolism in
Alzheimer’s diseases,” Redox Biology, vol. 41, p. 101947, 2021.

[44] R. Lin, Z. Zhang, L. Chen et al., “Dihydroartemisinin (DHA)
induces ferroptosis and causes cell cycle arrest in head and
neck carcinoma cells,” Cancer Letters, vol. 381, no. 1,
pp. 165–175, 2016.

[45] J. Lee, J. H. You, M. S. Kim, and J. L. Roh, “Epigenetic repro-
gramming of epithelial-mesenchymal transition promotes fer-
roptosis of head and neck cancer,” Redox Biology, vol. 37,
p. 101697, 2020.

[46] M. Wang, S. Li, Y. Wang, H. Cheng, J. Su, and Q. Li, “Gambo-
genic acid induces ferroptosis in melanoma cells undergoing
epithelial- to-mesenchymal transition,” Toxicology and
Applied Pharmacology, vol. 401, p. 115110, 2020.

[47] J. Yi, J. Zhu, J. Wu, C. B. Thompson, and X. Jiang, “Oncogenic
activation of PI3K-AKT-mTOR signaling suppresses ferropto-
sis via SREBP-mediated lipogenesis,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 117, no. 49, pp. 31189–31197, 2020.

[48] G. Corso, J. Carvalho, D. Marrelli et al., “Somatic mutations
and deletions of the E-cadherin gene predict poor survival of
patients with gastric cancer,” Journal of Clinical Oncology,
vol. 31, no. 7, pp. 868–875, 2013.

[49] S. Kumagai, Y. Togashi, C. Sakai et al., “An oncogenic alter-
ation creates a microenvironment that promotes tumor pro-

gression by conferring a metabolic advantage to regulatory T
cells,” Immunity, vol. 53, no. 1, pp. 187–203.e8, 2020, e8.

[50] W. Wang, M. Green, J. E. Choi et al., “CD8+ T cells regulate
tumour ferroptosis during cancer immunotherapy,” Nature,
vol. 569, no. 7755, pp. 270–274, 2019.

[51] Z. Jiang, S. O. Lim, M. Yan et al., “TYRO3 induces anti-PD-
1/PD-L1 therapy resistance by limiting innate immunity and
tumoral ferroptosis,” The Journal of Clinical Investigation,
vol. 131, no. 8, article e139434, 2021.

[52] L. C. Cutmore and J. F. Marshall, “Current perspectives on the
use of off the shelf CAR-T/NK cells for the treatment of can-
cer,” Cancers (Basel), vol. 13, no. 8, p. 1926, 2021.

[53] Y. Ye, Q. Dai, S. Li, J. He, and H. Qi, “A novel defined risk sig-
nature of the ferroptosis-related genes for predicting the prog-
nosis of ovarian cancer,” Frontiers in Molecular Biosciences,
vol. 8, p. 645845, 2021.

[54] S. Dolma, S. L. Lessnick, W. C. Hahn, and B. R. Stockwell,
“Identification of genotype-selective antitumor agents using
synthetic lethal chemical screening in engineered human
tumor cells,” Cancer Cell, vol. 3, no. 3, pp. 285–296, 2003.

[55] O. S. Kwon, E. J. Kwon, H. J. Kong et al., “Systematic identifi-
cation of a nuclear receptor-enriched predictive signature for
erastin-induced ferroptosis,” Redox Biology, vol. 37,
p. 101719, 2020.

29Oxidative Medicine and Cellular Longevity


	Comprehensive Analysis of Ferroptosis-Related Markers for the Clinical and Biological Value in Gastric Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Collection of Data
	2.2. Screening of Candidate Gene
	2.3. Establishment and Validation of a Prognostic Ferroptosis-Related Gene Signature
	2.4. Functional Enrichment Analysis
	2.5. Immunotherapy Targets and Immune Infiltration Analysis
	2.6. Expression Verification of the 10 FDEGs in the Datasets, Cell Lines, and Gastric Cancer Specimen
	2.7. Gastric Cancer Cell Lines and Cell Culture
	2.8. Cytotoxicity Assay
	2.9. Reactive Oxygen Species (ROS) Measurement
	2.10. RNA Isolation and Real-Time PCR
	2.11. Western Blot
	2.12. Statistical Analysis

	3. Results
	3.1. Identification of the FDEGs
	3.2. Establishment of Ferroptosis-Related Prognostic Signature
	3.3. Evaluation and Validation of Ferroptosis-Related Gene Signature
	3.4. Analysis of Independent Prognostic Factors
	3.5. Construction and Validation of the Nomogram Prediction Model
	3.6. Analysis of Functional Enrichment
	3.7. Analysis of Somatic Mutation
	3.8. Analysis of Tumor Microenvironment and Immunotherapy Response
	3.9. Validation of the Expression Levels of the 10 Ferroptosis-Related Genes
	3.10. Analysis of the Effects of Ferroptosis Inducer Erastin on the 10 Ferroptosis-Related Genes in Gastric Cancer Cell Lines

	4. Discussion
	5. Conclusion
	Data Availability
	Ethical Approval
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

