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Abstract: The treatment of complex diseases by using multiple drugs has become popular. However,
drug-drug interactions (DDI) may give rise to the risk of unanticipated adverse effects and even
unknown toxicity. Therefore, for polypharmacy safety it is crucial to identify DDIs and explore their
underlying mechanisms. The detection of DDI in the wet lab is expensive and time-consuming,
due to the need for experimental research over a large volume of drug combinations. Although
many computational methods have been developed to predict DDIs, most of these are incapable of
predicting potential DDIs between drugs within the DDI network and new drugs from outside the
DDI network. In addition, they are not designed to explore the underlying mechanisms of DDIs and
lack interpretative capacity. Thus, here we propose a novel method of GNN-DDI to predict potential
DDIs by constructing a five-layer graph attention network to identify k-hops low-dimensional feature
representations for each drug from its chemical molecular graph, concatenating all identified features
of each drug pair, and inputting them into a MLP predictor to obtain the final DDI prediction score.
The experimental results demonstrate that our GNN-DDI is suitable for each of two DDI predicting
scenarios, namely the potential DDIs among known drugs in the DDI network and those between
drugs within the DDI network and new drugs from outside DDI network. The case study indicates
that our method can explore the specific drug substructures that lead to the potential DDIs, which
helps to improve interpretability and discover the underlying interaction mechanisms of drug pairs.

Keywords: drug-drug interaction; prediction; feature representation; molecular graph; graph atten-
tion network

1. Introduction

Polypharmacy, also termed drug combination treatment, has become a promising
strategy for treating complex diseases (e.g., diabetes and cancer) in recent years [1]. For
example, Pembrolizumab has been combined with Sorafenib in the treatment of metastatic
hepatocellular carcinoma [2]. Entacapone increases the plasma concentration of Levodopa
and improves therapeutic effects on Parkinson’s disease [3]. Nevertheless, the combined
use of two or more drugs (i.e., drug-drug interactions, DDIs) triggers pharmacological
changes that may result in unexpected effects (e.g., side effects, adverse reactions, and even
serious toxicity) [4]. As the need for polypharmacy treatments increases, identification of
DDIs has become urgent. Nevertheless, it is expensive and time-consuming to detect DDIs
among drug pairs on a large scale both in vitro and in vivo. To screen DDIs, computational
approaches, especially machine learning-based methods, have been developed to deduce
potential drug-drug interactions [5].

Existing computational approaches can be roughly classified into three categories: text-
mining-based, machine-learning-based, and deep-learning-based methods. Textmining-
based approaches discover and collect recorded DDIs from the scientific literature, elec-
tronic medical records [6,7], insurance claim databases, and the FDA Adverse Event Re-
porting System. They use Natural Language Processing (NLP) technology to extract DDI
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information from various formats of text, and they are very useful in building DDI-related
databases [7–13]. However, these approaches are incapable of detecting unrecorded DDIs,
and they cannot give an alert to potential drug interactions before drug combination
treatment [14].

With the advantages of both high efficiency and low costs, various machine learning
methods have been shown promise in providing preliminary screening of DDIs for further
experimental validation. Generally, models are trained by using confirmed DDIs to infer
the potential DDIs among massive quantities of unlabeled drug pairs. The training involves
diverse drug properties, such as chemical structure [14–18], targets [14,15,18,19], anatomical
taxonomy [16,19,20], and phenotypic observation [17–20]. The models transform the DDI
prediction task that infers whether or not a drug interacts with another into a binary
classification problem. These methods are usually implemented according to established
classifiers (e.g., KNN [16], SVM [16], logistic regression [14,20], decision tree [21], and naïve
Bayes [21]), network propagation of reasoning behind drug-drug network structures [20,22],
label propagation [23], random walk [15] and probabilistic soft logic [19,21], or matrix
factorization [17,18,24]. Generally, traditional machine learning methods rely heavily on
the quality of handcrafted features derived from the drug properties.

In terms of extracting features from data without manual input [25], deep learning
methods, especially graph convolution network methods, provide promising routes into
the field of drug development and discovery [5], such as molecular activity prediction, drug
side effect prediction [17] drug target interactions prediction [25], drug response [26–29],
and drug synergy [30–34]. Those methods in the field of drug-drug interaction prediction
contribute to traditional binary DDI prediction [35] or multi-type DDI prediction [36–39].
Some of these methods have constructed deep learning frameworks to learn latent features
from various properties of drugs, and other methods have built models to extract the
latent features from the DDI network [40], including the homogeneous DDI network
and the heterogeneous knowledge network [41]. For example, NDD [42] calculated the
corresponding drug similarity matrix from several drug properties, and inputted it into a
multi-layer deep learning classifier for predicting binary DDIs. Wang et al. [41] extracted
drug representation features by utilizing GCN from the DDI networks, and inputted them
into a three-layer multilayer perception (MLP) for predicting binary DDIs. KGNN [43]
constructed a drug knowledge graph that includes various entities such as drug target, side
effect, and pathway disease, and used the graph representation method to extract drug
features from this huge heterogeneous graph to predict DDIs. The methods [36–38] first
treat the rows in a drug similarity matrix as corresponding drug feature vectors, and set
the concatenation of two feature vectors as the feature vector to represent a pair of drugs,
and then train a multi-layer DNN with feature vectors and types of DDIs as the classifiers
to predict multi-type DDIs.

Although these methods achieved inspiring results, they had several limitations as
follows. First, those methods extracting the latent features from the DDI network relied
on the network’s topological information, thus they are blind to new drugs that have no
links with the drugs in the DDI network. Secondly, current deep learning methods lack
interpretation of drug interactions, and it is difficult to observe the underlying mechanisms
of drug interactions. To address these issues, here we propose a novel GNN-DDI method to
predict drug-drug interaction. GNN-DDI constructed a five-layer graph attention network
to identify k-hops low-dimensional feature representations for each drug from its chemical
molecular graph, and then concatenates the learned features for each drug pair, inputting
them into a MLP predictor to obtain the final DDI prediction score. The multi-layer GAT
of CSGN-DDI can capture different kth-order substructure functional groups of the drug
molecular graph through multi-step operations, to generate effective feature representation
of the drugs. The experimental results demonstrate that our GNN-DDI is superior in
predicting the potential DDIs between the drugs within the DDI network and new drugs
outside the DDI network. GNN-DDI helps to improve interpretability and reveal the
underlying mechanisms of drug pair interactions.
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2. Materials and Methods
2.1. Datasets

We first built the DDI dataset that contains 1,935 drugs and 589,827 annotated drug-
drug interactions from DrugBank 5.0 [44]. Then we downloaded the completed XML-
formatted database (including the comprehensive profiles of 11,440 drugs), and parsed all
approved small-molecule drugs and their DDI entries. We extracted the drugs’ chemical
structure information using Simplified Molecular Input Line Entry System (SMILES) strings
from the XML file provided by DrugBank, and transformed them into the corresponding
molecular structure graph using the open-source library RDKit (Figure 1). These drug
molecular graphs were taken as the input graphs for the graph convolutional network in
the feature extractor of GNN-DDI to obtain the drug feature vectors. In each molecular
graph, atoms were denoted as nodes, edges representing the bond between atoms, and
each node containing a 78-dim initial feature vector including the symbol of the atom
(i.e., 44-dimension, one-hot code), the number of adjacent atoms, the implied valence of the
atom, its formal charge, the number of free radical electrons, the hybridization of the atom
(i.e., 5-dimension, one hot code), the number of hydrogen bonds, and whether the atom
is aromatic.
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GNN-DDI learns the drug representation features directly from their chemical molecu-
lar structure graphs by graph convolution network. In order to compare those features with
other molecular structure fingerprint features and features from their biological properties,
we also extracted the ATC (Anatomical Therapeutic Chemical Classification) and DBP
(Drug Binding Proteins) from DrugBank, and utilized the PubChem fingerprint and the
MACCSkeys fingerprint (Molecular ACCess System keys fingerprint [45] to convert the
SMILES of drugs into the 881-dimesion and 166-dimension binary vector, respectively. Each
bit in the vector indicates the occurrence or non-occurrence of a pre-defined substructure
according to Pubchem fingerprints or MACCSkeys fingerprints. ATC codes are released
by the World Health Organization [46], and they categorize drug substances at different
levels according to organs they affect, application area, therapeutic properties, chemical,
and pharmacological properties. It is generally accepted that compounds with similar
physicochemical properties exhibit similar biological activity. To feed the 7-bit ATC code
into a deep learning model, we converted the data into a one-hot code with 118 bits. We also
used drug-binding protein (DBP) data [47], containing 899 drug targets and 222 non-target
proteins. Similarly, each drug was represented as a binary DBP-based feature vector, with
each bit indicating whether the drug binds to a specific protein.

2.2. Problem Formulation

Let G be (n + m) drugs including n known drugs G1 = {di} and m new drugs
G2 =

{
dj
}

, where G1 ∪ G2 = G and G1 ∩ G2 = ∅, and D1 =
{

Gx, Gy
}

s is the interac-
tion between GxεG1 and GyεG1, and D2 = {Gx, Gz} is the interaction between GxεG1 and
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GzεG2. In addition, each drug can be represented as a molecular structure graph, and we
denote it by a graph Gi(Vi, Ei), where Vi =

{
Vi1, Vi2, . . . , Vip

}
is the set of nodes represent-

ing the atoms in the drug di, Ei = {(Vis, Vit)
p
s,t=1} is the set of edges representing the bonds

connecting two atoms in the drug di, and H(0)
i = (h(0)

i1 , h(0)
i2 , . . . , h(0)

ip )
T

is the initial feature
matrix of p nodes in Gi of drug di. Our task is to deduce DDI candidates among those
unannotated drug-drug pairs based on known DDIs. There are two different scenarios of
DDI prediction as follows:

The first prediction task is to learn a function mapping F : G1 × G1 → {0, 1} to deduce
the potential interactions among the unlabeled pairs of drugs in G1 (Figure 2A).
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The second prediction task is to learn a function mapping F : G1 × G2 → {0, 1} to
deduce the potential interactions among the unlabeled drug pairs between G1 and G2
(Figure 2B). We used all known DDIs

{
Gx, Gy

}
∈ D1

∣∣Gx ∈ G1 and Gy ∈ G1 to train the pre-
diction model for predicting all unlabeled drug pairs

{
Gx, Gy

}
∈ D2

∣∣Gx ∈ G1 and Gy ∈ G2 .

2.3. GNN-DDI Model

In this work, we propose a representation learning framework, GNN-DDI, to predict
drug-drug interactions. GNN-DDI mainly consists of two modules: a drug feature extractor
and a DDI predictor (Figure 3). The first module is composed of a five-layer graph attention
convolutional network (GAT) [48] that learns the function fe(Gi) to obtain the latent feature
vector Zi of each drug from its molecular structure graph Gi(Vi, Ei), where Zi ∈ R1×k. The
latent vectors (Zi and Zj) of two drugs are concatenated to form the feature vector Zij of the
corresponding drug pair. In each layer of the feature extractor, the convolutional operation
aggregates information from its atomic neighborhood and updates the node feature for each
atomic node in a drug molecular structure graph. Through several convolutional layers,
informative features of drug chemical functional groups within its whole chemical structure
are captured, that are critical in drug interactions. The second module is a multi-layer
perception that predicts the probability score of drug pair interaction by taking the feature
vector Zij of the drug pair as the input. The overall algorithm of GNN-DDI is shown in
Algorithm 1.
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Algorithms 1 The pseudo-code of GNN-DDI

input: Molecular graph Gx of drug x and its original features H(0)
i of atomic nodes

Molecular graph Gy of drug y and its original features H(0)
i of atomic nodes

output: Probability score p
(
Gx, Gy

)
of drug pair (x, y)

1: Initialize parameter sets in GNN-DDI.
2: for k in K:
3: Compute h(k+1)

x and h(k+1)
y based on Equations (1) to (3).

4: SAGPooling based on Equation (4) to obtain H(k+1)
Gx

and H(k+1)
y in layer k.

5: end for
6: Concatenate k-hops H(k+1)

Gx
and H(k+1)

y based on Equation (5) to obtain HGx and HGy .
7: Concatenate HGx and HGy to obtain the latent feature vector of a drug pair H(Gx, Gy)

8: Feed feature vector H(Gx, Gy) into the predictor to get probability score p
(
Gx, Gy

)
.

2.3.1. Feature Extractor

Each drug has its molecular structure graph, in which atoms are denoted as nodes,
and edges represent the bonds between atoms. Because the numbers of atoms and chemical
bonds in the molecular graph of each drug are different, each molecular graph can be
learned by the graph convolutional network to generate drug informative representation.
The graph convolutional network consists of an information aggregation function and an
update function. The former continuously gathers neighborhood information for each node
in the graph, and the latter updates the gathered information to obtain the informative
representation features for each node.

The traditional convolution network aggregates the neighborhood information of
each node in the molecular graph without difference. Due to the different importance
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of neighbor nodes, the weighted aggregation can obtain more effective representations
for drugs and be conductive to disclosing drug interaction mechanisms. Therefore, we
designed a five-layer graph convolutional network with an attention mechanism [48,49] to
generate the embedding representation for each atomic node in the drug molecular graph.
Each node is represented as a latent feature vector, which contains the information about
its neighborhood in the drug molecular graph without manual feature engineering.
(A) Information aggregation and update

In each layer of the feature extractor, the convolutional operation aggregated informa-
tion by weighting from its atomic neighborhood and updated the node feature for each
atomic node in a drug molecular structure graph. Through several convolutional layers,
we captured informative features of drug chemical functional groups within each drug’s
whole chemical structure, that are critical in drug interactions.

For any layer in the GNN-DDI feature extractor (Figure 2A), the general propagation
rule is defined as:

h(k+1)
i = σ(∑j∈Ni

αijW(k)h(k)j + W(k)h(k)i ) (1)

where Ni denotes the set of atomic node neighbors in Gx, h(k)i is the input feature vector, h(0)i
is the original features of each atomic node in molecular graph (details in Section 2.1), W(k) is
the trainable weight matrix in the k-th layer of Gx, σ is a non-linear element-wise activation
function (i.e., ReLU), and αij denotes the aggregation weight between the updating node
vxi and its neighborhood node vxj determining the relevant importance between them. αij
can be calculated by the attention mechanism as follows:

αij = so f tmax
(
eij
)
=

exp
(
eij
)

∑k∈Ni
exp(eik)

(2)

eij = LeakyReLU(
→
a

T
[watth

(k)
i ‖ watth

(k)
j

)
(3)

where
→
a

T
∈ R2F′ is a shared weight vector composed of a layer of feedforward neural

network, T is a transpose operation, LeakyReLU is an activation function [50], and ‖
denotes the concatenated operation.
(B) Pooling of atomic feature vectors

The feature extractor takes the molecular structure graph and atomic original features
of each drug as input, to output the latent feature vector Z of each drug using a multi-layer
graph convolution network. In each layer, the neighborhood information of each atomic
node vxi in drug molecular graph Gx is continuously aggregated to update the feature h(k)i

of node vxi, hence an updated feature vector matrix H(k)
i ∈ Rp×k of each atom in drug Gx is

obtained, here p is the number of atoms in drug Gx and k is the dimension of this layer. The
feature matrix is taken as input to the next layer of the feature extractor module. To predict
interactions among drug pairs, the feature matrix H(k)

i of the drug molecular graph must

be transformed into the drug feature vector H(k)
Gi

. Therefore, after convolutional operations
in each layer, we adopted SAGPooling [49] to implement this transform operation:

H(k)
Gi

= ∑n
i γih

(k)
i (4)

where γi is the feature weight of each atomic node vxi in the whole molecular graph Gx,
which represents the importance of each node in the molecular graph. γi is determined
according to the topological and contextual information of node vxi by SAGPooling.

As the learned representation features are drawn from different multi-head attention
in different subspaces, the multi-head attention mechanism can improve the model’s
learning stability and enhance its expression ability [51]. Therefore, we adopted multi-head
attention in the feature extractor. Assuming L heads are adopted, in each layer of the feature
extractor, there are L information aggregation and update operations from Equations (1)–(3)
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in parallel, and L same dimension representation features of each node are obtained. Then
they are concatenated together as the final feature h(k)i .

2.3.2. Feature Aggregation for Drug Pairs

So far, five k-hop latent feature vectors H(k)
Gx

of each drug were obtained from five-layer
GAT. Different k-hops of feature vectors involve various neighbor receptive fields, therefore
they contain various sizes of sub-structures in a drug molecular graph. For example, the
molecular chemical structure graphs of two drugs Hydroquinone (DrugBank ID: DB09526)
and Acetic acid (DrugBank ID: DB03166) are shown in Figure 4 respectively. They are both
weak acids due to the sub-structures of phenolic hydroxyl AROH and carboxyl COOH.
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In order to correctly extract the sub-structure ArOH in hydroquinone, we need a
three-hop information aggregation from the neighborhoods in its molecular graph. In the
same way, we only need a two-hop convolution operation to correctly extract the sub-
structures COOH from Acetic acid. However, traditional graph representation networks
usually use a fixed-sized receptive field (i.e., using the final feature vectors from the last
layer of graph convolution network for downstream tasks), which may result in either
incomplete sub-structures being extracted (i.e., receptive fields are too small), or redundant
sub-structures being included (i.e., receptive fields are too large). In order to solve this
limitation, all five k-hop latent feature vectors H(k)

Gx
of each drug were concatenated as the

final representation feature of the drug for the downstream prediction task.

ZGx =‖K
k=1 H(k)

Gx
(5)

where ‖ denotes the concatenated operation.
Finally, we concatenated the latent feature vectors of two drugs in each drug pair to

form a feature vector h
(
Gx, Gy

)
= [ZGx , ZGy ] to represent the drug pair, and took h

(
Gx, Gy

)
as the input of MLP to predict the probability value of interaction between two drugs.

2.3.3. MLP Predictor

GNN-DDI converts the DDI prediction task into a binary classification problem. Be-
cause MLP has been proved to give excellent performance in classification, we constructed
a five-layer MLP as the predictor (Figure 3). ReLU was selected as the activation function
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in the first four layers, while the activation function SoftMax was selected in the last layer,
which maps the output score into the range of 0–1, representing how likely potential DDIs
are in drug pairs.

In the GNN-DDI training process, the binary cross-entropy loss function was adopted
to continuously optimize the model.

L(p, q) = −∑i,j yij log
(

p
(
Gx, Gy

))
+
(
1− yij

)
(1− log

(
p
(
Gx, Gy

))
(6)

where yij is the true label (i.e., 0 or 1) of the training drug pair
(
Gx, Gy

)
, p
(
Gx, Gy

)
is

the predicting probability value generated by the MLP predictor. Through continuous
reduction of the loss function, the model is optimized.

2.4. Cross-Validation Strategy and Assessment Metrics

In order to evaluate the performance of GNN-DDI, we employed two different cross-
validation strategies of sample set partition. The first one is the edge set partition strategy,
in which all interaction edges were randomly partitioned into 80% training edges (which
includes 5% validation edges) and 20% test edges. The other one is the drug partition
strategy, in which all drugs were randomly partitioned into 80% training drugs and 20%
test drugs. As shown in Figure 5A, the edge set A was the training set and the edge set B
was the test set in the edge partition strategy. However, in the drug partition strategy, as
the interactions between drugs in the training set and in the test set were deleted, the drugs
in the test set are regarded as new drugs. Meanwhile, those new drugs did not appear in
the training process, which was completely new to the model. Therefore, the interactions
among training drugs were taken as the training samples, and the interactions between
new drugs and training drugs as the test samples. For example, as shown in Figure 5B,
drugs d1 to d5 were the training drugs and d6 to d8 were the test drugs. All edges (in set
A set) between the training drugs were used as the training samples, and all edges (in set
B) between the training drugs and the test drugs were used as the test samples. The drug
partition strategy can measure the performance of a predictor when new drugs appear. All
the strategies were repeated 10 times, and the average results were used to evaluate the
prediction performance of GNN-DDI.
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Accuracy (ACC), precision, recall, F1 score, AUC (i.e., area under the receiver operating
characteristic curve), and AUPR (i.e., area under the precision-recall curve) were used to
assess the performance of GNN-DDI. The receiver operating characteristic curve reveals
the relationship between true-positive rate (precision) and false-positive rate based on
various thresholds. The precision-recall curve reveals the relationship between precision
(true-positive rate) and recall based on various thresholds. These metrics are defined
as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2× Precision× Recall

Precision + Recall
(10)

where TP, FP, TN, and FN refer to the numbers of true positive samples, false positive
samples, true negative samples, and false negative samples, respectively.

3. Results and Discussion

In this section, we first introduce the GNN-DDI hyper-parameters, then compare
the performance of GNN-DDI with other existing methods in both DDI prediction sce-
narios. We also demonstrate the effectiveness of structural features learned by using the
feature extractor in GNN-DDI. Finally, through a case study we investigate the respective
substructures of a drug pair leading to a potential DDI.

3.1. Parameter Setting

To learn an optimal model of DDI prediction, we first determined the architecture of
GNN-DDI. The model consisted of 5 layers of attention-mechanism-based graph convo-
lution network in which each layer had 2 attention heads. The feature dimension of each
head was 32-dimension (32-dim), so the total feature dimension of each layer was 64-dim.
The drug feature dimension outputted from the feature extractor was 320 (64 × 5), thus the
number of neurons in the input layer of the MLP predictor was 640 (i.e., the dimension of a
drug pair). The dimension of the other three hidden layers was determined empirically. The
numbers of neurons in each of the three hidden layers were 128, 64, and 32, respectively.

With this feature extractor architecture and the MLP predictor, we performed a grid
search with an Adam optimizer [52] to tune the hyper-parameters (i.e., epoch, learning
rate, and batch size) of GNN-DDI. The epoch (i.e., the number of training iterations) was
tuned from the list of values {20, 60,100, 200, 400, 600, 1000}. The learning rate (determining
whether and when the objective function converges to the optimal values) was empirically
investigated from the list {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1}. The mini-batch strategy
(i.e., sampling a fixed number of drug pairs in each batch) was tuned from the list {50, 200,
400, 600, 1000, 2000}. We finally experimentally determined a well-trained GNN-DDI by
setting the epoch at 400, the learning rate at 0.001, and the batch size at 1024.

3.2. Results of GNN-DDI and Five Other Methods in the First Prediction Scenario

To validate the performance of GNN-DDI in the first prediction scenario (i.e., pre-
dicting the interactions of drugs within the DDI network), we compared our GNN-DDI
method with other five state-of-the-art methods: two of Vilar’s methods (named as Vilar 1
and Vilar 2, respectively) [53,54], the label propagation-based method (LP) [23], Zhang’s
method [15] and DPDDI [22]. Vilar 1 [53] identified potential DDIs by integrating a Tani-
moto similarity matrix of molecular structures with the known DDI matrix through a linear
matrix transformation. Vilar 2 [54] used drug interaction profile fingerprints (IPFs) to mea-
sure similarity for predicting DDIs. The LP method [23] applied label propagation to assign
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labels from known DDIs to previously unlabeled nodes by computing drug-similarity-
derived weights of edges within the DDI network. Zhang’s method [15] collected a variety
of drug-related data (e.g., known drug-drug interactions, drug substructures, targets, en-
zymes, transporters, pathways, indications, and side effects) to build 29 base classifiers
(i.e., KNN, random walk, matrix disturbed method, etc.), then developed a classifier ensem-
ble model to predict DDIs. DPDDI [22] constructed a graph convolution network to learn
the network structure features of drugs from the DDI network for predicting potential drug
interactions within the DDI network. In this section, all comparing methods used the edge
partition strategy to split the DDI edges into training edges and test edges.

The comparison results of GNN-DDI against the five other methods are shown in
Table 1, from which we can see that GNN-DDI achieved the best results. It outperformed
four other state-of-the-art methods in terms of AUPR, Recall, Precision and F1. GNN-DDI
achieved improvements of 8.5~22.9%, 8.9~66.8%, 13.2~42.5%, 9.4~57%, and 11.8~53.5%
against the Vilar 1, Vilar 2, LP, and Zhang methods in terms of AUPR, recall, precision,
ACC, and F1 score, respectively.

Table 1. Results of GNN-DDI and other five methods in the first prediction scenario.

Methods AUC AUPR Recall Precision ACC F1

Vilar 1 [53] 0.707 0.262 0.495 0.253 0.719 0.334
Vilar2 [54] 0.826 0.533 0.569 0.515 0.862 0.540

LP [23] 0.851 0.799 0.685 0.729 0.809 0.706
Zhang [15] 0.954 0.841 0.788 0.717 0.934 0.751

DPDDI 0.956 0.907 0.810 0.754 0.940 0.840
GNN-DDI 0.936 0.930 0.920 0.823 0.863 0.869

Although the AUC of our GNN-DDI was little lower than that of DPDDI and Zhang’s
method, and the ACC of our GNN-DDI was lower than that of DPDDI, the performance
results in terms of AUPR, recall, precision, and F1 for GNN-DDI are higher than that for
DPDDI and Zhang’s method. Zhang’s method used nine drug-related data sources, while
GNN-DDI used only the drug molecular graph. More importantly, Zhang’s method and
DPDDI can only work in the first DDI prediction scenario, that is, they predict only the
interactions between known drugs, and cannot predict the interactions between known
drugs and new drugs (i.e., the second DDI prediction scenario).

3.3. Results of GNN-DDI and Four Other Methods in the Second Prediction Scenario

In this section, we evaluated the performance of GNN-DDI in the second DDI predic-
tion scenario (i.e., predicting the interactions between known drugs and new drugs) by
using the drug partition strategy to split the drugs in the DDI network into the training
drugs and testing drugs. The new drugs did not appear in the training process. Therefore,
the drug partition strategy is able to measure the performance of prediction methods
when new drugs appear. We compared our GNN-DDI method with other four different
chemical- and biological-feature-based prediction methods. These four compared meth-
ods include two chemical-structure feature-based methods (the PubChem feature-based
method and the MACCSkeys feature-based method), the ATC feature-based method, and
the DBP feature-based method. The DBP method extracted 3334-dim structure features,
and the ATC method extracted 118-dim structure features. The PubChem feature-based
method extracted 881-dim features from the PubChem fingerprint, and the MACCSkeys
feature-based method extracted 166-dim features from the MACCSkeys fingerprint. These
molecular structure features derived from GNN-DDI, MACCSkeys, PubChem, DBP and
ATC feature descriptions of drugs were respectively concatenated to feed the MLP predictor
of GNN-DDI for DDI prediction. Figure 6 shows the AUCs and ACCs of GNN-DDI and
four other methods in the second DDI prediction scenario, from which we can see that
GNN-DDI achieved the best results.
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3.4. Effects of Using Different Feature Extraction Approaches

The GNN-DDI feature extractor consists of a five-layer GAT network to learn the latent
feature vectors of drugs. In each layer, the convolutional operation aggregates information
from its atomic neighborhood and updates the node feature for each atomic node in
a drug molecular structure graph. Through several convolutional layers, we captured
the informative features of drug chemical functional groups within the whole chemical
structure. In order to evaluate the effectiveness of the molecular structure features learned
by GNN-DDI, we compared these with two structure features derived from the PubChem
fingerprint (named the PubChem feature) and MACCSkeys fingerprint feature (named
the MACCSkeys feature), and the drug’s chemical and biological features according to
DBP and ATC. These features were respectively concatenated to feed the MLP predictor of
GNN-DDI for DDI prediction.

The comparison results are shown in Table 2, from which we can see that the structure
feature learned by the GNN-DDI feature extractor outperformed the other four features in
terms of AUC, AUPR and recall. Specifically, the structure feature learned by GNN-DDI
achieved improvements of 0.6~4.8%, 0.2~5.5%, 0.4~11.7% against the other four features
from the PubChem fingerprint, MACCSkeys fingerprint, DBP, and ATC in terms of AUC,
AUPR, recall, respectively. Although the precision, ACC, and F1 of the structure feature
learned by GNN-DDI are lower than those of the PubChem feature and MACCSkeys
feature, the structure features extracted directly from the drug molecular graph by the five-
layer GAT network in GNN-DDI can explore the specific substructures of drugs. This can
improve interpretability and reveal the underlying mechanisms of drug pair interactions.

Table 2. Comparison results of the structure features learned by GNN-DDI and other chemical and
biological features.

AUC AUPR Recall Precision ACC F1

Pubchem features 0.920 0.928 0.880 0.862 0.905 0.883
MACCSkeys features 0.930 0.924 0.879 0.864 0.901 0.882

DBP features 0.862 0.875 0.803 0.757 0.89 0.819
ATC features 0.888 0.895 0.834 0.811 0.871 0.840

GNN-DDI features 0.936 0.930 0.920 0.823 0.861 0.869

3.5. Interpretability Case Studies

In this section, we will explore the specific substructures of drugs that result in po-
tential DDIs. Different layers of graph convolutional network involved various neighbor
receptive fields of the drug molecular graph. The five k-hop latent feature vectors H(k)

Gx
of

each drug contained various sizes of sub-structures in its molecular graph. We reserved
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these k-hop latent feature vectors
{

H(k)
Gx

}K

k=1
and

{
H(k)

Gy

}K

k=1
of each drug pair from dif-

ferent layers of the feature extractor in GNN-DDI, and selected the two features with the
largest scores as the most contributing substructure features to the potential interaction of
this drug pair.

Score = MAX
(

H(k)
Gx
· H(k)

Gy
T
)

, i = 1, 2, . . . , K; j = 1, 2, . . . , K (11)

where K = 5 and “ . . . ” denotes the inner product operation. The larger the inner product
value, the greater the contribution of substructure features to the potential interaction of
this drug pair. The k-hop latent feature vector H(k)

Gx
was derived from the atomic feature

matrix H(k)
i in the drug molecular graph Gx by SAGPooling [49] (Equation (4)). The feature

weight of each atomic node γi in the pooling process represents the importance of each
node in the molecular graph, and is determined according to the topological and contextual
information of the node in the drug molecular graph Gx by SAGPooling. According to the
atomic weight γi in feature vectors H(s)

Gx
and H(t)

Gy
, we drew the weighted molecular structure

graphs of two drugs Gx and Gy to illustrate the specific substructures that contribute to
potential interaction of drug pair (Gx,Gy), and help to discover the underlying mechanisms
of DDIs.

We selected three interactions between Sildenafil and other nitrate-based drugs (Isosor-
bide mononitrate, Nitroglycerin, Amyl Nitrite) as a case study [55]. Sildenafil is an effective
treatment for erectile dysfunction and pulmonary hypertension [56]. Sildenafil was devel-
oped as a phosphodiesterase-5 (PDE5) inhibitor. In the presence of a PDE5 inhibitor, nitrate
(NOO3)-based drugs such as Isosorbide mononitrate can cause dramatic increases in cyclic
guanosine monophosphate [57] (Murad 1986), which leads to intense lowering of blood
pressure that can cause heart attacks [58].

We drew the heat map of the weighted molecular structure graphs for each drug pair
according to the atomic weight γi in feature vectors H(s)

Gx
and H(t)

Gy
(Figure 6). Each row in

Figure 7 contains a pair of drugs and the descriptions of corresponding interactions. In the
heat map, the important contributing substructures are mainly concentrated near its center
(represented by green circles). From the heat map, we can see that the specific substructure
of the nitrate group (NOO3) contributes highly to the interaction between Sildenafil and
other nitrate-based drugs (Isosorbide Mononitrate, Nitroglycerin, Amyl Nitrite).
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Figure 7. Contributions of specific substructures to drug interactions. (a) Sildenafil (k = 4) and
Isosorbide Mononitrate (k = 3). Description in DrugBank: The risk or severity of hypotension can
be increased when Isosorbide mononitrate is combined with Sildenafil. (b) Sildenafil (k = 4) and
Nitroglycerin (k = 3). Description in DrugBank: The risk or severity of hypotension can be increased
when Nitroglycerin is combined with Sildenafil. (c) Sildenafil (k = 4) and Amyl Nitrite (k = 3).
Description in DrugBank: The risk or severity of hypotension can be increased when Amyl Nitrite is
combined with Sildenafil.
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4. Conclusions

Aiming to address the problem that current DDI prediction methods are incapable
of predicting potential interactions for new drugs and always lack interpretability, we
proposed a novel method GNN-DDI to predict potential DDIs by constructing a five-layer
graph attention network (GAT) to learn k-hops low-dimensional feature representations
of each drug from its chemical molecular graph. The learned features of each drug pair
were concatenated, and fed into an MLP to output the final DDI prediction score. The
multi-layer GAT of GNN-DDI can capture different kth-order substructure functional
groups of the drug molecular graph through multi-step operations, to generate the effective
feature representation of drugs. The experimental results demonstrate that GNN-DDI
achieved superior performance in each of two DDI predicting scenarios, namely potential
DDIs among known drugs and between known drugs and new drugs. In addition, the
performance of drug features directly learned by GNN-DDI from drug chemical molecular
graphs is better than that obtained from drug chemical structure fingerprints, biological
features and ATC features, which proves the feature effectiveness derived from our method.
In the case study we selected three interactions between Sildenafil and other nitrate-based
drugs, which lead to intense lowering of blood pressure that can cause heart attacks. More
importantly, the result shows that our GNN-DDI can explore specific drug substructures
that can result in potential DDIs, helping to improve interpretability and to discover the
underlying interaction mechanisms of drug pairs.
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47. Skrbo, A.; Begović, B.; Skrbo, S. [Classification of drugs using the ATC system (Anatomic, Therapeutic, Chemical Classification)

and the latest changes]. Med. Arh. 2004, 58, 138–141. [PubMed]
48. Shi, J.-Y.; Mao, K.-T.; Yu, H.; Yiu, S.-M. Detecting drug communities and predicting comprehensive drug–drug interactions via

balance regularized semi-nonnegative matrix factorization. J. Cheminform. 2019, 11, 1–16. [CrossRef] [PubMed]
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