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ABSTRACT The Norovirus genus contains important human pathogens, but the role
of host pathways in norovirus replication is largely unknown. Murine noroviruses
provide the opportunity to study norovirus replication in cell culture and in small
animals. The human norovirus nonstructural protein NS1/2 interacts with the host
protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA
interaction is unexplored. Here we report decreased murine norovirus replication in
VAPA- and VAPB-deficient cells. We characterized the role of VAPA in detail. VAPA
was required for the efficiency of a step(s) in the viral replication cycle after entry of
viral RNA into the cytoplasm but before the synthesis of viral minus-sense RNA. The
interaction of VAPA with viral NS1/2 proteins is conserved between murine and hu-
man noroviruses. Murine norovirus NS1/2 directly bound the major sperm protein
(MSP) domain of VAPA through its NS1 domain. Mutations within NS1 that disrupted
interaction with VAPA inhibited viral replication. Structural analysis revealed that the
viral NS1 domain contains a mimic of the phenylalanine–phenylalanine-acidic-tract
(FFAT) motif that enables host proteins to bind to the VAPA MSP domain. The
NS1/2-FFAT mimic region interacted with the VAPA-MSP domain in a manner similar
to that seen with bona fide host FFAT motifs. Amino acids in the FFAT mimic region
of the NS1 domain that are important for viral replication are highly conserved
across murine norovirus strains. Thus, VAPA interaction with a norovirus protein that
functionally mimics host FFAT motifs is important for murine norovirus replication.

IMPORTANCE Human noroviruses are a leading cause of gastroenteritis worldwide,
but host factors involved in norovirus replication are incompletely understood. Mu-
rine noroviruses have been studied to define mechanisms of norovirus replication.
Here we defined the importance of the interaction between the hitherto poorly
studied NS1/2 norovirus protein and the VAPA host protein. The NS1/2-VAPA inter-
action is conserved between murine and human noroviruses and was important for
early steps in murine norovirus replication. Using structure-function analysis, we
found that NS1/2 contains a short sequence that molecularly mimics the FFAT motif
that is found in multiple host proteins that bind VAPA. This represents to our knowl-
edge the first example of functionally important mimicry of a host FFAT motif by a
microbial protein.
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Noroviruses (NoVs) are nonenveloped positive-sense single-stranded RNA viruses
that primarily infect the gastrointestinal tract. They are a leading cause of gastro-

enteritis worldwide (1–3). Noroviruses are divided into genogroups GI to GVI. Among
those genogroups, GI, GII, and GIV viruses cause human disease and GV encompasses
more recently discovered rodent NoVs, including murine norovirus (MNoV) (4). As
MNoVs replicate robustly in mice and cells and can be studied via mutagenesis of
infectious molecular clones, they serve as a powerful model for molecular studies of
norovirus replication, tropism, and pathogenesis (5, 6).

The norovirus genome encodes nine known proteins: seven nonstructural (NS)
proteins derived by proteolysis of the open reading frame (ORF) 1 polyprotein (7) and
two structural proteins, VP1 and VP2, derived from ORFs 2 and 3, respectively (6). MNoV
encodes virulence protein VF1 from ORF 4, which overlaps ORF 2 and has not been
found in human noroviruses (8). The N-terminal protein in the norovirus polyprotein,
NS1/2, comprises three domains: NS1, NS2, and a putative transmembrane domain (9).
The MNoV NS1 domain in isolation has a structured region preceded by an unstruc-
tured domain (9, 10). A single aspartic acid-to-glutamic acid difference within NS1
confers an altered conformation within the NS1 structured domain (10) and is associ-
ated with enteric tropism and the capacity of MNoV to persistently infect and be shed
from the mouse intestine (11). Ectopically expressed NS1/2 from GI human norovirus
(NS1/2GI) disrupts the Golgi apparatus and vesicular trafficking (12, 13) and is reported
to interact with the host protein VAMP-associated protein A (VAPA) (12). The role of
VAPA interactions with NS1/2 during viral replication has not been defined.

VAPA is a type II endoplasmic reticulum (ER)-resident protein that is conserved in
eukaryotes (14). VAPB is structurally related to VAPA (15). VAPA comprises a major
sperm protein (MSP) domain, a coiled-coil domain (CCD), and a transmembrane do-
main. Initially found to bind to proteins within the SNARE superfamily of vesicle
trafficking proteins (16–18), VAPA also binds a variety of client interacting proteins (14).
Importantly, through its cytosolic MSP domain, VAPA interacts with client proteins
primarily involved in lipid trafficking (14, 19–23). These client proteins interact with the
VAPA-MSP domain via a phenylalanine–phenylalanine-acidic-tract (FFAT) linear motif
(22, 24–27).

VAPA performs important functions during infection as both microbes and antimi-
crobial host molecules target VAPA and its client proteins. VAPA and VAPB enhance the
replication of hepatitis C virus (28, 29), rhinoviruses (30), tombusvirus (31, 32), and the
intracellular bacteria Chlamydia trachomatis (33, 34). Some of these microbes encode
molecules that interact with VAPA and VAPB and/or their client proteins, including
hepatitis C virus proteins NS5a and NS5b (28, 29), tombusvirus p33 (31, 32), and
C. trachomatis IncD (33, 34). Several observations support the idea that VAPA and VAPA
client proteins assist in organization of membranous structures critical for virus repli-
cation (35, 36), possibly by manipulating the lipid composition of these membranes
(30–32). Furthermore, VAPA binds to proteins regulated by interferon, interferon-
induced transmembrane protein 3 (37), and viperin (38, 39), suggesting that VAPA may
be involved in antiviral responses.

Here we found that VAPA enhances MNoV replication and defined the molecular
basis of NS1/2-VAPA interactions. Disruption of VAPA in permissive cells delayed MNoV
replication due to effects occurring after viral entry but prior to synthesis of viral
minus-sense RNA. VAPB was also important for MNoV replication and bound MNoV
NS1/2. The interaction between NS1/2 and VAPA was conserved between human
norovirus and MNoV NS1/2 proteins. The NS1 domain of MNoV NS1/2 interacted with
the MSP domain of VAPA. This interaction occurred independently of other cellular or
viral proteins and mapped to a short region in the NS1 domain sharing features of the
FFAT motif found in host proteins that also interact with the VAPA MSP domain. NS1
engaged VAPA MSP domain residues crucial for interaction with FFAT motifs found in
VAPA client proteins. Mutagenesis of conserved amino acids in NS1 to abrogate VAPA
interaction impaired recovery of infectious MNoV after transfection of permissive cells
with plasmids encoding the viral genome. These data indicate that NS1/2-VAPA binding
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is critical for efficient MNoV replication and that this occurs through viral mimicry of the
host FFAT motif by amino acids in the NS1 domain of the nonstructural NS1/2 protein.

RESULTS
Murine norovirus replication is diminished in VAPA-deficient cells. To test the

hypothesis that MNoV replication involves VAPA, we genetically engineered RAW 264.7
cells deficient in VAPA expression (here Vapa�/�) using clustered regularly interspaced
short palindromic repeats (CRISPR)-Cas9. In two single-cell cloned Vapa�/� cell lines,
3A11 and 1E6, frameshifts in the first 37 nucleotides (see Fig. S1A in the supplemental
material) of coding sequence resulted in loss of VAPA protein expression (Fig. 1A).
Vapa�/� cells infected with MNoV strain CW3 had 2.2-fold-fewer (1E6) or 4.0-fold-fewer
(3A11) NS1/2-positive cells by flow cytometry at 18 h postinfection (hpi) than wild-type
(WT) cells (Fig. 1B and C). We observed lower levels of replication of MNoV strains CW3
and CR6 in both Vapa�/� cell lines (Fig. 1D; Fig. S1B). Reconstituting VAPA production
in Vapa�/� cells via lentivirus transduction (Fig. 1E) increased the percentage of cells

FIG 1 Murine norovirus replication in Vapa�/� cells is diminished. (A) VAPA Western blot of Vapa�/� cell
lines. (B) Representative infection frequency of MNoV-CW3 in Vapa�/� cells, measured by FACS analysis of
intracellular NS1/2 (18 h postinfection; MOI of 5.0). (C) Same as panel B. Data represent results of combined
experiments (repeated-measure two-way ANOVA, Dunnett posttest; n � 3). (D) MNoV strain CW3 growth
in Vapa�/� and Vapa�/� cell lines (MOI, 0.05 [left] or 5.0 [right] PFU/cell). Data represent results of
repeated-measure one-way ANOVA and the Dunnett posttest (n � 6). (E) Western blot of Vapa�/� or
Vapa�/� cell lines lentivirally transduced with FLAG-GFP or FLAG-Vapa. (F) Infection frequency in Vapa- or
GFP-transduced cells determined as described for panel B (two-way ANOVA, Sidak posttest; n � 9). (G) CW3
growth in Vapa- or GFP-transduced cells. Data represent results of repeated-measure two-way ANOVA and
the Dunnett posttest (n � 5). For G the asterisks refer to a comparison to the time-matched �/� GFP
control.
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expressing NS1/2 at 18 h postinfection by 2.7-fold (3A11) or 4.1-fold (1E6) compared to
transduction with green fluorescent protein (GFP) (Fig. 1F). Expression of VAPA, but not
GFP, rescued viral replication in Vapa�/� cells (Fig. 1G). Because VAPA deficiency
incompletely blocked MNoV replication, we considered the possibility that VAPB might
compensate for VAPA function. We found that VAPB was also important for MNoV
replication (Fig. S1C). We were unable to efficiently isolate cell lines containing out-of-
frame mutations in both VAPA and VAPB to directly test the possibility that these two
proteins might compensate for each other (not shown). Furthermore, we were unable
to test the role of VAPA in mice as mutation of Vapa led to embryonic lethality (Fig. S1D
to F). We conclude that MNoV infectivity was enhanced by VAPA expression and chose to
examine the mechanism responsible in more detail for VAPA.

VAPA is important for an early postentry step in norovirus replication. To
investigate the role of VAPA in MNoV replication, we analyzed nonstructural protein
expression by assessing NS1/2 protein levels in infected cells by Western blotting.
Infected Vapa�/� cells expressed lower levels of NS1/2 protein at 4 and 6 hpi (Fig. 2A),
with the difference diminishing later in infection. This supports the notion of a role for
VAPA in early events of MNoV replication. Because VAPA is associated with efficient
entry of an enveloped virus (37) as well as with the function of endosomes (19, 37, 40),

FIG 2 Murine norovirus replication in RAW 264.7-Vapa�/� cells is impaired early in the viral life cycle. (A)
Western blot of NS1/2 in Vapa�/� and Vapa�/� (3A11) cell lines (MOI of 5). (Right panel) Combined
densitometry data from multiple experiments performed on film exposures for each time point within the
linear range of assay (n � 2 to 4) (unpaired t test, means compared to Ho � 100). (B) NS1/2 Western blot
after electroporation of viral RNA (vRNA) into Vapa�/� and Vapa�/� 3A11 cells (representative, n � 3 to 5).
(Middle panel) Vapa�/� and Vapa�/� cells were transfected equivalently with pMAX-GFP. (Right panel)
Combined densitometry data determined as described for panel A (n � 3 to 5). (C) Viral-strand-specific
quantitative PCR for negative strand (left) and positive strand (right) over time in infected Vapa�/� and
Vapa�/� 3A11 cells (MOI of 5; n � 3; two-way ANOVA).
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through which MNoV likely passes to establish infection (41–43), we tested whether
impaired viral entry in Vapa�/� cells accounted for decreased NS1/2 production and
viral replication. We reasoned that transfection of viral RNA would bypass any effect of
VAPA on viral entry and uncoating. After electroporating purified viral RNA into cells,
we continued to detect decreased NS1/2 levels in Vapa�/� cells (Fig. 2B), despite
observing no difference in transfectability as measured by plasmid-driven GFP expres-
sion (Fig. 2B, middle panel). These data indicate that VAPA plays a role in viral protein
expression downstream of viral entry.

After the viral RNA accesses the cytoplasm, NS1/2 protein can be produced either by
translation of virion-derived plus-sense viral RNA or by transcription of plus-sense viral RNA
from newly synthesized minus-sense RNA. Using strand-specific reverse transcription-
quantitative PCR (RT-PCR) (44), we observed delayed accumulation of both negative-
sense and positive-sense MNoV RNA in the Vapa�/� 3A11 (Fig. 2C) and 1E6 (Fig. S2) cell
lines, indicating that production of NS1/2 is impaired prior to synthesis of new viral
minus-sense RNA. Collectively, these observations support the notion of a role for VAPA
downstream of viral RNA delivery into the cytosol but upstream of minus-sense viral
RNA synthesis.

NS1/2 interaction with VAPA is conserved among norovirus strains. Prior work

showed that VAPA interacts with GI human norovirus NS1/2 protein (NS1/2GI) (12). To
test if VAPA interaction with NS1/2 is conserved across genogroups and species
boundaries, we engineered MNoV to express a FLAG tag in NS1/2 (nucleotide 383) and
also studied a previously described virus with a FLAG tag in NS4 (nucleotide 2600)
(Fig. S3A) (45). We selected NS4 for this experiment as it is known to bind NS1/2 (45).
Both MNoV-NS1/2FLAG and MNoV-NS4FLAG replicated similarly to wild-type virus
(Fig. S3B). FLAG-tagged viral proteins of appropriate molecular mass were expressed
during infection (Fig. 3A, top left). As expected, virus-derived FLAG-NS1/2 and FLAG-
NS4 localized with NS7, a marker for the viral replication complex (Fig. S3C) (46). Having
validated the use of FLAG-tagged viruses to study replication, we infected the BV2
microglial cell line with MNoV-NS1/2FLAG and MNoV-NS4FLAG. Both FLAG-NS1/2 and
FLAG-NS4 coprecipitated with VAPA but not NS7 or GAPDH (glyceraldehyde-3-
phosphate dehydrogenase) (Fig. 3A, bottom). Thus, NS1/2, either independently or
together with NS4, interacts with VAPA (45).

To test for direct NS1/2-VAPA interaction independently of the presence of other
viral proteins, we assessed NS1/2 interaction with VAPA by mammalian 2-hybrid (M2H)
analysis. In this assay, interaction between a “bait” protein and a “prey” protein
generates a luciferase signal. As previously reported (12, 23, 47), we detected VAPA
interaction with itself, the host protein oxysterol-binding protein 1 (OSBP), and human
norovirus NS1/2GI, validating use of M2H analysis as an approach to assess VAPA
interactions (Fig. 3B). NS1/2MNoV from either MNoV strain CW3 or MNoV strain CR6
interacted with VAPA (Fig. 3B). Of interest, NS1/2 also interacted with VAPB (Fig. 3B).

NS1/2 interacts with FFAT-binding residues in VAPA MSP domain. Many VAPA

protein-protein interactions occur between the VAPA MSP domain and host cell
proteins containing FFAT motifs. Structure-function analyses of FFAT-VAPA interactions
support a model in which FFAT motifs from VAPA client proteins rest within a groove
present on the surface of the VAPA-MSP domain (24–26). Within this groove, VAPA
residues K50, K52, K94, M96, and K125 are critical for interaction with FFAT motifs. To
test if these residues also engage NS1/2, we introduced the following mutations into
VAPA: K50E/K52E, K94A/M96A, and K125E/R127E (Fig. 4A). Each of these mutation pairs
decreased VAPA interaction with NS1/2 (Fig. 4A) as measured by M2H analysis. To test
if NS1/2 interacts with sets of positively charged residues elsewhere in VAPA, we
mutated additional sites in VAPA selected to have the sequence (H/R/K)X(H/R/K).
Mutations K161E/H163E, H195E/R197E, and R202E/R204E had no effect on the NS1/2-
VAPA interaction (Fig. 4A). We conclude that the NS1/2 interaction specifically required
positively charged residues within the VAPA MSP domain.
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In work presented below, we found that the NS1 domain of NS1/2 is required for
NS1/2-VAPA interactions. To map the physical interactions between NS1 and the
VAPA-MSP domain, we used nuclear magnetic resonance (NMR) to analyze the chem-
ical shift perturbations of the 15N-labeled VAPA-MSP domain (M8 –M132 of VAPA)
titrated with increasing amounts of unlabeled NS1 (S28 –R114 of NS1/2). This analysis
revealed interactions between NS1/2 and four groups of residues on VAPA (Fig. 4B;
K52–T54, C60 –N64, K92–V97, and D123–L126). These groups of residues all mapped to
the FFAT binding groove on a positively charged surface of the MSP domain. Further-
more, the VAPA residues that bind NS1/2 coincide with the FFAT-motif interaction
surface on the MSP domain (24, 25). Using the same experimental approach, we did not
observe any interactions of NS1 with the isolated coiled-coil domain (P133–S226 of
VAPA; data not shown).

We independently verified the role of the VAPA residues identified above in NS1/2-
VAPA interactions using M2H analysis (Fig. 4A). To this end, we replaced selected amino
acids in the VAPA MSP domain with either glutamate or alanine and tested for the

FIG 3 NS1/2 interactions with VAPA are conserved between norovirus strains and occur during infection.
(A) BV2 cells were infected with NS1/2-FLAG or NS4-FLAG MNV for 8 h (MOI of 10 TCID50/cell). FLAG
pulldown was performed on lysates, and immunoblotting was performed with the specified antibodies.
M, molecular marker. (B) M2H interaction of NS1/2GI, NS1/2MNoV (CR6 and CW3), OSBP, and VAPA with
VAPA or VAPB (bottom) (one-way ANOVA, Dunnett posttest; fold change data are shown on the right;
n � 3). fluc, firefly luciferase; Rluc, Renilla luciferase.
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interaction of these mutant molecules with NS1/2. No interaction was detected with
glutamate or alanine substitutions at positions V51, K52, T54, K94, and K125 (Fig. 4C and
D). No interaction occurred after mutation of R62 to glutamate, but an interaction was
present with alanine at this site (Fig. 4C). At positions K50, T53, V61, N64, M96, and R127,
however, we observed interaction after replacing those residues with either glutamate or

FIG 4 NS1/2 binds FFAT-interacting residues in MSP domain of VAPA. (A) M2H interaction of NS1/2MNoV

with VAPA mutants. (B) Chemical shift perturbations of amide resonances upon unlabeled-NS1CW3 titration
into 15N-labeled VAPA MSP. The horizontal broken line represents the threshold. (C) M2H analysis of
additional single-residue mutant VAPA. Designations of residues interacting with FFAT are underlined
(one-way ANOVA, Dunnett posttest; fold change data are shown at the top; n � 3). (D) Murine VAPA MSP
domain (PDB 2CRI). Pink highlighting indicates residues that disrupted the NS1/2-VAPA interaction in M2H
analysis when mutated; mutations in cyan residues did not disrupt interaction. (E) Multiple alignment of
VAPA and VAPB MSP domains from human (Hs) and mouse (Mm). Residues indicated with a black character
differ from consensus data. Red asterisks mark residues necessary for interaction in M2H analysis, and
triangles mark residues that shifted in NMR during NS1/2 titration.
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alanine (Fig. 4C and D). Notably, the residues within the VAPA-MSP domain that are
necessary for interaction with NS1 are conserved in VAPB (Fig. 4E).

Residues 47 to 54 of murine norovirus NS1 are necessary for interaction with
VAPA. While the NS2 domain is well conserved within the norovirus genus, NS1 is not
(Fig. 5A). Accordingly, we predicted that the conserved NS2 domain contributed to the
NS1/2 interaction with VAPA. Surprisingly, the MNoV NS1 domain containing residues
1 to 131 was sufficient to interact with VAPA whereas the NS2 domain did not interact
(Fig. 5B). To define the specific NS1 residues interacting with VAPA-MSP, we analyzed
the chemical shift perturbations of the NMR spectra of 15N-labeled NS1 (S28 –R114 of
NS1/2) with increasing amounts of unlabeled VAPA (M8 –S226 of VAPA). The largest
perturbations in NS1 from both the CR6 and CW3 strains of MNoV were observed for
a core of interacting residues centered on Y47–Q53 (YMTPPEQ) (Fig. 6A and Fig. S4A).
A longer sequence, encompassing residues I45 to A61, showed consistent but smaller
perturbations (Fig. 6A and Fig. S4A). There are no observable amides in prolines; hence,
no data were available for P50, P51, and P57.

To test the importance of this core of interacting residues, we carried out experi-
ments with three mutant forms of NS1, namely, NS1-CR6M48G, CW3T49G, and CW3E52K.
The heteronuclear single-quantum coherence (HSQC) spectra obtained for the mutants
were similar, indicating that these mutations did not destabilize tertiary structures (data
not shown). NS1-CW3T49G and CW3E52K mutations decreased binding to VAPA to
undetectable levels, while NS1-CR6M48G interacted with VAPA (Fig. 6A and Fig. S4B).
Within the NS1 domain, the VAPA interacting residues are predominantly within the
segment K26 –P57, which shows a highly dynamic conformation in isolated NS1 (10).
The last few interacting residues of the core residues of NS1 that interact with VAPA are
in the structured domain of NS1 (G58 –R114) (10).

Murine norovirus NS1 contains a mimic of host FFAT domains. The FFAT motif
is responsible for interactions of host proteins with the MSP domain of VAPA. We
identified residues 40 to 54 as the domain of NS1 which interacts with the MSP domain
of VAPA. Thus, we compared this region of NS1 with FFAT motifs. Generally, FFAT motifs
contain a core bulky aromatic residue flanked by acidic residues (22, 27). Correspond-
ingly, residues 40 to 54 of NS1/2 contain a bulky aromatic (Y47) flanked by acidic
residues E40, E42, D43, E44, E52, and E54 (Fig. 6B). Interestingly, this sequence is
conserved across MNoV strains (Fig. 6B and Fig. S4C), though positions 45, 46, and 48
are variable. The strong conservation of certain amino acids in this region suggested
that this motif has functional importance.

FIG 5 A poorly conserved NS1 domain within NS1/2MNoV interacts with VAPA. (A) Alignment of NS1/2
from representative strains from each norovirus genogroup. %ID, percent identity. (B) M2H analysis of
full-length or domain truncations of NS1/2MNoV (CR6) with VAPA (one-way ANOVA and Dunnett posttest;
fold change data are shown at the top; n � 3).
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To test which residues within this domain contribute to interaction with VAPA, we
introduced single-residue mutations and assessed their effect by M2H analysis. For
positions in the N-terminal acidic segment, mutations E40A, E40K, E42A, E42K, D43A,
D43K, E44A, and E44K blocked NS1/2-VAPA interactions, while S41G maintained a
detectable interaction (Fig. 6C). Within the FFAT-like core segment, Y47A, Y47G, T49A,
and T49G ablated NS1/2 interactions with VAPA. Residues at positions 45, 46, and 48 are
variable across MNoV strains (Fig. 6B and Fig. S4C). To test the function of amino acids
in these positions, we introduced variants observed in other MNoV strains, including V45A,
V45I, N46C, N46D, M48A, and M48L, as well as variants not observed in MNoV isolates,
including V45G, N46G, M48D, M48I, and M48G. Mutations at these positions did not disrupt
interactions, suggesting that the interaction is preserved among variable sequences in
these positions across strains (Fig. 6C). For C-terminal acidic residues, E52K mutation
disrupted the interaction, but E54K maintained the interaction. Additionally, mutations
outside this region, including H69L, D121G, and D131G, did not prevent interaction
(Fig. 6C).

In summary, the S40-E54 region of NS1 mimics the host FFAT motif and serves as the
basis for interaction with the VAPA MSP domain based on the following findings: (i) the
order and chemical nature of the amino acids mimic those of the FFAT motif (acidic,
bulky aromatic, and then acidic); (ii) each of those acidic or bulky aromatic amino acids
is necessary for binding VAPA; (iii) this NS1 region interacts with the same region of
VAPA which binds to FFAT motifs in host proteins; and (iv) these critical amino acids are
conserved across norovirus strains.

NS1/2-VAPA interactions are required for recovery of murine norovirus from
infectious clones. We used an infectious molecular clone of MNoV to introduce

FIG 6 The N-terminal segment of NS1-MNoV interacts with VAPA. (A) Chemical shift perturbations of
amide resonances upon titration of unlabeled VAPA into 15N-labeled NS1-CR6 and CR6M48G. The
horizontal broken line represents the threshold. Purple residues are indicated as described for panel B.
(B) Sequence logo of FFAT-like amino acid sequence of NS1/2 derived from BLAST alignment (Fig. S4C).
The font size for each amino acid is proportional to percent conservation at each position. Residues
exhibiting greater variability across MNoV strains are highlighted with arrows (colored purple here). (C)
M2H interaction with NS1/2 substitutions (NS1/2, bait, VAPA, prey). Residues 69, 121, and 131 are not
predicted to interact with VAPA. Purple residues are indicated as described for panel B (one-way ANOVA,
Dunnett posttest; fold change data are shown at the top; n � 3).
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mutations and to determine the importance of the NS1/2-VAPA interaction and the
specific amino acids in the NS1/2 FFAT-like domain required for MNoV growth. Muta-
tions were introduced in a plasmid encoding the CR6 viral genome, and recovery of
infectious virus was assessed after transfection of the plasmid into permissive cells. We
noticed three patterns of recovery of infectious virus in these experiments (Fig. 7A): (i)
some NS1/2 mutations had no discernible effect on virus recovery (V45G, V45A, V45I,
N46D, M48A, M48L, H69L, D121G, and D131G); (ii) some NS1/2 mutations resulted in
variable recovery (S41G, N46G, M48I, M48D, and E54K); (iii) some NS1/2 mutations
completely eliminated virus recovery (E40A, E40K, E42A, E42K, D43A, D43K, E44A, E44K,
Y47G, Y47A, M48G, T49G, T49A, and E52K). We saw similar patterns of virus recovery
after insertion of mutations into NS1/2 in the CW3 genome, with the following
exceptions: NS1/2 mutations S41G, N46C, M48I, M48D, and E54K resulted in consistent
recovery of virus; E40A and D43A mutations resulted in variable virus recovery; I45G
mutation completely prevented virus recovery (Fig. S5).

Importantly, this mutational analysis of the NS1 domains of two strains of MNoV
revealed a strong correlation between mutations that perturbed VAPA interaction
(Fig. 7B, top panel) and those which diminished recovery of virus (Fig. 7B, bottom two
panels). Side chains for residues that were critical for recovery of virus primarily mapped
to a sequence showing highly dynamic behavior in free NS1 and a few N-terminal
residues of the NS1 structured domain (10) (Fig. 7C). The specificity of the relationship
between side chain and function within this region is strikingly revealed by comparing
the role of the tyrosine at position 47, which was important for virus recovery, and the

FIG 7 NS1/2 interaction with VAPA enhances recovery of murine norovirus from infectious clones. (A)
Recovery titers of mutants of MNoV strain pCR6. Data represent passage 1 titers (n � 7 to 20). (B)
Summary of interaction of NS1/2 mutants with VAPA in M2H analysis, and recovery of virus from
infectious clones for CW3 and CR6 NS1/2 mutants. (C) Molecular surface-and-ribbon diagram of solution
structure of NS1-MNoV (PDB 2MCD [10]) with viable (black) and nonviable (red) mutants.
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immediately adjacent methionine at position 48, where multiple amino acid substitu-
tions were tolerated.

DISCUSSION

In this report, we define the importance of the VAPA host protein and its interaction
with viral nonstructural protein NS1/2 in replication of MNoV. We confirmed the
previously identified interaction between a human norovirus NS1/2 protein and VAPA
(12) and found that this interaction is shared with the NS1/2 proteins of two MNoV
strains. Using a variety of approaches, including analysis of the interaction of the
proteins in vitro and in cells, we delineated the structural basis for the interaction
between VAPA and NS1/2 and used these data to test for the importance of specific
amino acids in NS1/2 for viral replication and for the interaction between VAPA and
NS1/2. These studies support the concept that VAPA is a proviral host protein for MNoV
infection and that interaction between NS1/2 and VAPA is important for viral replica-
tion. Remarkably, the MNoV NS1 domains appear to mimic host VAPA-binding proteins
through the conservation of a region that mimics host FFAT domains present in VAPA
MSP domain-interacting proteins.

Norovirus mimicry of host FFAT motifs. Mimicry of host molecules and motifs is
a pervasive evolutionary theme enabling microbes to hijack host processes (48). While
efforts have been made to predict mimicry on a large scale (49), detecting structural
and/or functional domain mimics requires validation through detailed studies of indi-
vidual microbial molecules. Other microbial proteins involved in targeting VAPA mim-
icry via a FFAT motif have not been reported. It will be interesting to determine
whether FFAT domain mimicry is a common strategy for microbial proteins that target
VAPA. If so, small molecules that target this interaction surface may have antiviral or
antimicrobial properties for multiple microbes that similarly bind VAPA. In this regard,
it is important that FFAT motifs tolerate variation at many positions (22, 27), are
relatively short, and are unstructured in solution (24), potentially enabling viruses or
other organisms to evolve strategies to target VAPA. It is interesting that much of the
region of MNoV NS1/2 that contains the FFAT mimic is unstructured in the purified NS1
domain (10). It seems possible that the interaction of these domains with the MSP
domain of VAPA is somehow enhanced by the unstructured nature of this region.

The greatest similarity of the MNoV NS1/2 sequences to host FFAT motifs was
identified in the N-terminal and C-terminal portions of the motif. The core sequence
was less similar, notably lacking a phenylalanine followed by D/E and instead encoding
a tyrosine without a flanking acidic residue. The third position of host FFAT motifs (the
second of the two F residues, which define the motif in host proteins) tolerates a wide
range of residue substitutions without loss of function. Similarly, both NMR experi-
ments and M2H experiments performed with the NS1 M48G mutant have shown
consistent tolerance of variability at this site. Nonetheless, at the structural level, the
mode of binding mode of NS1/2 to VAPA showed remarkable similarity to the binding
of host FFAT motifs to VAPA, for example, by interaction with specific VAPA amino acids
in the MSP domain. It is therefore interesting that the core portions of host and
norovirus FFAT motifs differ in some regards, suggesting that there may be specific
properties of the interaction that are unique to the viral FFAT motif. Future examination
of the molecular basis of the interaction between human norovirus NS1/2 and VAPA
and of the conservation of relevant amino acids across norovirus genogroups and
strains will be useful and interesting.

Role of VAPA in norovirus replication. Importantly, while we studied VAPA in
detail, we also found that the related VAPB protein plays a role in MNoV replication and
binds NS1/2. It seems possible that these two proteins play similar roles in NoV
replication. For VAPA, it is clear that the stages of viral replication after entry and before
minus-sense viral RNA synthesis are affected by VAPA. Nevertheless, our work did not
reveal the mechanism by which VAPA participates in the viral life cycle. We have
considered two possibilities (not mutually exclusive) for the function of the NS1/2-VAPA
interaction at this early stage of viral replication. First, the NS1/2-VAPA interaction could
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localize NS1/2 to the ER in order to initiate formation of the membranous viral
replication compartment. Notably, the advantage afforded by direct interactions of viral
proteins with VAPA and VAPB proteins has been reported for hepatitis C virus (28, 29),
which also required rearrangements of intracellular membranes to create a replication
complex. MNoV NS1/2 is associated with the ER when expressed independently of
other viral proteins (46, 50), and VAPA is an ER-resident protein, suggesting the
possibility of a role for VAPA in NS1/2 localization. It is notable that the NS1 domain that
contains the FFAT motif mimic would be the first portion of the polyprotein synthesized
from viral plus-sense RNA and might therefore contribute to coordination of initial
steps of viral replication at the ER prior to synthesis and processing of the rest of the
viral polyprotein.

Second, it is also conceivable that the interaction of NS1/2 with VAPA alters lipid
metabolism through competition for the interactions between VAPA and VAPA client
proteins that also have FFAT domains. In this regard, it is not known whether any of the
specific processes carried out by VAPA client proteins are important for enhancing or
inhibiting norovirus replication. The methods required to address this issue are likely to
be complex, since VAPA interacts with multiple client proteins such as OSBP and
ceramide transfer protein (CERT) and is involved in a range of processes in the cell,
including nonvesicular lipid transfer (20, 23, 51) and lipid metabolism (51, 52), and is
present at membrane contact sites (53–57). Nevertheless, the conservation of a struc-
tural motif related to the FFAT motifs found in proteins that interact with the MSP
domain of VAPA indicates the value of dissecting the possible role of VAPA-dependent
functions in the viral life cycle and the impact of NS1/2 function on VAPA-dependent
proteins.

MATERIALS AND METHODS
Cells and media. 293T, BV2, and RAW 264.7 cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) with 10% fetal calf serum (FBS), 1% penicillin/streptomycin (Pen/Strep), 2 mM
L-glutamine, and 10 mM HEPES. All transfections were performed with TransIT-LT1 (Mirus) unless
otherwise noted. The Genome Engineering and iPSC Center (St. Louis, MO) engineered Vapa�/� RAW
264.7 cell lines 1E6 and 3A11. Briefly, guide RNAs (5= GGCGAAGCACGAGCAGATCCTGG 3= and 5= GATC
TGCTCGTGCTTCGCCATGG 3=) targeting Vapa were electroporated into RAW 264.7 cells transiently
expressing Cas9. Cells were clonally selected and verified for disruption of the endogenous locus via the
Cel-1 nuclease assay and were then subjected to deep sequencing to identify frameshift mutations.

Molecular cloning. NS1/2 from strain MNoV CR6 and CW3 infectious clones (11) and GI (NC_001959),
as well as VAPA (NM_013933), were cloned into Gateway vector pDONR221 (Life Technologies, Inc.) and
subcloned using Gateway destination vectors, including a modified phage-FLAG-hemagglutinin (HA)-
attR1-ccdB-attR2-internal ribosome entry site (IRES)-PuroR lentiviral construct. Cloning of mutant MNoV
plasmids (58) was done by site-directed mutagenesis using Q5/KLD mix or Phusion (New England
Biolabs) as described in reference 59. The MNoV-NS1/2FLAG infectious clone was generated similarly to
MNoV-NS4FLAG (45), with FLAG tag nucleotide sequence inserted after nucleotide 383.

Virus reagents and procedures. Stocks were generated as described previously (11). Briefly,
infectious clones were transfected into 293T cells to produce infectious virus, which was passaged twice
on RAW 264.7 cells. Clarified supernatant was subjected to ultracentrifugation, resuspended in
phosphate-buffered saline (PBS), and quantitated by plaque assay. The recovery of infectious FLAG-
tagged MNoV was described previously (60). Briefly, infectious clones were transfected in BSRT7 cells
infected with fowlpox virus expressing T7 RNA polymerase. BV2 cells were inoculated with the recovered
viruses, frozen/thawed upon appearance of cytopathic effects, centrifuged to remove cellular debris, and
quantitated by 50% tissue culture infective dose (TCID50) analysis. The stability of FLAG tag insertions at
passage 3 was verified by RT-PCR and sequencing of the viruses at relevant genomic locations and by
immunoblotting against FLAG tags using infected lysates (data not shown). MNoV infectious clones with
novel mutations were transfected in 293T cells as described above and passaged once on RAW 264.7
cells, and virus concentrations were assessed using plaque assay. For virus growth analysis, MNoV was
inoculated at indicated multiplicities of infection (MOI) into cells in suspension for 30 min on ice and was
subsequently washed three times with complete media and harvested at indicated times postinfection.
Quantitation of norovirus by plaque assay was performed as described previously (11) except using
adherent RAW 264.7 cells. TCID50 data were determined on BV2 cells as described previously (61). For
viral RNA electroporations, RNA was isolated from norovirus stocks with TRIzol (Thermo Fisher) and
transfected by the use of an Amaxa Mouse Macrophage Nucleofector kit (Lonza). Lentivirus was prepared
as described previously (62), except transfections were performed with TransIT LT1 (Mirus), and cells were
maintained in media with puromycin (5 �g/ml) 48 h after transducing.

Flow cytometry. Cells were infected as described above. At indicated times, supernatant was
collected for determinations of viral titers and cells were prepared for fluorescence-activated cell sorter
(FACS) analysis as described in reference 62, except using primary antibody anti-NS1/2 rabbit sera (V.
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Ward) (1:2,500), and data were acquired on an LSR II or FACSCalibur (BD Biosciences) flow cytometer.
Analyses were performed using FlowJo (Treestar, OR).

Confocal microscopy. BV2 cells were seeded on glass coverslips and infected at an MOI of 1
TCID50/cell. At 12 hpi, cells were fixed with 4% paraformaldehyde (PFA)–PBS, quenched with 0.1 M
glycine–PBS, and permeabilized with 0.2% Triton X-100 –PBS. After blocking was performed (using PBS
plus 0.1% Tween 20 [PBST] with 1% bovine serum albumin [BSA]–1% normal goat serum [Sigma-
Aldrich]), cells were stained with mouse monoclonal anti-FLAG M2 antibodies (Sigma-Aldrich) and rabbit
polyclonal anti-NS7 antibodies (1:1,000) at room temperature for 1 h, triply washed (PBST), and then
stained with goat anti-mouse IgG Alexa Fluor 488 and goat anti-rabbit IgG Alexa Fluor 546 (1:1,000) at
room temperature for 1 h. Coverslips were triply washed and then mounted with Mowiol medium
containing DAPI (4=,6-diamidino-2-phenylindole) stain. The confocal images were taken using a Zeiss 510
Meta laser confocal microscope.

Immunoprecipitation. For anti-FLAG immunoprecipitation, BV2 cells were infected at an MOI of 10
TCID50/cell and were harvested 8 hpi. Cells were triply washed with cold PBS before lysis was performed
with a mixture containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 2 mM MgCl2, 1% Triton
X-100, 1% (vol/vol) protease inhibitor cocktail (Promega), and 0.1% Benzonase (Sigma-Aldrich). The
lysates were incubated on ice for 30 min before being spun down for 10 min at 15,000 rpm at 4°C. The
supernatants were collected, and the protein concentrations were determined by bicinchoninic acid
(BCA) assay (Thermo Fisher). The anti-FLAG M2 affinity agarose gel (Sigma-Aldrich) was prewashed twice
with TBS buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl). A 2-mg volume of total protein in 1 ml lysis
buffer was loaded onto 40 �l anti-FLAG agarose and incubated 4°C overnight with rotation. After
removal of unbound protein by centrifugation at 5,000 � g for 30 s at 4°C and three more washes with
TBS buffer, the bound proteins were eluted by addition of 50 �l of 2� SDS-PAGE sample buffer and
heating at 95°C for 3 min.

Western blotting. Laemmeli buffer was added to samples and then boiled for 10 to 15 min. Protein
was resolved on 10% SDS-PAGE Tris-glycine gels. Protein was transferred semidry to polyvinylidene
difluoride (PVDF) membranes, blocked with 5% milk–Tris-buffered saline with Tween 20 (TBST), and then
incubated with antibody overnight at 4°C. Membranes were triply washed with TBST and then incubated
for an hour with horseradish peroxidase (HRP)-conjugated secondary antibody. Membranes were triply
washed and incubated with ECL or ECL2 reagent (Pierce), and then signal was detected on film (MidSci).
For densitometry, NS1/2 band density was calculated using ImageJ, normalized to GAPDH band density,
and then reported as a ratio to the WT from each respective time point. We used the following
antibodies: polyclonal rabbit NS1/2 antisera, a kind gift from Vernon Ward; anti-VAPA clone K-15
(sc-48698; Santa Cruz Biotechnology), anti-FLAG (M2; Sigma-Aldrich), and anti-HA (H9658; Sigma-Aldrich)
(conjugated to HRP using a Lightning-Link HRP antibody labeling kit [701-0000; Innova Bioscience]);
GAPDH-HRP (G9295-25UL; Sigma-Aldrich); anti-actin (A5316; Sigma-Aldrich); and anti-rabbit HRP (111-
035-003), anti-goat HRP (705-035-003), and anti-mouse HRP (115-035-146) (Jackson ImmunoResearch,
Inc.).

Strand-specific qPCR. Cells were infected as described above. At each time point postinfection, cells
were lysed and total cellular RNA was extracted using a GenElute mammalian total RNA Miniprep kit
(Sigma-Aldrich). Quantities of genomic positive/negative RNAs were determined using strand-specific
real-time quantitative PCR (RT-qPCR) according to the method described in reference 44 with the
following changes: 100-ng total RNA was used in each RT reaction, and 5 �l of cDNA was used for
genomic negative qPCR. The mean of log10 genome equivalents (gEq) per nanogram of total RNA of
mock-infected cells was used as the limit of detection (LOD). The results were obtained using a ViiA7
real-time PCR system.

Assessment of VAPB in murine norovirus replication. BV2 cells were transduced with lentivirus
expressing Cas9 and blasticidin resistance and were maintained in 4 �g/ml blasticidin. Blasticidin-
selected cells were then transduced with lentivirus expressing puromycin resistance and either with no
single-guide RNA (sgRNA) (empty) or with sgRNA directed against CD300lf, Vapa, or Vapb. Cells were
maintained in 4 �g/ml puromycin. Cells were infected at an MOI of 0.1 without washing and were
incubated at 37°C for 18 h. Cells were fixed and prepared for FACS analysis as described above. Each
point represents an independent MNoV infection; cells were derived from 3 independent transductions
of sgRNA-expressing lentivirus. For percent nonhomologous end joining (%NHEJ) estimates, DNA was
isolated from cells using QiaAMP (Qiagen), melted and annealed on a thermocycler, treated with T7
endonuclease at 37°C for 1 h, and resolved on 2% agarose gel. Fragment densities were quantified using
ImageJ, and percent cleavage was calculated using the following formula: %NHEJ � 100 * [1 � (parental
fraction)1/2], where parental fraction � (band intensity parental band)/(band intensity parental band �
band intensity lower fragments).

Mammalian 2-hybrid assays. Checkmate vectors (Promega) pACT (prey) and pBIND (bait) were
converted to Gateway destination vectors, and genes were subcloned using Gateway LR reactions (Life
Technology). Subsequent M2H analysis was performed as described in reference 63. In brief, 7.5 fmol bait
and prey plasmids were transfected with 100 ng pG5 plasmid into subconfluent 293T cells. At 48 to 51 h
posttransfection, cells were lysed and luminescence was measured by the use of a dual-luciferase
reporter assay (Promega) using an Opticomp II (MGM Instruments) luminometer. All data shown
represent n � �3 and were analyzed by one-way analysis of variance (ANOVA) and the Tukey posttest,
comparing the greater of the bait-only value and prey-only value to the value corresponding to the
combination of the bait data plus the prey data. Fold change was calculated from the value representing
the average of the combination of the bait data plus the prey data/the greater of the bait data and the
prey data.
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Vapa mutant mouse. The Washington University Animal Studies Committee approved all mouse
studies performed here. Mice were bred and housed per university guidelines. Day 0.5 B6/J inbred
embryos underwent pronuclear microinjection with gRNA and Cas9-mRNA, and then embryos were
implanted in surrogate mothers as described previously (64). Mutations in live-born pups were identified
by isolation of tail DNA, PCR amplification of the Vapa targeted locus, and Sanger sequencing. Genotypes
were verified by TOPO-TA (Life Sciences) cloning of the amplicons and Sanger sequencing. Genotyping
was performed as follows. For mutant line 1, primers were designed to amplify the Vapa locus
(F-CTGCTGAGCGGACAGGCTG, R-CGCAAGATGGCGGCGGAG) (WT, 500 bp; deletion, 440 bp). For mutant
line 2, genotyping to detect single-base-pair insertion was designed as described in reference 65. In brief,
primers designed to detect specifically the WT (F-GGCCCCGTCCTAGAGCTCCG, R-ATATGATAGTAACTAT
CCAGGATCTGCTCGTGCTACGC) amplified a 180-bp product. Primers detecting the mutant (F-GGCCCCG
TCCTAGAGCTCCG, R-AAAAACCAGGATCTGCTCGTGCTTAGG) amplified a 159-bp product. Genotyping was
verified by Sanger sequencing.

Protein preparation for NMR experiments. Natural-abundance protein and the 15N-labeled
N-terminally His6-tagged 28 –114 domain of MNoV NS1/2 protein were purified as described previously
(10). Three fragments of natural-abundance protein and 15N-labeled N-terminally His6-tagged murine
VAPA protein were purified from Escherichia coli expression plasmids as follows. (i) The VAPA MSP
domain (8 –132) gave excellent NMR spectra. (ii) The MSP domain with linker and coiled-coil domain
(8 –226) gave excellent NMR spectra and formed stable dimers in solution confirmed by size exclusion
chromatography and diffusion NMR experiments. (iii) A VAPA fragment (133–226) showed a dimeric size
in solution and NMR spectra indicative of contributions from �-helical and disordered segments. Protein
samples were concentrated and dialyzed extensively against 10 mM KH2PO4–20 mM KCl (pH 7.0). Final
concentrations of NS1/2 28 –114 (�280 � 13,940 M�1 cm�1) and VAPA (�280 � 8,250 M�1 cm�1) were
0.4 mM and 1.6 mM, respectively, as determined spectrophotometrically. All samples contained reducing
reagent (1 mM dTCEP [deuterated tris(2-carboxyethyl)phosphine]—5% D2O) for the lock signal and
0.5 mM DSS for chemical shift reference.

Chemical shift perturbation experiments. After 24 h of dialysis against the same buffer solution,
protein samples were mixed by stepwise addition of VAPA solution. Each addition was followed by NMR
experiments, carried out at 25°C on a Bruker 600-MHz instrument equipped with a cryoprobe. First, for
each 15N-labeled NS1/2 protein construct, 15N-1H HSQC spectrum was recorded for an NS1/2 protein
only. Following that step, 5 to 6 spectra were recorded after each addition of natural-abundance VAPA,
typically at 0.5-fold to 10.0-fold excess over the NS1/2 concentration present. NMR data were processed
(Topspin 3.2; Bruker), and the chemical shift perturbations were analyzed using NMRFAM-SPARKY (66).
The chemical shift assignments for NS1/2 (BMRB entries 19439 and 19444) and closely related human
VAPA (BMRB entry 7025) are available in the Biological Magnetic Resonance Data Bank (BMRB). The
specific values of chemical shifts for the buffer conditions and protein constructs used here were verified
by acquisition of a standard suite of triple resonance experiments performed on 13C/15N-labeled samples.
Chemical shift perturbations on 15N-labeled VAPA were analyzed in analogous fashion, except that the
initial concentrations of VAPA and NS1/2 were 0.1 mM and 2.2 mM, respectively, with stepwise addition
of NS1/2. Figures show combined differences of 1H and 15N chemical shifts observed between zero and
the highest concentration of unlabeled protein used. The combined differences in units (in parts per

million) were calculated as �� � ��1

2
����H�2 	 ���N

5 �2	
 and are referred to as chemical shift

perturbations. The threshold for perturbations interpreted as specific protein-protein interactions was set
at 4 standard deviations above the mean perturbation, excluding the highest perturbations for each
data set.

Statistics and software. All statistics were calculated using GraphPad Prism (ns, P � 0.05; *, P 
 0.05;
**, P 
 0.01; ***, P 
 0.001; ****, P 
 0.0001; all error bars signify standard errors of the means). Sequence
alignments and analysis were performed in Geneious 9.1 (67). Molecular graphics were produced using
UCSF Chimera (68).

Accession number(s). The chemical shift assignments for NS1/2 (BMRB entries 19439 and 19444)
and closely related human VAPA (BMRB entry 7025) are available in the BMRB database.
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