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Computed Tomography Method
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Michael J. Stuart, M.D., Diane L. Dahm, M.D., Peter C. Rhee, D.O., M.Sc., and

Aaron J. Krych, M.D.
Purpose: To develop a standardized method for tibial tunnel volumetric bone mineral density (BMD) analysis with
quantitative computed tomography (qCT) using cadaveric specimens to provide validation of this technique on a healthy
control population and to determine whether osteopenia occurs following an anterior cruciate ligament (ACL) injur-
y. Methods: qCT was used to develop a volumetric BMD (mg/cm3) measurement technique throughout the region of a
standard tibial tunnel. This method was applied to 90 lower extremities, including 10 matched cadaveric knees, 10
matched healthy knees, 25 ACL-injured knees, and 25 contralateral ACL-uninjured knees. The mean total and segmental
(proximal, middle, and distal) tibial tunnel BMD were analyzed. Results: The mean entire tibial tunnel BMD measured
165.8 � 30.5 mg/cm3 (cadaver), 255.9 � 28.2 mg/cm3 (healthy control), 290.3 � 36.4 mg/cm3 (ACL-injured), and 300.1
� 35.1 (ACL-uninjured). Segmental tibial tunnel BMD demonstrated distal one-third segments as the greatest areas of
BMD, followed by proximal one-third, and middle one-third for all cohorts with all pairwise comparisons (P < .001). The
mean BMD was significantly greater in the uninjured extremity compared with the injured extremity in the entire tunnel
(290.3 vs 300.1; P < .001), proximal (271.2 vs 279.1; P ¼ .002), middle (167.6 vs 179.6; P < .001), and distal segments
(432.7 vs 441.7; P ¼ .004) at an average of 8 weeks following ACL injury. Conclusions: A standardized method to
quantitatively measure the volumetric BMD within the region of a standard tibial tunnel for ACL reconstruction was
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successfully developed and validated. Significant osteopenia of the injured knee occurs following ACL injury when
compared with the contralateral uninjured knee. This observation has potential clinical implications for ACL graft tibial
fixation and healing. Level of Evidence: Descriptive diagnostic study, Level III.
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nterior cruciate ligament (ACL) disruption is a
Adevastating injury that results in substantial bone
mineral density (BMD) loss about the knee that can
persist after ACL reconstruction.1-4 The etiology has
been attributed to catabolic stress hormones from the
inciting injury, subsequent surgery, immobilization,
and altered injured extremity weight-bearing.4-7 Mul-
tiple studies have evaluated BMD changes around the
knee after an ACL injury and/or reconstruction and
have observed the greatest bone loss in the proximal
tibia.2-4,8 Likewise, biomechanical studies have also
confirmed that the proximal tibia is the weak link for
graft fixation in ACL reconstruction.9-11 Clinically, de-
creases in BMD may also play a role in the propensity
for postoperative tibial fractures and decreased strength
of interference screw fixation.12,13 As a result, certain
institutions have begun to use BMD measurements as a
decision-making guide for graft fixation.13

Biomechanical investigations of tibial fixation con-
structs for ACL reconstruction have been performed
demonstrating a lower mean load to failure in cadaveric
tibias with a BMD less than 600 mg/cm2 (201 N) and in
older cadaveric specimens after ACL reconstruction
using a boneepatellar tendonebone graft.9,14,15 Despite
this, biomechanical analysis of tibial fixation constructs
warrants an accurate assessment of BMD within the
region of graft fixation. Dual energy x-ray absorpti-
ometry (DEXA) has been widely employed to evaluate
the proximal tibial BMD of test specimens before
biomechanical testing of ACL reconstruction fixation
constructs, but this method is highly inaccurate. The
planar nature of BMD assessment limits the ability of
DEXA to differentiate cortical from cancellous bone,
which is of critical importance as interference screw
fixation strength improves with purchase into dense
cortical or subchondral bone.16,17 In addition, BMD
reports with DEXA are based upon algorithms intended
for analysis of the lumbar spine or distal radius, not the
proximal tibia.18 As such, most biomechanical and
clinical studies involving ACL injury and reconstruction
have depended upon this imprecise modality for BMD
assessment within the proximal tibia.1-4,6,8-10,19,20

Quantitative computed tomography (qCT) has
emerged as a precise and valid method to measure
BMD within the peripheral long bones, with the ability
to distinguish cortical from cancellous bone, and has
been used in many biomechanical and clinical ACL-
reconstruction studies to overcome the limitations of
DEXA.21-29 However, no standardized method of
in vitro or in vivo volumetric BMD assessment have
been described that accurately measures the region
within the entire tibial tunnel. Furthermore, baseline
values for cadaveric specimens, a healthy uninjured
patient population, or an ACL-injured patient popula-
tion have yet to be defined. The purposes of this study
were to develop a standardized method for tibial tunnel
volumetric BMD analysis with qCT using cadaveric
specimens, to provide validation of this technique on a
healthy control population, and to determine whether
osteopenia occurs following an ACL injury. We hy-
pothesized that qCT would be used to assess volumetric
BMD within the region of a standard tibial tunnel for
ACL reconstruction and detect osteopenia following an
ACL injury.

Methods

Study Population

Cadaveric Specimens
Twenty fresh-frozen cadaveric lower extremities (10

matched pairs, 5 male, 5 female) with a mean age of
76 � 8.4 years (range: 60-85 years), were obtained
from our institutional cadaver bank. The specimens
were grossly inspected by an orthopaedic surgeon
(P.C.R) and selected only if there was no physical evi-
dence or medical documentation of a previous knee
surgery. The soft tissues (skin, subcutaneous fat, mus-
cle, menisci, collateral and cruciate ligaments) adjacent
to the proximal tibia were left intact to simulate an
environment similar to in vivo qCT scanning.

Validation in a Healthy Control Subject Group
After approval by the institutional and radiation

safety review board (Mayo #08-008067), 10 healthy
adult volunteers (7 male, 3 female) with a mean age of
35.1 � 10.2 years (range: 24-55 years) were recruited
and underwent qCT scanning of the bilateral knees
(n ¼ 20 knees). Volunteers were excluded if there was
a positive history of previous knee surgery or significant
injury requiring immobilization in either lower ex-
tremities, use of any medication known to affect BMD,
symptomatic or known lumbar or hip pathology, his-
tory of rheumatologic or inflammatory disease, or if the
patient was pregnant. Each patient completed a ques-
tionnaire evaluating their knee function (Lysholm knee
score and the International Knee Documentation
Committee [IKDC] subjective knee evaluation
score)30,31 and activity level (Tegner and University of
California e Los Angeles activity level scores
[UCLA]).32 Epidemiologic data (body mass index



Fig 1. Demonstration of cadaveric tibial tunnel identification.
(A) A 2.4-mm guide pin is directed towards the ACL footprint
at 55� from the articular surface in the sagittal plane and 65�

(white line) from the medial tibial plateau in the coronal
plane. Soft tissues have been removed for illustrative pur-
poses. (B) Radio-opaque markers are placed at the proximal
and distal ends of the guide pin tract (red line) after pin
removal. (ACL, anterior cruciate ligament.)
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[BMI]) and age) was obtained to serve as normative
data for a healthy (uninjured) population.

ACL Study Group
Concurrently, 25 patients (20 male and 5 female)

with a mean age of 25.9 � 7.7 years (range: 18-48
years) who sustained a complete tear of the ACL were
enrolled into the ACL-injured patient study group by
one of the 3 senior authors (D.L.D., B.A.L., or M.J.S.) at
the time of initial orthopaedic sports medicine consul-
tation over a 3-year period. qCT scans were obtained of
the uninjured (n ¼ 25) and injured extremity (n ¼ 25)
before ACL reconstructive surgery. Inclusion criteria
consisted of patient age �18 years old, unilateral knee
injury, and magnetic resonance imaging (MRI) confir-
mation of a complete (grade III) ACL rupture. Patients
were excluded if there was MRI evidence of a
concomitant rupture (grade III) of the remaining cru-
ciate or collateral ligaments, history of previous knee
surgery or significant injury requiring immobilization in
either lower extremities, use of any medication known
to affect BMD, symptomatic or known lumbar or hip
pathology, history of rheumatologic or inflammatory
disease, or if the patient was pregnant. All patients
completed postinjury knee function scores (Lysholm
and IKDC) as well as pre- and postinjury activity level
(Tegner and UCLA) scores. Other epidemiologic factors
(age and BMI) were obtained to serve as normative
data for an ACL disrupted patient population.

Cadaveric Tibial Tunnel BMD Assessment
Technique
A single surgeon performed all the procedures. The

tibial tunnel was identified and marked with a 2.4-mm
guide pin drilled into the proximal tibia using a tibial
tunnel guide (Arthrex, Naples, FL) set at 55�. The pin
was inserted at 65� from the medial tibial plateau in the
coronal plane (Fig 1A).33 The pin was directed toward
the remnant of the ACL insertion on the tibial footprint.
The pin was removed and radio-opaque markers were
placed at the proximal and distal ends of the guide pin
tract (Fig 1B).34,35

A single postimaging analysis technician performed
the image processing and Hounsfield unit calculation
with repeat processing and analysis at a minimum of 1
week from the initial tests. Intraclass correlation co-
efficients were then calculated based on sampling of
baseline and repeat measurements with calculated
intraobserved intraclass correlation coefficients
demonstrating strong correlations, with values greater
than 0.8. qCT was used to assess BMD within the region
of the previously identified tibial tunnel.36 The qCT
scans were acquired with a CT scanner protocol
(Somatom Definition SD; Seimens Healthcare, For-
cheim, Germany) set at collimation of 64 � 0.6, pitch of
1 mm, kernel of B70s, and reconstruction increment of
0.5 mm. The cadaveric tibias were placed on top of a 6-
level hydroxyapatite phantom (Model 3 CT Phantom;
Mindways Software, Inc., San Francisco, CA) and were
visualized within the same field of view.37

The region of interest (RoI) was a 3-mm thick ring
between a 9 mm and 15 mm circle per axial slice
centered over the guide pin tract (Fig 2A). Custom
software was used to stack the ring RoIs in series along
the trajectory of the guide pin tract to provide a cylin-
drical RoI within the peripheral bone of a potential
9-mm tibial tunnel, at the site of graftebone or
screwebone interface. The cylindrical RoI was divided
into 3 equal regions (proximal one-third, middle
one-third, and distal one-third) for segmental BMD
analysis (Fig 2B).
BMD assessment was initiated (proximally at the

subchondral bone) and terminated (distally at the
anterior tibial cortex) where at least 50% of the ring
RoI was within bone per axial slice. All non-bone



Fig 2. Cylindrical, volumetric BMD of the peripheral tibial
tunnel (in vitro). (A) A 3-mm ring RoI (green shade), be-
tween a 9 mm (yellow shade) and 15 mm (green, yellow, and
maroon shade) circular RoI, centered over the guide pin tract
(maroon shade). (B) Segmental BMD within the proximal,
middle, and distal one thirds of the tibial tunnel (black dotted
lines separating segments). (BMD, bone mineral density; RoI,
region of interest.)

Fig 3. In vivo tibial tunnel trajectory identification. The tra-
jectory of the tibial tunnel, 55� from the articular surface in
the sagittal plane and 65� from the medial tibial plateau in the
coronal plane is selected with the use of custom software that
allows for manipulation of a 3-dimensional reconstruction of
the proximal tibia.
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objects (radio-opaque markers and regions outside of
the bone) were masked off. The average Hounsfield
unit value within the RoI per axial slice was measured,
and the volumetric BMD (mg/cm3) was calculated us-
ing a calibration curve derived from the phantom per
manufacturer protocol.

Control and ACL Injured Patient Tibial Tunnel BMD
Assessment Technique
Quantitative CT scans were acquired with the identical

protocol used for the cadaveric specimens. The calibra-
tion phantom of the healthy controls and the injured
knee (ACL injury cohort) were scanned within the same
field of view, starting at 6 cm proximal to the femoral
notch and ending at 10 cm distal to the tibial articular
surface. The location of the tibial tunnel was identified
and marked with custom software that allowed for
manipulation of a 3-D reconstruction of the proximal
tibia. The long axis of the tibial tunnel was established at
approximately 55� in the sagittal plane and at 65� to the
medial tibial plateau subchondral bone (Fig 3).
The trajectory of the tibial tunnel was directed toward

the ACL footprint. The intra-articular starting point
(ACL footprint) for the tibial tunnel was identified both
in the sagittal and coronal plane. In the sagittal plane,
the anterior to posterior distance (millimeter) of the
subchondral bone at the medial tibial plateau was noted
on the axial images. This value was multiplied by 0.43
(43% of the anterior to posterior distance) to result in
the distance from the anterior subchondral bone to the
center of the tibial tunnel at the articular surface,
through which a horizontal line was marked.38,39 In the
coronal plane, the midpoint between the medial and
lateral tibial spines marked the center of the tibial
tunnel at the articular surface, through which a vertical
line was marked. The central axis of the tibial tunnel
was positioned at the intersection of these lines (Fig 4).
Similar to the cadaveric technique, 3-mm thick ring

RoIs were generated. The rings were stacked in line
with the trajectory of the previously identified trajec-
tory of a standard tibial tunnel to create a cylindrical
RoI at the periphery of a potential 9-mm diameter tibial
tunnel. Likewise, the cylindrical RoI was divided into 3
equal regions (proximal one-third, middle one-third,
and distal one-third) for segmental BMD analysis.
BMD assessment was initiated (proximally at the sub-
chondral bone) and terminated (distally at the anterior
tibial cortex) where at least 50% of the ring RoI was
within bone per axial slice. All non-bone objects (region
outside of the bone) were masked off. The mean



Fig 4. Identification of the ACL footprint for in vivo applica-
tion. The ACL footprint is identified at the intersection (white
circle) of a line draw horizontally at a distance (43% of the
anterior to posterior distance of the medial tibial plateau
subchondral bone) posterior to the anterior tibial cortex and
vertically at the midpoint between the medial and lateral tibial
spine. (ACL, anterior cruciate ligament.)

Table 1. Baseline Demographic and Descriptive Data of
Healthy and ACL-Injured Cohorts

Healthy Control
(n ¼ 10)

ACL-Injured
(n ¼ 25) P Value

Age, y � SD 35.1 � 10.2 25.9 � 7.7 .006
Sex .723
Male 7 (70%) 20 (80%)
Female 3 (30%) 5 (20%)

Height, cm 176.3 � 6.5 175.1 � 9.5 .722
Weight, kg 75.7 � 12.3 83.3 � 11.9 .143
BMI, mean � SD 24.3 � 3.1 27.3 � 1.1 .045

NOTE. Data are n (%) or mean � SD, unless stated otherwise.
ACL, anterior cruciate ligament; BMI, body mass index; SD,

standard deviation.
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Hounsfield unit per axial slice within the ring RoI was
converted to volumetric BMD (mg/cm3) based upon
the calibration phantom.

Statistical Analysis
All analyses were performed with Excel (version 14.0,

Microsoft, Redmond, WA) and JMP Pro (version 14.1.0;
SAS Institute Inc., Cary, NC), with sample size consid-
ered for all calculations. General statistics (mean, stan-
dard deviation, median, range, and frequencies) were
performed on the subject’s demographic, radiographic,
and clinical information when applicable. The Wilcoxon
rank-sum test was used to compare means of continuous
variables, and the Fisher exact and c2 tests were used to
compare nominal variables, when appropriate. Spear-
man’s rank correlation coefficient was used to test for
significant correlation between demographic and radio-
logic information and outcome scores. P values < .05
were considered statistically significant.

Results
A total of 90 lower extremities were analyzed,

including 10 cadaveric specimens, 10 healthy controls,
and 25 ACL-injured patients. Demographic and func-
tional variables are shown in Table 1. The healthy cohort
was significantly older than their ACL injured counter-
parts (35.1 � 10.2 vs 25.9 � 7.7; P ¼ .006) with a lower
body mass index (24.3 � 3.1 kg/m2 vs 27.3 � 1.1 kg/m2;
P ¼ .045). Similarly, both Lysholm (83.3 � 3.9 vs 46.8 �
23.4; P< .001) and IKDC (96.0� 7.1 vs 50.3� 17.0; P<
.001) knee function scores were significantly greater in
the healthy cohort compared to the ACL injured cohort.

Cadaveric Specimens
The mean BMD throughout the entire length of the

tibial tunnel and mean segmental BMD for cadaveric
knees are listed in Table 2 and Figure 5. The mean
segmental BMD was significantly different in pair-wise
comparison of proximal to middle (180.2 � 41.0 mg/
cm3 vs 99.3 � 21.2 mg/cm3; P < .001), proximal to
distal segments (180.2 � 41.0 mg/cm3 vs 217.4 � 53.1
mg/cm3; P < .001), and distal to middle segments
(217.4 � 53.1 mg/cm3 vs 99.3 � 21.2 mg/cm3; P <
.001). The comparisons between the right and left sides
were not statistically significant for the total (P ¼.501),
proximal (P ¼.342), middle (P ¼.174), or distal seg-
ments (P ¼.936).

Healthy Subjects Study Group
The mean BMD throughout the entire tibial tunnel

and mean segmental BMD for healthy controls are
shown in Table 2 and Figure 5. The mean segmental
BMD was significantly different in pair-wise compari-
son of proximal-to-middle (252.2 � 35.0 vs 132.6 �
22.4; P < .001), proximal-to-distal (252.2 � 35.0 vs
382.2 � 53.9; P < .001), and distal-to-middle segments
(382.2 � 53.9 vs 132.6 � 22.4; P < .001). Mean
segmental BMD was not statistically different when we
compared right and left sides for total (P ¼ .556),
proximal (P ¼ .223), middle (P ¼ .348), or distal seg-
ments (P ¼ .297).

ACL-Injured Patients Study Group
Of the 25 ACL-injured patients, 60% (n ¼ 15)

occurred in their dominant extremity, 88% (n ¼ 22)
during a sporting event, and 56% (n ¼15) due to a
contact mechanism of injury. Weight-bearing was
restricted for a mean of 13.2 days (range 0-42) after the
injury, crutches were used for a mean of 14.8 days
(range 0-42), and a knee immobilizer was used for a
mean of 10.8 days (range 0-70). These patients un-
derwent qCT scanning at a mean of 8 weeks from
injury (range 1-36 weeks). The mean BMD throughout
the entire length of the tibial tunnel and mean
segmental BMD for the injured knee and contralateral
uninjured knee in the ACL group are listed in Table 2
and Figure 5. Comparisons of mean total segment
BMD revealed no differences across age, gender, and



Table 2. Comparison of Entire Tibial Tunnel and Segmental Tibial Tunnel BMD for All Cohorts

Cadavers (n ¼ 20) Healthy (n ¼ 20)
ACL-Ruptured

Extremity (n ¼ 25)
ACL-Uninjured

Extremity (n ¼ 25)

Entire tunnel 165.8 � 30.5 255.9 � 28.2 290.3 � 36.4 300.1 � 35.1
Proximal one-third 180.2 � 41.0 252.2 � 35.0 271.2 � 32.2 279.1 � 31.3
Middle one-third 99.3 � 21.2 132.6 � 22.4 167.6 � 31.0 179.6 � 33.1
Distal one-third 217.4 � 53.1 382.2 � 53.9 432.7 � 75.1 441.7 � 74.6
Segmental differences

Proximalemiddle 81.0 � (63.7-98.3) 119.6 � (104.0- 135.2) 103.6 � (88.5- 118.6) 100.7 � (84.1- 117.1)
Distaleproximal 37.1 � (10.1- 64.2) 130.0 � (102.0- 158.0) 161.5 � (128.8- 194.3) 162.6 � (128.3- 196.9)
Distalemiddle 118.1 � (98.1- 138.1) 249.6 � (227.4- 271.8) 265.1 � (239.5- 290.6) 263 � (239.8- 286.7)

NOTE. Values represented as mean and standard deviation reported in mg/cm3, except for differences presented as the mean and the 2-tailed
95% confidence interval.
ACL, anterior cruciate ligament; BMD, bone mineral density.
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BMI for the injured (P ¼ .271, P ¼ .266, P ¼ .326) and
uninjured extremity (P ¼ .209, P ¼ .309, P ¼ .299).
The mean segmental BMD in the ACL ruptured ex-

tremity was significantly different in pair-wise com-
parison of proximal-to-middle (271.2 � 32.2 vs 167.6 �
31.0; P < .001), proximal-to-distal (271.2 � 32.2 vs
432.7 � 75.1; P < .001), and distal-to-middle segments
(432.7 � 75.1 vs 167.6 � 31.0; P < .001). The mean
segmental BMD in the contralateral ACL-uninjured
extremity was also significantly different in pairwise
comparison of proximal-to-middle (279.1 � 31.3 vs
179.6 � 33.1; P < .001), proximal-to-distal (279.1 �
31.3 vs 441.7 � 74.6; P < .001), and distal-to-middle
segments (441.7 � 74.6 vs 179.6 � 33.1; P < .001).
Comparisons between the mean BMD of the ACL
injured and uninjured extremity demonstrated higher
values in the entire tunnel (290.3 vs 300.1; P < .001),
proximal (271.2 vs 279.1; P ¼ .002), middle (167.6 vs
179.6; P < .001), and distal segments (432.7 vs 441.7;
P ¼ .004).
Intergroup Analysis
Segmental differences between the healthy, ACL-

injured, and ACL-uninjured cohorts demonstrated
similar changes in comparison of proximalemiddle
(P ¼ .201), distaleproximal (P ¼ .285), and
distalemiddle (P ¼ .619) (Table 2). Further compari-
son of the healthy control and ACL injured cohorts
revealed that the mean BMD was significantly greater
in the ACL injured patients in both the injured
and uninjured extremities with a difference of
34.4 mg/cm3 (P ¼ .001) and 44.6 mg/cm3 (P < .001) in
the entire tunnel, 35.0 mg/cm3 (P < .001) and
46.8 mg/cm3 (P < .001) in the middle segment, and
50.4 mg/cm3 (P ¼ .012) and 59.4 mg/cm3 (P ¼ .005) in
the distal segment, respectively (Table 3). BMD was
not significantly different in comparison of the healthy
control and ACL injured extremity (P ¼ .069); how-
ever, the ACL-uninjured extremity had higher BMD
values than the healthy cohort with a mean difference
of 26.8 (P ¼ .012) mg/cm3.
Fig 5. Mean total and segmental
BMD within the region of the tibial
tunnel in a cadaveric specimen, a
healthy uninjured patient, and an
ACL ruptured patient.Mean BMDper
axial slice is much higher in the prox-
imal (subchondral bone) and distal
(anterior tibial cortex) portion of the
tibial tunnel compared to the middle
(cancellous bone). *Represents statis-
tical significance of pairwise comp.
(ACL, anterior cruciate ligament
BMD, bone mineral density.)



Table 3. Comparison of Entire Tibial Tunnel and Segmental Tibial Tunnel BMD Between ACL Extremities and Between ACL
and Healthy Controls

Entire Tunnel Proximal One-Third Middle One-Third Distal One-Third

ACL cohort comparison
ACL-ruptured extremity 290.3 � 36.4 271.2 � 32.2 167.6 � 31.0 432.7 � 75.1
ACL-uninjured extremity 300.1 � 35.1 279.1 � 31.3 179.6 � 33.1 441.7 � 74.6
Difference 9.8 � (7.0-12.6) 7.9 � (3.2-12.5) 12.0 � (7.1-16.9) 9.0 � (3.3-14.8)
P value <.001 .002 <.001 .004

Healthy and ACL Cohort comparison
Healthy cohort 255.9 � 28.2 252.2 � 35.0 132.6 � 22.4 382.2 � 53.9
ACL-injured extremity 290.3 � 36.4 271.2 � 32.2 167.6 � 31.0 432.7 � 75.1
Difference* 34.4 � (14.4-54.4) 18.9 � (e1.6 to 39.4) 35.0 � (18.9-51.1) 50.4 � (11.6-89.3)
P value* .001 .069 <.001 .012
ACL-uninjured extremity 300.1 � 35.1 279.1 � 31.3 179.6 � 33.1 441.7 � 74.6
Differencey 44.6 � (24.9-61.9) 26.8 � (6.6- 47.1) 46.8 � (30.2- 62.3) 59.4 � (20.7- 98.1)
P valuey <.001 .012 <.001 .005

The values are presented as the mean and the standard deviation reported in mg/cm3, except for differences presented as the mean and the 2-
tailed 95% confidence interval.
ACL, anterior cruciate ligament; BMD, bone mineral density.
*Differences and P values for the ACL-injured extremitydthe healthy cohort.
yThe ACL-uninjured extremitydthe healthy cohort.
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Discussion
The main finding of this study is the development of a

standardized in vitro and in vivo method to measure
the volumetric BMD within the region of a standard
tibial tunnel for ACL reconstruction. This technique can
assess the clinical region of interest at the periphery of
the tibial tunnel at the graftebone or screwebone
interface. This method of tibial tunnel BMD assess-
ment provided normative BMD for cadaveric specimens
and was also validated in a healthy uninjured popula-
tion. Most importantly, analysis between the ACL-
injured and contralateral -uninjured extremity
demonstrated that osteopenia can be detected within 8
weeks of injury.
Accurate assessment of the entire tibial tunnel BMD

with qCT after ACL reconstruction remains an ongoing
area of research. Previous investigations on qCT BMD
analysis mainly focused on predicting tibial interference
screw fixation strength or evaluating effects of graft
preconditioning on graft tension.24-27 Weiler et al.40 did
use qCT to identify a location with adequate BMD (800
mg/cm3) within the bovine tibia to conduct fixation
strength testing. Unfortunately, there were no further
descriptions of the technique used for BMD assessment
in that study, nor in a variety of subsequent biome-
chanical investigations of ACL graft fixation strength
from the same authors, limiting the reproducibility of
this method by others.41,42

Similarly, limited standardized methods currently ex-
ists for tibial tunnel BMD assessment with qCT in vivo
for clinical investigations of ACL reconstructions. Muren
et al.29 performed one of the first in vivo studies with
qCT demonstrating no sign of increased BMD in the
tibial tunnel 1 year after a boneepatellar tendonebone
graft. As a result, subsequent investigations utilized
qCT to evaluate various regions in the proximal tibia to
find the optimal location for fixation into the proximal
tibia based on BMD. Mariani et al.28 used qCT to eval-
uate the difference in trabecular bone structure between
the anterior and posterior aspect of the tibia. Subse-
quently, Lee et al.43 determined that the anteromedial
area of the proximal tibia had the highest density and
was likely the most likely to accept an interference
screw.
However, complete tunnel evaluation is lacking due

to the imprecision of these contemporary methods and
the wide variability of BMD within the proximal tibia in
the axial, coronal, and sagittal planes. Khodadadyan-
Klostermann et al.37 noted that BMD in 40 cadaveric
proximal tibias decreased significantly when traveling
from proximal to metaphyseal bone and was consis-
tently lowest in the central and anteromedial regions of
the proximal tibia compared to other regions in the
same axial slice. Similarly, Klein et al.16 observed
significantly greater BMD, with a technique involving
immersion of harvested cancellous bone cores, proxi-
mally when compared with distally within the proximal
tibia of cadaveric specimens. Mariani et al.28 then re-
ported one of the early clinical studies, demonstrating a
significantly greater BMD in the anterior half of the
proximal tibia as compared with the posterior half in a
group of healthy young patients.
A valid assessment of BMD within the region of

clinical interest for ACL reconstruction necessitates the
measurement of BMD throughout the entire path of
the tibial tunnel. Dunkin et al.44 used a high-resolution
qCT to evaluate the bone volume fraction (bone vol-
ume/total volume) of a 2-mm thick cylinder around the
periphery of the entire tibial tunnel by stacking 2 mm
thick ring RoIs (per reconstruction slice) centered over
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the central axis of a previously extraction drilled tibial
tunnel in 20 porcine tibias. Although this technique
provides a valid and accurate assessment of bone
quality about the tibial tunnel, BMD was not measured.
The current study used qCT and a modification of the
stacked ring RoI technique to provide an accurate
assessment of bone quality throughout the entire path
of the tibial tunnel.
The tibial tunnel BMD observed in the present study

for cadaveric specimens and healthy volunteers is
comparable to that reported in the literature for the
proximal tibia. In 3 cohorts of cadaveric proximal tibias,
with a combined mean age of 40 years (range 17-54),
Nurmi et al.27 noted a mean trabecular BMD of 180 �
30 mg/cm3, 182 � 43 mg/cm3, and 176 � 27 mg/cm3.
The region evaluated by Nurmi et al.27 (2 cm below the
articular surface) corresponds to the proximal segment
analyzed in the current study with a similar mean
segmental BMD of 180 � 41 mg/cm3 in cadaveric
specimens (mean age of 76 years). In healthy volun-
teers, with a mean age of 39 years (range: 24 to 6
years), Sievanen et al.22 reported a mean BMD of 167 �
33 mg/cm3 (range 104-235) and 349 � 56 mg/cm3

(range 263-500) in the proximal tibial for trabecular
and cortical bone, respectively. The region evaluated by
Sievanen et al.22 (at a distal distance of 5% of the total
length of the tibia from the lateral tibial plateau sub-
chondral bone) corresponds to the middle (trabecular)
and distal (corticocancellous) segments analyzed in the
current study, with similar mean middle and distal
segmental BMD of 132.6 � 22.4 mg/cm3 and 382.2 �
53.9 mg/cm3 in healthy volunteers (mean age of 35
years), respectively.
As previously mentioned, literature defining the BMD

within the region of the entire tibial tunnel in an ACL
injured population remains limited. Bayar et al.2 noted
significant BMD loss (with DEXA) about the injured
knee (greatest loss at the medial proximal tibia) in 32
patients at a mean time of 24 months after an ACL
disruption. Leppala et al.4 detected significant BMD loss
(with DEXA) within the injured extremity (greatest loss
at the proximal tibia and the patella) in 12 patients at a
mean time of 12 months after sustaining a complete
ACL rupture. Despite innumerable tibial fixation
strength biomechanical ACL reconstruction studies,
which evaluate the proximal tibia (cadaveric, porcine,
or bovine) for adequate and clinically relevant bone
quality, the actual BMD within the region of the tibial
tunnel for an ACL-ruptured population is unknown.
The current study provides normative data for BMD
throughout the entire tibial tunnel in an ACL injured
population.
Most importantly, a greater tibial tunnel BMD was

observed in all segments of the contralateral uninjured
extremity of the ACL group when compared to the ACL-
ruptured extremity. This is in accordance with the results
of previous literature which has demonstrated that ACL
ruptures can result in substantial BMD loss about the
knee despite ACL reconstruction.1-4 In addition, the
proximal tibia is often the area of greatest bone loss.2-4,8

While the exact pathophysiology remains unknown,
attributable factors include catabolic hormones from the
inciting injury, subsequent surgery, immobilization, and
altered weight-bearing through the injured extrem-
ity.4-7,45 By design, the current investigation analyzed
BMD before surgical intervention and was still able to
detect BMD changes between injured and uninjured
extremities at a mean time of 8 weeks from the initial
injury to qCT scan. Although this duration may appear
relatively short, Nardo et al.46 demonstrated similar
timelines with bone marrow changes being evident on
MRI as soon as 10 weeks following brief immobilization.
In addition, van Meer et al.45 observed a difference in
DEXA measured BMD between injured and contralat-
eral knees as soon as 10.4 weeks after an ACL injury. As
such it is noteworthy the current qCT method can detect
early BMD changes after an ACL injury, which may be
due to trauma-related factors and/or reduced weight
bearing and immobilization.

Limitations
There are several limitations to this study. First, there

is potential for variability despite an attempt to stan-
dardize the technique with a single surgeon performing
all the procedures and a single postimaging analysis
technician performing all the processing. The authors
aimed to reduce this with a testeretest demonstrating
acceptable intraobserver reliability. Second, the authors
used a commercially available qCT software with a
stacked “ring” technique centered along a guide pin
tract on axial images to create a reproducible method of
tibial tunnel BMD assessment on any in-vitro specimen.
However, the in vivo BMD analysis required custom
software development to allow the user to define the
trajectory of a standard ACL reconstruction tibial tunnel
upon which the stacked “ring” technique could be
aligned.44 Third, this investigation used a total of 90
specimens for analysis based on resource availability.
This may represent a small sample size, but the current
cohort represents comparable numbers to published
cohorts and is unique in the use of qCT. In addition, the
investigators attempted to use the combination of
cadaveric, healthy host, and ACL ruptured patients to
provide an appropriate range of BMD types.

Conclusions
A standardized method to quantitatively measure the

volumetric BMD within the region of a standard tibial
tunnel for ACL reconstruction was successfully devel-
oped and validated. Significant osteopenia of the injured
knee occurs following ACL injury when compared to the
contralateral uninjured knee. This observation has
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potential clinical implications for ACL graft tibial fixation
and healing.
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