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Abstract

Evolutionary interactions between parasitoid wasps and insect hosts have been well studied

at the organismal level, but little is known about the molecular mechanisms that insects use

to resist wasp parasitism. Here we study the interaction between a braconid wasp (Aphidius

ervi) and its pea aphid host (Acyrthosiphon pisum). We first identify variation in resistance to

wasp parasitism that can be attributed to aphid genotype. We then use transcriptome

sequencing to identify genes in the aphid genome that are differentially expressed at an

early stage of parasitism, and we compare these patterns in highly resistant and susceptible

aphid host lines. We find that resistant genotypes are upregulating genes involved in carbo-

hydrate metabolism and several key innate immune system genes in response to parasit-

ism, but that this response seems to be weaker in susceptible aphid genotypes. Together,

our results provide a first look into the complex molecular mechanisms that underlie aphid

resistance to wasp parasitism and contribute to a broader understanding of how resistance

mechanisms evolve in natural populations.

Introduction

Evolutionary interactions with parasites and pathogens contribute to the maintenance of

genetic variation in animals [1–3]. Parasites impose strong selective pressures on their hosts,

which in turn evolve ways to resist parasitism. Despite the ubiquity of parasites in nature, there

is often measurable variation among hosts in their ability to resist parasitism [4, 5]. Factors

including costs to defense [6] and the need to defend against multiple different parasite species

[7, 8], are thought to maintain variation in resistance within host populations.

Host–parasite evolutionary interactions are predicted to be particularly intense for insect

parasitoids, because the successful development of a parasitoid depends on the death of its

host. Insect hosts have evolved a suite of molecular mechanisms for resisting parasitoids [9],

often involving the innate immune system [10, 11], and natural selection is expected to shape

these mechanisms in response to pressure from parasites. However, little is known about the

molecular basis of variation in the mechanisms that insects use to recognize and resist parasit-

oids. The majority of work in this area comes from Drosophila species, in which capacity to

evolve increased immunity against different common parasitoid threats has been
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demonstrated by experimental evolution [12]. In these studies, evolution of greater parasitoid

resistance is correlated with increasing hemocyte numbers [9, 13]. Identifying molecular

mechanisms involved in resistance across a broader variety of host–enemy interactions and

studying how these mechanisms vary within host species is critical for understanding how

insect immune systems evolve.

One well-studied example of a host–parasitoid interaction is that of aphids and their hyme-

nopteran parasitoids (Braconidae and Aphelinidae). Aphid parasitoids are solitary koino-

bionts, killing their aphid hosts only at the conclusion of parasitoid development [14]. The

aphid genome lacks elements of signaling pathways known to be important in immunity in

other insects (including the immunodeficiency signaling pathway, c-type lysozymes, peptido-

glycan recognition proteins, and most antimicrobial peptides) indicating that there may be

important differences between aphids and other insect groups in the nature of their immune

response [15]. Nevertheless, aphids vary in their ability to resist parasitism [16]. It is now rec-

ognized that much of this variation in resistance can be ascribed to the presence of facultative

symbiotic bacteria [17, 18]. In addition to this symbiont-mediated resistance, pea aphids also

deploy their own intrinsic resistance against parasitoids, and there is considerable variation

between symbiont-free aphid genotypes in the efficacy of this defense [19]. Aphids therefore

combine multiple forms of resistance, but we have little understanding as to how these differ-

ent immune responses are integrated. Understanding the molecular mechanisms of resistance

is an important first step to studying how intrinsic immunity is affected by the presence of pro-

tective symbionts.

In this study, we used transcriptome sequencing (RNAseq) to study the molecular

responses underlying host-parasitoid interactions between an aphid (Acyrthosiphon pisum)

and its braconid parasitoid (Aphidius ervi). We collected aphids from a single host-plant asso-

ciated population (‘biotype’) and cured them of any facultative symbionts, and we carried out

parasitism assays to identify genotypes that were vulnerable (susceptible) or resistant to para-

sitoids. We then used RNAseq to measure whole-genome expression of susceptible and resis-

tant genotypes in response to parasitism. First, we ask whether the intrinsic immune response

of aphids to the parasitoid is an induced or a constitutive defense: do we see differences in

expression between resistant aphids with and without parasitoids? Second, we ask whether vul-

nerable aphids are mounting an unsuccessful immune response or failing to produce a

response at all: are there differences in expression between vulnerable aphids with and without

parasitism, and/or between vulnerable and resistant aphids when suffering parasitism? Our

findings shed light on molecular mechanisms underlying natural variation in parasitoid resis-

tance that exists among closely-related individuals of the same species.

Materials and methods

Experimental insects

Aphids were collected from Medicago sativa plants in England between 2003 and 2012 (see

Table 1). All lines in this study were initiated from single parthenogenetic females and subse-

quently maintained in the laboratory feeding on Vicia faba (cultivar ‘The Sutton’). Pea aphids

reproduce by apomictic parthenogenesis under long photoperiod conditions (16h:8h light:

dark cycle) allowing us to maintain genetically-identical stocks in the laboratory for extended

periods of time. Microsatellite typing was used to verify that the lines used in experiments

were correctly assigned to the ‘Medicago sativa’ biotype [20, 21], and to ensure that the lines

used were genetically distinct from one another. We screened aphids for the seven known pea

aphid facultative symbionts using diagnostic PCR [22], and we then cleared all such symbionts

using oral administration of specific antibiotics which do not impact the aphid primary

PLOS ONE Variation in intrinsic resistance of pea aphids to parasitoid wasps: A transcriptomic basis

PLOS ONE | https://doi.org/10.1371/journal.pone.0242159 November 18, 2020 2 / 13

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0242159


symbiont, Buchnera aphidicola, as described in [23]. After antibiotic curing, at least eight gen-

erations elapsed before aphids were used in experiments in order to eliminate the possibility of

side-effects from the antibiotics. During this period, aphids were regularly screened for their

previous facultative symbionts using diagnostic PCR as above, and all aphid lines were con-

firmed to be symbiont-free eight generations after antibiotic exposure. Prior to use in experi-

ments, we maintained aphids at 14˚C in 9cm Petri dishes containing a single leaf of V. faba
inserted into 2% agar; two generations before use in experiments, aphids were moved onto

whole two-week-old V. faba plants at 20˚C.

We maintained parasitoid wasps (Aphidius ervi) as inbred stocks in 30cm3 cages at 20˚C

with a 16h:8h light:dark cycle for approximately five years. Wasps were bred on symbiont-free

pea aphids (‘stock clone’; from a genotype different to those used in experiments) feeding on

V. faba plants, and periodically provided with a 1:6 honey:water solution for nutrition in the

adult stage. Our wasp population takes approximately 10 days to develop from oviposition to

pupation. The latter is evident because the aphid becomes a ‘mummy’: a swollen, dried, golden

husk which adheres to the substrate.

Variation in intrinsic resistance to Aphidius ervi
Before use in experiments, female wasps were kept in mixed cages (so were assumed to be

mated) and given access to aphids of the stock clone to ensure they had oviposition experience.

We assessed resistance to A. ervi in 13 genetically distinct aphid lines. To do this, we placed 15

third instar aphids onto a V. faba leaf in a 9cm Petri dish, and introduced a young (between

24h and 72h) female wasp into the dish for two hours to allow parasitism (2–8 replicates per

aphid line; mean = 7.1). Previous studies have suggested that this is sufficient time to allow

most aphids to be attacked but limits self-super-parasitism (laying more than one egg per host)

[24]. Aphids were then split into groups of five and transferred to fresh dishes (with subse-

quent changes every 3–4 days). After 13 days, surviving parasitoids had pupated and aphids

were then scored as live or mummified, providing a measure of parasitoid success. We waited

until 13 days (two days longer than our standard protocol) to ensure that where we had no

mummies observed, this was not the result of delayed mummification for any reason, but gen-

uinely represented no parasitoid survival.

Table 1. Information on aphid lines used.

Genotype Name RNAseq Phenotype Location Collected Year Collected Original Symbionts Use in previous publications

C218 Susceptible Eling, UK 2010 Ham, X [20]

C215 Susceptible Lincoln, UK 2012 Reg [20]

C681 Susceptible Lincoln, UK 2012 Ham [21]

C308 Resistant Lincoln, UK 2012 Ham [20, 24]

C207 Resistant Lincoln, UK 2012 Ham, X [20, 24]

C238 Resistant Beaconsfield 2010 Ham, X [20]

C689 NA Milford on Sea 2014 Reg [25]

C233 NA Beaconsfield 2010 Ham [20]

C222 NA Whitby field 2003 Reg, Ham, Rick [20]

450 NA Windsor Ranger’s Gate 2010 None

C695 NA Milford on Sea 2014 Ham [20]

200 NA Lincoln, UK 2012 None [20]

C236 NA Beaconsfield 2010 Ham, X [20]

Symbiont abbrevations: Ham = Hamiltonella defensa, X = X-type (Candidatus Fukatsuia symbiotica) Reg = Regiella insecticola, Rick = Rickettsia.

https://doi.org/10.1371/journal.pone.0242159.t001
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Exposure to Aphidius ervi for transcriptome sequencing

We used the results of the above experiments to choose two groups of contrasting aphids (each

comprising three aphid lines): one group was vulnerable to A. ervi (genotypes C218, C215 and

C681) and the other highly resistant (genotypes C308, C207, and C238). We ensured that the

lines selected were genetically distinct based on the microsatellite sequencing [20, 21] and did

not contain pairs of highly-related genotypes within groups. In order to keep conditions as

similar as possible between treatments, we used virgin female wasps for this experiment (as

wasps are haplodipoid, this means all eggs laid will be male). Stock aphids were exposed to

wasps, and the resultant mummies were collected into size 0 gelatine capsules before hatching.

Young virgin female A. ervi were given access to stock clone aphids 24h before the experi-

ments. The timed-exposure method described above gives a good and repeatable estimate of

aphid line vulnerability to parasitoids, but it is not possible to be sure that any individual aphid

has received a parasitoid egg or that superparasitism has never occurred. In order to ensure

that each aphid contained one parasitoid egg, and so to maximize the chances that any tran-

scriptomic responses to parasitism were detected, here we conducted an observed exposure

[26]. We placed aphids in 5cm Petri dishes without leaf material and introduced a female.

When we observed an oviposition event, the aphid was removed into a fresh dish using a

paintbrush; this continued until 10 aphids of each line had been parasitized. At the end of the

exposure period, we placed aphids which had received eggs on to fresh leaves in 9cm Petri

dishes in groups of five.

Without prior knowledge of when host-encoded resistance to parasitism might act, we used

previous publications on A. ervi development to select a point at which it seemed likely a

response would be mounted, but before that response was likely to have subsided following

successful resistance. We chose 96 hours post oviposition, a point at which the larva has

emerged from the morula, but before the rupture of the serosal membrane [27, 28]. At 96h

post-oviposition, we froze aphids in groups of 10 using liquid nitrogen. Control aphids (not

parasitized) were reared and treated identically to experimental aphids but were not exposed

to wasps and were also frozen in groups of 10 using liquid nitrogen. Frozen aphids were stored

at -80˚C until RNA extraction. Note that parasitised aphids differed from control aphids not

only in the presence of a parasitoid larva, but also in their having experienced adult female par-

asitoid wasp presence 96 hours earlier, and in having suffered the small mechanical damage

caused by oviposition.

RNA isolation and transcriptome sequencing

We homogenized frozen aphids with a pestle and extracted RNA using a Trizol/chloroform

extraction with isopropanol precipitation and ethanol wash. We degraded genomic DNA with

DNase I, and we quantified and quality assessed the RNA using a bioanalyzer (Agilent Tech-

nologies 2100 Bioanalyzer System). Libraries were generated using the Illumina TruSeq

stranded mRNAseq kit using recommended conditions (including 15 cycles of PCR amplifica-

tion). Each of the 12 libraries was quality controlled using a bioanalyzer after library prep, and

was then multiplexed across 2 lanes of Illumina HiSeq2500 v4 (125 base paired end sequences)

yielding a target of 2 x 220 million reads per lane.

Aphid transcriptome assembly and analysis

We trimmed reads using fastq-mcf (-q 20) to remove low-quality ends and to eliminate any

adapter sequences from the raw reads. Trimmed reads were quality assessed using fastqc

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We then aligned raw reads

using tophat v.2.0.14 [29] implemented in python 2.7.15 to version 2.1b of the pea aphid
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reference genome [30] (https://bipaa.genouest.org/sp/acyrthosiphon_pisum/), after estimating

insert size at 164bp using picard tools v.2.14.1 (http://broadinstitute.github.io/picard). We

assigned reads with an unambiguous single alignment to genomic features and obtained read

counts using HTseq v.0.6.0, using the “union” overlap mode [31] using a modified version of

Official Gene Set v.2.1b, with some duplicated (completely overlapping) gene annotations and

unannotated rRNA genes removed from the list of genomic features [32]. We performed a

principle components analysis (PCA) using the prcomp function on read counts corrected for

library size in R v.3.4.1 to visualize patterns of expression across the 12 libraries.

We analyzed differential expression using edgeR 3.22.3 in R v.3.5.0 [33, 34]. The three resis-

tant genotypes and the three susceptible genotypes were analyzed separately. Genes with low

read counts in multiple libraries were removed from the analysis using the filterByExpr func-

tion. EdgeR uses empirical Bayes methods to estimate gene-specific biological variation,

adjusting read-count values for each gene to compensate for highly-expressed transcripts

within each library and for differences in library size across samples. We fit treatment (control

or wasp-infected) to each adjusted count-value for each gene in the aphid genome (glmQLFit

function), and identified differentially expressed genes using an empirical bayes quasi-likeli-

hood F-test (glmQLFTest function). Genes were interpreted to be significantly differentially

expressed at a false discovery rate (FDR) of< 0.1. Last, we used an Enrichment Analysis (Fish-

er’s Exact Test) of Gene Ontogeny (GO) terms to look for over- or under-represented catego-

ries of genes in our expressed gene-set in OmicsBox 1.2.4. The GO index was produced in a

previous study [35] using Blast2GO.

Wasp reads

Six of our RNAseq libraries were from samples of aphids infected with a developing wasp

larva. We took two strategies to map these reads. First, we mapped the six libraries generated

from aphids infected from wasps to version 3.1 (https://bipaa.genouest.org/sp/aphidius_ervi/)

of the recently published A. ervi reference genome [36]. We used tophat v.2.0.14 implemented

in python 2.7.15 for this mapping. Second, we mapped the reads using tophat to a combined

reference transcriptome containing transcripts from pea aphids and A. ervi (using wasp tran-

scriptome v.3.0 and pea aphid reference transcriptome v.2.1b). We used samtools v.1.10 to fil-

ter and count the number of read pairs mapped to each aphid or wasp transcript [37].

Results

We found that aphid lines varied in their resistance to A. ervi (Fig 1A), with lines ranging from

apparent total resistance (six lines) to a high proportion of aphids parasitized. From these

results we chose three lines with high resistance (lines C308, C207, and C238) and three with

low resistance (lines C218, C215 and C681) to be the focus of our transcriptomics study (Fig

1B). We obtained between 28.6 and 52.5 million read-pairs that met quality-control thresholds

per library, and on average, 70.8% of reads mapped to the pea aphid reference genome

(Table 2). Parasitized and control libraries had similar mapping rates. After removing genes

with low read counts in multiple libraries, 12,873 and 12,908 genes were analyzed for differen-

tial expression in resistant and susceptible libraries, respectively.

We also mapped reads from the libraries made from wasp-parasitized aphids to the A. ervi
reference genome [38], and to a combined transcriptome made from aphid and wasp tran-

scripts. Both approaches to this analysis showed that our sequencing yielded a low number of

wasp reads (Table 3). Wasp read counts were insufficient for an investigation into gene expres-

sion, and our results suggest that much more sequencing coverage is needed to analyze wasp

gene expression from whole aphids collected at this 96hr timepoint. However, these results
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confirm the resistance phenotypes of the 6 aphid genotypes used in the transcriptome as mea-

sured above: using both mapping approaches, more reads mapped to libraries made from

infections using susceptible aphid genotypes than from resistant aphid genotypes (Table 3).

Analysis of aphid gene expression showed evidence of differential expression of 104 genes

(at an FDR< 0.1) in response to wasp parasitism in resistant aphid lines (Fig 2A). As with all

RNAseq studies, our analysis is likely to have missed some genes that were differentially

expressed in response to wasp infection and our gene list is not comprehensive. The majority

of genes were upregulated in response to parasitism by A. ervi (99 genes upregulated vs. 5

down-regulated). In contrast, zero genes were differentially expressed at an FDR of< 0.1

among susceptible aphid genotypes in response to parasitism by wasps (Fig 2B). In addition to

a lack of significantly differentially expressed genes, the magnitude of differential expression in

susceptible genotypes was comparatively low with only 49 genes more than 4X DE (|log2 fold

change| > 2) compared to 175 in resistant aphids. Overall, patterns of gene expression are sug-

gestive of a stronger reaction to wasp parasitism in resistant compared with susceptible geno-

types (Fig 2C and S1 Fig).

Focusing just on the highly-resistant lines, we found that several putative insect immunity

genes are upregulated by pea aphids in response to wasp parasitism (S1 Table). These include

the gene hemocytin (ACYPI003478), which is released by immune cells and plays a role in cell

aggregation [39], a clip-domain serine protease (ACYPI008297) thought to activate phenoloxi-
dase [40–42], and several other proteases and inhibitors (e.g. ACYPI003807, ACYPI004531).

These results suggest that mechanisms of cellular immunity are potentially involved in the

aphid’s immune response to wasps.

We also found differential expression of a high number of genes involved in metabolism in

resistant genotypes. GO analysis of the genes that were differentially expressed by resistant

Fig 1. A. Experimental parasitism of aphid genotypes. The y-axis shows the percent of mummies from each dish

(replicate). Each replicate is shown with a grey point, with aphid genotypes along the x-axis; the mean parasitism rate for

each genotype is shown with a bar. The susceptible and resistant genotypes used in the transcriptome sequencing are

highlighted in bold and with arrows along the bottom of the figure. B. Putative life-cycle of aphid-wasp interactions.

Aphid resistance mechanisms are thought to act between 72hrs and 96hrs after wasp parasitism.

https://doi.org/10.1371/journal.pone.0242159.g001
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aphids yielded one category of differential gene expression among resistant aphids: “Biological

Process” (carbohydrate metabolic process—GO:0005975). For example, glycogen synthase
(ACYPI006932) and glycogen phosphorylase (ACYPI001125) were upregulated in resistant

aphids in response to wasp infection.

We detected virtually no significant differential expression in our analysis of susceptible

aphids infected with wasps. This could suggest that in susceptible aphid genotypes, wasp larvae

are successful at hiding from host immune recognition and are not significantly altering their

host’s metabolism at this developmental stage. Alternatively, parasitoid venom and com-

pounds released by developing larvae might suppress a response in hosts at this timepoint,

Table 2. Sequencing and alignment results.

Library: Phenotype Raw Reads (after QC) Map Rate Read pairs matched to a gene

Genotype Treatment

C215 Control Susceptible L: 39,708,146 85.9% 30,154,758

R: 39,721,089 72.9%

C215 Wasp Susceptible L: 34,999,309 76.0% 24,560,791

R: 35,001,174 63.1%

C218 Control Susceptible L: 38,636,742 93.0% 33,292,966

R: 38,635,161 72.4%

C218 Wasp Susceptible L: 51,779,471 90.2% 42,871,591

R: 51,775,863 66.5%

C681 Control Susceptible L: 36,649,115 64.0% 21,590,879

R: 36,646,793 45.8%

C681 Wasp Susceptible L: 28,571,997 73.0% 19,323,569

R: 28,570,673 57.9%

C207 Control Resistant L: 52,491,785 79.9% 38,403,061

R: 52,484,871 56.4%

C207 Wasp Resistant L: 30,753,767 87.0% 21,196,148

R: 30,753,761 66.2%

C238 Control Resistant L: 30,222,783 78.8% 21,931,994

R: 30,220,632 54.5%

C238 Wasp Resistant L: 30,735,751 85.3% 24,147,859

R: 30,734,847 64.3%

C308 Control Resistant L: 42,543,738 64.4% 25,274,856

R: 42,540,476 46.8%

C308 Wasp Resistant L: 37,546,282 85.1% 29,569,045

R: 37,543,589 68.7%

L: and R: refer to the left and right paired-end reads.

https://doi.org/10.1371/journal.pone.0242159.t002

Table 3. A. ervi mapped reads.

Library: Phenotype Reads mapped to the A. ervi reference genome Wasp read pairs in combined Aphid + Wasp transcriptome

C215 Wasp Susceptible 131,717 (0.4%) + 133,264 (0.4%) 207,776 (0.5%)

C218 Wasp Susceptible 762,515 (1.5%) + 771,306 (1.5%) 1,325,091 (1.9%)

C681 Wasp Susceptible 270,099 (0.9%) + 271,469 (0.9%) 486,838 (1.4%)

C207 Wasp Resistant 63,988 (0.2%) + 67,956 (0.2%) 224 (0.0%)

C238 Wasp Resistant 927 (0.0%) + 802 (0.0%) 211 (0.0%)

C308 Wasp Resistant 25,762 (0.1%) + 26,059 (0.1%) 33,316 (0.0%)

https://doi.org/10.1371/journal.pone.0242159.t003
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implying that the effectiveness of wasp venom varies across host genotypes. We note, however,

that there was a high level of variation among susceptible genotypes: Genotype C681, which is

phenotypically a susceptible genotype (~40% of exposed aphids became infected with wasps

and sequencing libraries revealed a relatively high level of wasp transcripts), qualitatively

expressed a pattern of gene expression similar to the three resistant genotypes (Fig 2C and S1

Fig).

Discussion

The pea aphid is an important model for studies as wide ranging as the molecular basis of phe-

notypic plasticity, ecological speciation, and host-microbe coevolution [43]. Previous studies

have characterized the pea aphid’s immune response to microbial enemies [15, 44], but little is

known about how aphids respond to parasitoid wasps—a major source of mortality in natural

populations [45, 46]. We have shown first, that pea aphids can produce an induced immune

response to the presence of the parasitoid A. ervi; and second, that the mechanisms underlying

aphid intrinsic vulnerability may vary among genotypes.

Aphids have been shown to form melanotic capsules around Sephadex beads, which are

used as a proxy for parasitoid eggs [47]. The patterns of expression in response to live wasp

parasitism which we uncover in this study suggest that resistant aphids may use these mecha-

nisms of cellular immunity to respond to wasps. For example, we identify that the gene hemo-
cytin is upregulated in resistant aphids responding to wasp parasitism. Hemocytin is released

by immune cells and thought to play a role in cell aggregation [39]; the increase in expression

of this mechanism we identify here could reflect increased proliferation of aphid immune cells

[47, 48] or altered activity of these cells. This raises an important caveat of our data, which is

that we measured gene expression in whole aphids. The transcriptional response to wasp infec-

tion is not expected to be uniform across an entire aphid, and future work would be needed to

determine how this response differs in specific cells or tissues, for example in immune cells.

We also found that resistant aphid genotypes differentially expressed genes involved in

metabolism in response to wasp parasitism. GO analysis revealed only one category of signifi-

cantly differentially expressed genes in resistant aphid genotypes: “carbohydrate metabolic

Fig 2. Transcriptome analysis. A&B. Volcano plots of resistant and susceptible genotypes. Each point in the figures represents expression of one gene in the aphid

genome. The y-axis of each plot shows the -log10 p-value for each gene based on the statistical analysis comparing control vs. wasp-infected aphids. The x-axis of each

plot shows the log2 fold change of each gene, with genes upregulated in response to wasp parasitism to the right of the figure, and those downregulated to the left. Genes

found to be statistically significantly differentially expressed (based on an FDR< 0.1) are highlighted in orange (downregulated) or blue (upregulated). The analyses for

resistant and susceptible genotypes were carried out separately and are shown in A and B, respectively. C. Principle Components Analysis (PCA) plot of library size-

corrected read counts: PC1 and PC2. This plot is based on the read counts per million of each gene across the 12 libraries. Wasp-infected samples are shown with solid

dots, and control libraries with open dots. Resistant genotypes are highlighted in orange. Arrows link the two libraries from each genotype.

https://doi.org/10.1371/journal.pone.0242159.g002
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process.” We found that genes in this category were upregulated in response to wasp parasit-

ism. Increased expression of these genes may reflect a large-scale metabolic effort on the part

of hosts to mount a costly immune response to parasitism [49]; immune costs to resistance

have been measured in pea aphids in response to natural enemies in some studies [44, 50] but

not others [19], and are likely dependent on ecological context [6, 51].

Of our ‘susceptible’ genotypes, two out of three produced little transcriptomic response to

wasp parasitism (Fig 2C and S1 Fig). This is surprising as we predicted that susceptible aphids

would experience considerable changes to gene expression [27]. It may be that these changes

are highly localized within specific tissues, and so not significant when the whole organism is

sampled, or that our 96 hour sampled point fell exactly between the action of maternal venom

following oviposition and the beginning of host manipulation by the wasp larva and/or terato-

cytes. Alternatively, or in addition, the absence of an expression response may reflect an

immune evasion or suppression strategy employed by A. ervi to overcome host defenses, as

found in other insect–parasitoid systems [10]. For example, the serosal membrane surround-

ing the egg and embryo effectively ‘hides’ some parasitoids from the host immune system [52];

alternatively, parasitoid venoms injected at oviposition may act to suppress immune system

response [53].

By contrast, one of our three susceptible genotypes (C681) produced a transcriptomic

response similar to the resistant genotypes, but nevertheless is relatively vulnerable to parasit-

ism (approximately 40% parasitism in our assays). This finding suggests that even when a tran-

scriptional response is produced it is not necessarily effective. Perhaps there is genotype-by-

genotype specificity in the aphid’s intrinsic resistance (as there is for the symbiont-mediated

resistance [24]), or perhaps the underlying mechanisms causing genotype C681 to be suscepti-

ble to wasps are different from those measured in this study. It is also important to note that

our study captured the response at a single time point, and it is possible that immunity might

act at different time points in different aphid lines. Moreover, it is almost certain that a tran-

scriptional response will change over time within an aphid individual. The snapshot approach

employed here captures one part of the aphid–parasitoid interaction, but further studies using

a time-series approach would be valuable in assessing the process of parasitoid infection.

Previous work on pea aphids has demonstrated that a significant proportion of the variabil-

ity among aphid lines in susceptibility to A. ervi is independent from the secondary symbiont

status of each clone [19]. Our results confirm this finding. By using closely-related aphid lines,

all collected from the same host-plant associated biotype, we further show that aphids within a

biotype vary in parasitoid resistance. The intrinsically-resistant lines used in this study origi-

nally harbored strains of the secondary symbiont Hamiltonella that provide specific protection

against A. ervi [24, 54]. Aphids are therefore employing multiple forms of protection against

parasitoid wasps simultaneously. Experiments in which protective Hamiltonella was artificially

introduced into symbiont-free aphids imply that the two forms of protection are redundant,

since intrinsically vulnerable aphids are capable of complete resistance in the presence of the

symbiont [18, 54]. However, it is possible that maintaining intrinsic resistance is important

under specific circumstances when symbiont-mediated resistance might fail, for example, at

high temperatures [55].

Our results provide the first steps towards a functional understanding of aphid intrinsic

resistance to parasitoids and provide potential targets for functional investigations of the

aphid’s response to parasitoids. We also demonstrate that RNAseq provides a viable method

for investigating the genetic basis of phenotypic variation between individuals (or as here,

asexual lines). In the light of previous studies highlighting the role of symbionts in aphid

immunity, future work could explore interactions between innate and symbiotic defenses and

the reasons why the two persist alongside one another. More broadly, aphids are important
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model organisms for understanding community interactions [46, 56]. Knowledge of the

molecular mechanisms underlying natural enemy resistance could provide a route to linking

observed host–parasitoid interactions in the field to genetic variation in hosts.

Supporting information

S1 Fig. Additional Principle Components Analysis (PCA) plots of library size-corrected

read counts: PC3. These plots are based on the read counts per million of each gene across the

12 libraries, showing PC3 with the first two principle components. Wasp-infected samples are

shown with solid dots, and control libraries with open dots. Resistant genotypes are

highlighted in orange. Arrows link the two libraries from each genotype.

(TIF)

S1 Table. A list of the statistically significantly differentially expressed genes in resistant

genotypes.

(XLSX)

S1 Data. Raw data associated with the experimental parasitism of aphid genotypes assay.

Aphid genotype is listed under ‘Clone’ in column A. The number of aphids alive at the start of

data collection (Live_day_2) and at the end of data collection (Live_day_13) are listed in col-

umns B and C, and the number of parasitoid mummies (Mummy_day_13) is listed in column

D. Each row represents a single experimental replicate.

(XLSX)

S1 File. A file specifying the commands used throughout the RNAseq analysis.

(DOCX)
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