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A fundamental mechanism of the innate immune system is the recognition, via extra- and 
intracellular pattern-recognition receptors, of pathogen-associated molecular patterns. 
A prominent example is represented by foreign nucleic acids, triggering the activation of 
several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is 
known to be activated by single-stranded RNA (ssRNA), which can be specifically influ-
enced through elements of sequence structure and posttranscriptional modifications. 
Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants 
in vaccination processes. In this context, covalent conjugations between adjuvant and 
vaccines have been reported to exhibit synergistic effects. Here, we describe a concept 
to chemically combine three therapeutic functions in one RNA bioconjugate. This consists 
in the simultaneous TLR7 stimulation by ssRNA and smTLRa as well as the therapeutic 
function of the RNA itself, e.g., as a vaccinating or knockdown agent. We have hence 
synthesized bioconjugates of mRNA and siRNA containing covalently attached smTLRa 
and tested their function in TLR7 stimulation. Strikingly, the bioconjugates displayed 
decreased rather than synergistically increased stimulation. The decrease was distinct 
from the antagonistic action of an siRNA bearing a Gm motive, as observed by direct 
comparison of the effects in the presence of otherwise stimulatory RNA. In summary, 
these investigations showed that TRL7 activation can be impeded by bioconjugation of 
small molecules to RNA.

Keywords: bioconjugate, click chemistry, immunostimulation, mrna, sirna, small molecules, toll-like receptor

inTrODUcTiOn

Recognition of nucleic acids by the innate immune system results in the activation of signaling 
cascades that drive animal immune responses. Pattern-recognition receptors (PRRs) are tasked 
to discriminate between non-infectious self and potentially infectious non-self nucleic acids. This 
may be achieved by differences in structure, localization, and modification (1, 2). Recognition of 
non-self nucleic acids typically leads to an immune response that ultimately also shapes adaptive 
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immunity. Precise definition of the structural details in nucleic 
acids that correspond to pathogen-associated molecular pat-
terns (PAMPs) has important impact on our understanding of 
immune responses in bacterial and viral infections, autoim-
mune diseases, and cancer biology (2). Immediate impact of 
new insights will also affect the field of therapeutic nucleic acids 
(3, 4). Understanding the molecular details of innate nucleic 
acid recognition has made significant progress in the last cou-
ple of years with respect to cytosolic factors like retinoic acid 
inducible gene I (5–7), melanoma differentiation-associated 
protein 5 (8), absent in melanoma 2 (9–12), and more recently, 
cGAS (13, 14). Another class of membrane associated PRRs are 
toll-like receptors (TLRs), among which a subset is located to 
endosomes. These are thought to inspect exogenous material 
during the process of uptake and endocytosis. While TLR9 
recognizes DNA; TLR3, TLR7/8, and murine TLR13 recognize 
microbial RNA. TLR3 recognizes double-stranded RNA above 
a minimal helix length of ~40 nucleotides (15), yet short siRNA 
might also induce activation in a different binding manner 
(16). TLR13 is activated by a 13-base sequence from bacterial 
23S rRNA, and activation is sensitive to N6-methylation of a 
specific adenosine (17–20). PAMP recognition by the TLR7/8 
system is particular in that RNA as well as a series of small 
molecules with structural elements from purine nucleobases 
are both recognized (21–26), albeit apparently associated to 
slightly different signaling modes (27, 28). Indeed, TLR7 and 
TLR8 were reported to bind degradation products of RNA at 
two different sites. A crystal structure of toll-like receptor 7 
(TLR7) showed a presumed RNA degradation product, namely, 
guanosine (G), bound to a region that overlaps with a small 
molecules TLR7 agonists (smTLRa) binding site. Similarly, 
uridine was found in a TLR8 structure. Furthermore, a single-
stranded RNA (ssRNA) was found binding to a distinct second 
binding site (28, 29). From these structures came the inspiration 
for a bioconjugate molecule offering ligands that might bind 
in both of the above binding sites. Whereas both TLR7 and 
TLR8 recognize RNA, their expression patterns in leukocytes 
differ (30). TLR7 is highly expressed in plasmacytoid dendritic 
cells (pDCs), which secrete type I IFN. Of note, pDCs are very 
nearly the exclusive contributors to IFN secretion from PBMCs, 
which is why PBMC preparations are popular in measurements 
of TLR7 stimulation via ELISA-based quantification of IFN in 
the supernatant after exposure of PBMCs to stimulating agents. 
In contrast, TLR8 is found in monocytes where stimulation 
induces TNF (31). While RNA recognition of this system has 
long been described as specific for ssRNA (2), recent results 
suggest that this simplified review is in need for some refine-
ment. The recognition of mRNA (32) may still be attributed to 
its single-stranded regions, but tRNA contains very few truly 
single-stranded regions. Recognition of tRNA was evidenced 
in three domains of its structure, only one of which is truly 
single stranded (33, 34). These studies have also unraveled a 
particular mode of action of posttranscriptional modifica-
tions in the discrimination of self and non-self RNA. Ribose 
methylations in a specific sequence context (35) where shown 
to act as TLR7 antagonists (36), which do not only prevent the 
modified RNA from being sensed by TLR7 but also dampen 

response to additional unmodified, otherwise stimulatory 
RNA. Such modulation of TLR7 activation is of high interest in 
the design and development of therapeutic RNA, e.g., siRNA 
for diverse RNAi approaches (37, 38) or mRNA for tumor vac-
cine (39). In some approaches, an inhibition of TLR7 response 
is desirable, e.g., limiting immunostimulatory side effects by 
siRNA (40–42). In contrast, nucleic acid-derived adjuvants are 
frequently used to deliberately induce a boost of innate immune 
response, which, in turn, is known to increase the efficiency 
of certain vaccines (4, 43, 44). Ideally, it would be possible to 
fine-tune stimulatory properties via the nature and density of 
synthetic modifications on a therapeutic RNA. As a step in 
this direction, we decided to test, if the aforementioned TLR7 
stimulation by mRNA and smTLRa could be further modulated 
by covalent conjugation to form a bidentate ligand reaching 
both binding sites of the receptor. Successful stimulation of 
innate immunity has been reported for covalent conjugates of 
various TLR ligands. In particular, ligands for TLR4, TLR7, and 
TLR9 have been combined by covalent conjugation in a single 
molecular entity and used to stimulate secretion of NFκB, 
IL-12, and other cytokines from bone-marrow derived DCs 
(45). Small molecule TLR7/8 agonists have been conjugated to 
various polymeric carriers thereby retaining their stimulatory 
properties. For example, the adenine derivative 1V270 was 
conjugated to a phospholipid via its N9 on the purine ring 
(46). Via the same site, another adenine derivative 1V209 was 
attached to polysaccharides (47). The same nitrogen, numbered 
N1 in tricyclic derivatives of the -quimod series (numbered I 
or 1 in Figure S1 in Supplementary Material), was used for 
conjugation of an imiquimod derivative to nanogels (48). In a 
similar concept, N1-derivatives of resiquimod (R848) to alkane 
and PEG chains leading to self-assembly of the compounds in 
to nanosized particles (49). Further, derivatives of the same 
compound class explored the C8 position (VIII in Figure S1 
in Supplementary Material), the C2 position (II in Figure S1 in 
Supplementary Material), and exocyclic N4 (IV in Figure S1 in 
Supplementary Material), finding derivatization at these sites 
compatible with TLR7 stimulation (50, 51).

Based on the above findings, our concept, as depicted in 
Figure  1, aimed at the synthesis of a trifunctional mRNA, 
comprising two types of TLR agonists and the vaccine contained 
in the mRNA sequence itself. We chose the exocyclic N4 of 
resiquimod and the secondary amine in the C2-side chain of 
gardiquimod as attachment points for a bioconjugation approach 
that made use of click chemistry of the Cu(I)-catalyzed azide-
alkyne 1,3-dipolar cycloaddition (CuAAC) type. Derivatization 
of this site, according to the recently published structure of TLR7 
(28), is expected to disrupt only a single of the hydrogen bonds 
involved in the recognition of resiquimod, suggesting minimal 
interference with activity. The same structure suggested that a 
PEG chain might bridge the two identified binding sites in this 
receptor, one for resiquimod, and the other for RNA, potentially 
causing a cooperative effect from a bidentate ligand made of RNA 
and a small molecule derivative of resiquimod. Since RNAs bear-
ing terminal alkyne groups are readily accessible, we synthesized 
azide derivatives with 1H-imidazo-[4,5-c]-purine structure 
(52–54), i.e., derivatives of imidazoquinolines of the quimod 
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and siRNA results in cytokine (IFNα) secretion from plasmacytoid DCs within PBMCs. How is TLR7 activity modulated upon covalent conjugation of both TLR7 
ligands?
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series and produced the respective bioconjugates for testing. 
While the anticipated cooperativity could not be evidenced, we 
observed that covalent modifications of RNA effectively decrease 
TLR7-mediated signaling.

MaTerials anD MeThODs

Details to the synthesis procedures of azide-modified TLR 
ligands, mannose- and dye-derivatives can be found in the sup-
plementary section.

Working with Dna and rna
All DNA and RNA samples were handled in DNase/RNase- and 
endotoxin-free water (Zymo Research). Concentrations of DNA 
and RNA samples were determined using a NanoDrop™ spec-
trophotometer (Thermo Scientific). Additional confirmation of 
RNA concentration was carried out with a Qubit™ fluorometer 
(Thermo Scientific), excluding false positive results.

pDna amplification and Preparation
For plasmid DNA, we used the transcription vector pGEM4Z64A-
eGFP (55), which was transformed into competent DH5α 
Escherichia coli strain (Invitrogen) according to the manufac-
turer’s instructions and selected via an ampicillin resistance gene. 
pDNA was isolated from E. coli overnight culture following the 
Spin Format Protocol Modification of a GenElute™ high per-
formance endotoxin-free plasmid maxiprep kit (Sigma-Aldrich). 
Plasmid linearization was carried out with the restriction enzyme 

BcuI (Thermo Scientific) as described by the manufacturer, puri-
fied via phenol/chloroform extraction and followed by ethanol 
precipitation.

mrna synthesis
mRNAs were transcribed in vitro from 5.0 μg linearized pDNA 
template using in house expressed and purified T7 RNA polymer-
ase at 37°C for 4 h in a total volume of 100 μL Tris–HCl (40 mM, 
pH 8.1). Nucleoside triphosphates were applied in a 5 mM final 
concentration, whereas alkyne-modified 5-ethynyluridine-5′-
triphosphate (EUTP) (Jena Bioscience, Germany) was used 
in indicated percentages of 5  mM and UTP in the remaining 
amount. Additionally, the reaction contained MgCl2 (30  mM), 
dithiothreitol (DTT 5  mM), spermidine (1  mM), and 0.01% 
Triton X-100. In vitro transcriptions (IVTs) were stopped by 
DNaseI treatment as described by the manufacturer (Thermo 
Scientific). Subsequent capping reactions were carried out using 
the combination of Vaccinia Capping System and mRNA Cap 
2′-O-methyltransferase (NEB) following the one-step capping 
and 2′-O-methylation protocol (NEB) prolonged to 2  h. All 
in vitro transcripts and capped mRNA-constructs were purified 
using the MEGAclear™ Kit (Ambion™).

click Functionalization
All copper-catalyzed click reactions were performed in aqueous 
solutions containing up to 5% (v/v) dimethyl sulfoxide. The 
solutions were buffered to pH 8 with NaH2PO4 (100 mM) and 
contained 50 μg (5 μM) mRNA or 1 nmol sense siRNA (MH662; 
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sequence see Supplementary Material, p. 26; IBA, Goettingen/
Germany), respectively, 120–200  μM azido-functionalized 
ligand [synthesis and characterization for azide-compounds 
gardiquimod-diethylene-glycol-azide (GDA), resiquimod-pol-
yethylene-glycol-azide (RPA), MMA, TMA, and PDI are given 
in the supplement]; SCy5-azide (Jena Bioscience, Germany), 
250 μM CuSO4·5H2O, 1.25 mM tris-[4-(3-hydroxypropyl)-(1,2,3)
triazolyl-1-methyl]amine, and 2.5  mM sodium ascorbate. The 
reaction mixtures were agitated under light protection at 25°C 
for 2 h. Reactions were stopped through addition of equivalent 
volumes of a 1 mM EDTA solution and purified through ethanol 
precipitation.

Polyacrylamide gel  
electrophoresis (Page)
mRNA samples (1  μg) were dissolved in gel loading buffer 
[containing 20% glycerol in 1× TBE (Carl Roth®)] and loaded 
onto a 6% polyacrylamide gel. Electrophoresis was carried out in 
1× TBE (Rotiphorese®, Carl Roth®) buffer at 12 W for 4 h. Gels 
were post-stained for 20 min with Stains-all (Sigma-Aldrich) and 
destained overnight in 75% isopropanol. Nucleic acid bands were 
visualized on a Typhoon 9400 (GE Healthcare) using 633  nm. 
Emission signals were recorded at 670 nm.

Single-stranded siRNA samples were analyzed by denaturing 
PAGE. Twenty-five picomoles of oligonucleotides were loaded 
onto a 20% denaturing polyacrylamide gel containing 1× TBE 
(compounds for denaturing PAGE from Carl Roth®). PAGE was 
performed in 1× TBE buffer (12  W/4  h), gels were then post-
stained for 20 min with Stains-all (Sigma-Aldrich) and destained 
overnight in 75% isopropanol. Detection was carried out on a 
Typhoon 9400 (GE Healthcare), before and after staining, using 
532 and 633 nm for excitation. Emission signals were recorded at 
settings 610BP30 nm and 670 nm.

hPlc analysis of eU-containing mrna
Sample Preparation
Prior to HPLC analysis, 20  pmol of each mRNA sample were 
digested to the nucleosides level according to the following pro-
tocol (56): samples were incubated in presence of 1/10 volume of 
10× nuclease P1 buffer (0.2 M NH4OAc pH 5.0, ZnCl2 0.2 mM), 
0.3 U nuclease P1 (Sigma-Aldrich, Munich, Germany), and 0.1 U 
snake venom phosphodiesterase (Worthington, Lakewood, CO, 
USA) at 37°C for 2 h. Next, 1/10 volume of 10× fast alkaline phos-
phatase buffer (Fermentas, St. Leon-Roth, Germany) and 1  U 
fast alkaline phosphatase (Fermentas, St. Leon-Roth, Germany) 
were added, and samples were incubated for additional 60 min at 
37°C. For the calibration series of EU, commercially available EU 
triphosphate was digested analogously.

HPLC Method
The digested mRNA samples were analyzed on an Agilent 1260 
HPLC series equipped with a diode array detector (DAD). A 
Synergi Fusion-RP column (4 μm particle size, 80 Å pore size, 
250 mm length, and 2 mm inner diameter) from Phenomenex 
(Aschaffenburg, Germany) was used at 35°C column tempera-
ture for the chromatographic separation of the nucleosides. The 

solvents applied were a 5 mM ammonium acetate buffer adjusted 
to pH 5.3 using acetic acid (solvent A) and pure acetonitrile 
(solvent B). The elution was performed at a flow rate of 0.35 mL/
min using a linear gradient from 0 to 8% solvent B at 10 min, 40% 
solvent B at 20 min, and 0% solvent B at 23 min. For additional 
7 min, the column was rinsed with 100% solvent A to restore the 
initial conditions. The detection of EU and the four canonical 
nucleosides was performed by measuring the column effluent 
photometrically at 254  nm using the DAD. For analysis of the 
recorded UV chromatograms and extracting the respective peak 
areas of EU and G, the Agilent MassHunter Qualitative Analysis 
software was used. The exact retention times of EU and the 
main nucleosides were determined using commercially available 
standard substances.

Quantification of EU in mRNA by HPLC Analysis
For quantification of EU in the mRNA samples, external calibra-
tion series were run for both EU (calibration range 2–120 pmol) 
and the G (calibration range 50–3,500 pmol) using commercially 
available reference substances. The detected peak areas for each 
calibration solution were plotted against the injected amount of 
EU or the G, and the slope of the linear fit of the resulting curves 
was used for calculation of the EU and G amounts in each sample. 
The amount of G was divided by the number of its sites per mRNA 
molecule, yielding the injected amount of mRNA molecules. The 
result was then used to calculate the amount of EU residues per 
mRNA (mol EU per mol mRNA).

stimulation of PBMcs
Human PBMCs were isolated from blood from voluntary healthy 
donors: informed consent was signed by each donor, and blood 
drawing was approved by the Ethic Committee of the Medical 
Faculty of the University Heidelberg (Permit S-157/2006). 
Heparinized blood was submitted to standard Ficoll-Hypaque 
density gradient centrifugation (Ficoll 1.078 g/mL) (42). PBMCs 
were resuspended in complete medium prepared of RPMI 1640 
(Biochrom, Berlin, Germany) supplemented with 10% heat 
inactivated (1  h, 56°C) FCS (Gibco/Thermo Fisher Scientific, 
Schwerte, Germany). For stimulation, mRNA was encapsu-
lated with DOTAP (N-[1-(2, 3-dioleoyloxy)propyl]-N,N,N-
trimethylammonium-205 methylsulfate) (Carl Roth, GmbH 
Karlsruhe, Germany) at a ratio of 3 μL DOTAP per 1 μg of RNA 
in Opti-MEM Reduced Serummedium (Life Technologies) and 
incubation for 10 min at room temperature. As a control, cells 
were incubated with the individual clickable small molecule-, 
dye-, and mannose-derivatives only at indicated concentrations. 
Additionally, cells were co-stimulated with unmodified mRNA 
in the presence or absence of small molecules and their respec-
tive clickable derivatives. All stimulations were performed in 
duplicates per individual donor at a density of 4 × 105 cells/well 
PBMCs in a 96-well flat bottom plate. Cells were incubated in a 
humidified 5% CO2 atmosphere at 37°C for 16–20  h. Cell-free 
supernatants were analyzed by sandwich ELISA for secretion of 
IFN-α (Affymetrix eBioscience, Frankfurt, Germany) accord-
ing to the manufacturer’s protocol. Cytokines were detected by 
measuring the absorbance at 490  nm with a 650  nm reference 
in a photometer (Sunrise reader, Tecan, Salzburg, Austria). 
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Cytokine concentration was calculated according to a standard 
dilution of recombinant cytokine using Magellan V 5.0 software 
(Tecan, Salzburg, Austria). Each experiment was repeated mini-
mum three times. Cytokine secretion of individual donors was 
normalized to a stimulation with 1 μg/mL eGFP-mRNA or R848, 
respectively, which served as internal calibrator. Cell viability of 
stimulated PBMCs was assessed by MTS assay using CellTiter 96 
Aqueous One solution proliferation kit (Promega, Madison, WI, 
USA) according to the manufacturer’s instructions. Cells were 
incubated for 3 h at 37°C in a humidified, 5% CO2 atmosphere. 
Viable cells were detected by measuring the absorbance at 492 nm 
in a photometer (Sunrise reader, Tecan, Salzburg, Austria).

generation and Transfection of human 
Dendritic cells
Myeloid DCs were generated from buffy coats of healthy vol-
unteers as described previously (57, 58). In brief, PBMCs were 
isolated by Ficoll density gradient centrifugation, and monocytes 
were isolated by plastic adherence and cultured in X-VIVO-15 
(Lonza) supplemented with 1% heat-inactivated autologous 
plasma, 800  IU/mL GM-CSF (Leukine, Berlex), and 100  IU/
mL IL-4 (CellGenix). Fresh media with GM-CSF (1,600 U/mL) 
and IL-4 (100 IU/mL) were given at day 2 and day 4. Immature 
DCs were harvested at day 6 and subsequently used for further 
electroporation experiments. All electroporation experiments 
with human DCs were performed with Neon Transfection System 
(Thermo Fisher Scientific). According to the manufacturer’s 
instruction, 0.5–1 ×  106 DCs were electroporated with various 
amounts of mRNA in a total volume of 100 μL of electroporation 
buffer. To achieve high transfection efficiencies, the following 
program was used: pulse voltage: 1,500  V; pulse width: 30  ms; 
pulse number: 1. Afterward, DCs were cultured in pre-warmed 
X-VIVO-15 supplemented with 1% heat-inactivated autologous 
plasma, 800  IU/mL GM-CSF and 100  IU/mL IL-4 for 24  h at 
37°C, 5% CO2. RNA translation was analyzed by flow cytometry 
(BD Accuri™ C6 Cytometer).

Knockdown in hela MaZ
Cells
HeLa MAZ cells (59) contain the episomal vector pMARS-
mODC-AZ, which encodes for a destabilized eGFP. Cells were a 
kind gift from Dr. Andriy Khobta from the group of Prof. B. Epe 
(Institute of Pharmacy and Biochemistry, Mainz).

Hybridization
siRNA single strands (antisense MH533 and sense MH662; 
sequences see Supplementary Material) were obtained from IBA 
(Göttingen, Germany). The hybridization experiments were car-
ried out in 1× phosphate-buffered saline (pH 7.4), with the two 
complementary strands in a 1:1 ratio, to result in a final duplex 
concentration of 5 μM. The strands were first incubated at 70°C 
for 3 min, and duplex formation was allowed at 37°C over 1 h. The 
prepared duplex siRNA was stored at −20°C.

Knockdown Experiments
Prior to transfection, 5  ×  104 HeLa MAZ cells were seeded in 
24-well plate in 1  mL DMEM (Thermo Fisher) with 10% fetal 

bovine serum (Sigma-Aldrich). After 1 day, medium was replaced 
by 500 μL of 10% FCS DMEM, and cells were transfected with 
siRNA. Briefly, to prepare siRNA/lipid transfection mixture, 
40 pmol from a starting 5 μM siRNA duplex was diluted in Opti-
MEM® (Thermo Fisher) in twofold dilution series and mixed with 
transfection agent Lipofectamine™ (Thermo Fisher) according 
to the manufacturer’s instruction. In the transfection time, 100 μL 
of siRNA was added in dropwise to the wells. Transfection experi-
ment was realized in duplicate, and each experiment was repeated 
three times. Cells were incubated 24 h, after which the medium 
was replaced by 185 μL of 10% FCS medium and 65 μL of 2 M 
MG115 (proteasome inhibitor, Sigma-Aldrich). This was followed 
by another 6 h incubation. For FACS analysis, cells were washed 
with 500 μL DPBS, trypsinized with 200 μL trypsin/EDTA, resus-
pended in 400 μL DPBS, and the eGFP signal measured by flow 
cytometry instrument (LSR-FortessaSORP, BD Biosciences) with 
excitation at 488 nm and a 530BP30 nm emission filter. Data were 
used for IC50 curves. The calculated eGFP signal corresponds to 
the product of the percentage of eGFP positive cells and their 
median fluorescence intensity, normalized to the value of posi-
tive controls (untreated with siRNA duplex). For acquisition and 
analysis, the FACSDiva Software (BD Biosciences) was used.

statistical analysis
Data were analyzed using GraphPad Prism 7.0 (GraphPad 
Software Inc.). Significant differences were assessed by two-way 
ANOVA followed by multiple comparisons tests. In all figures, the 
P values are indicated by ns (not significant; P > 0.05), *P ≤ 0.05, 
**P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.

resUlTs

The original question we sought to address, derived from the recent 
report of two distinct signaling pathways originating from TLR7 
stimulation, one triggered by small molecules of the imiquimod 
series, and the other triggered by RNA (27, 28). We wondered, 
if it was possible to simultaneously stimulate both pathways by 
chemically combining both sorts of PAMPs in the same molecule. 
Hence, we designed small molecule derivatives of the -quimod 
series with two alternative sites for immobilization on RNA mol-
ecules by CuAAC-click chemistry. RNA molecules could then 
be viewed as scaffolds to present both types of TLR7-activating 
molecular patterns. To this end, we used alkyne-modified siRNA 
as well as alkyne-modified mRNA, thus a small and a large RNA, 
both considered for therapeutic purposes (4, 39, 60) and both 
reported to be TLR7 ligands (61, 62).

azide-Functionalized small Molecule  
Tlr agonists: Tlr7 activity Depends  
on conjugation site
The synthesis route to azide-bearing small molecule TLR ligands 
is depicted in Figure 2 below. In order to equip gardiquimod 1 
(GQI) with an azido-ethylene glycol linker at its aliphatic amine, 
the hydroxyl group of the latter was converted into a good leaving 
group, a methane sulfonyl moiety. This linker was attached to the 
small molecule via substitution at the exocyclic secondary amine 
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FigUre 2 | synthesis of azide-functionalized small molecule toll-like receptor agonists. (a) gardiquimod-diethylene-glycol-azide (GDA) (2) from 
gardiquimod (1): (i) mesylation of HO-TEG-N3, 80%; (ii) SO2MeO-TEG-N3, acetonitrile, RT, 50%. (B) Resiquimod-polyethylene-glycol-azide (RPA) (resiquimod-
PEG4-N3) (4) from resiquimod (R848) (3): (iii) NHS-PEG4-N3, DCM, RT, 25%. (c) Titration of PBMCs with the commercial small molecules and their respective azide 
derivatives (nt, non-treated). IFN-α production was measured by ELISA as technical duplicate of biological triplicates (three donors). Due to donor variation in the 
absolute amount of IFN-α secreted, data from each individual were normalized to 1.0 μg/mL R848 (=100%) of the respective (n = 3; mean + SD). [Asterisks above 
bars indicate the respective P values evaluated by ANOVA and Sidak’s multiple comparisons test; no declaration = not significant (ns).]
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to give the desired product GDA 2. Resiquimod 3 (R848) was 
equipped with an azido-polyethylene-glycol linker by applying 
standard NHS-ester chemistry (63) between its primary amine and 
the reactive N-hydroxysuccinimide-group of the linker to yield 
the product RPA 4. The purity of both products was confirmed 
by 1H-NMR, full range and high resolution MS (Figures S2–9 in 
Supplementary Material), which was a prerequisite for subsequent 
experiments, to exclude residual starting material of the smTLRa.

The impact on immunostimulatory activity arising from the 
conjugates in contrast to the original agonists was evaluated by 
an ELISA-based measurement of IFN-α secretion from incubated 
PBMCs, which reflects activation of pDCs through TLR7 (33, 64). 
As the highly significant comparison in Figure  2C (all results 
of significance evaluation given in Table S1 in Supplementary 
Material) shows attachment of an azide-conjugated PEG-linker 
at the C-2-ethyl-amino-methyl-group of the 1H-imidazo-[4,5-c]-
quinolin scaffold (see also Figure S1 in Supplementary Material) 
ablated TLR7 stimulation of the gardiquimod derivative 2. This 
finding was in keeping with a previous study reporting diminished 
IFN secretion upon variation at the C-2 site (51), although others 
reported the N-9-position as a “tolerant” linker site upon struc-
ture–activity relationship measurements (52–54). In contrast, 
attachment of the PEG-linker to the C-4-NH2-group of 3, which 
resulted in the resiquimod derivative 4, led to less stimulation 
than 3 at a concentration of 0.1 μg/mL, but to an equal outcome 
at a concentration of 1 μg/mL and even higher at 10 μg/mL (see 
also Table S1 in Supplementary Material). Thus, the conjugation 
to a PEG chain, while it indeed did diminish the activity of 4, 
still allowed to retain activity that showed no difference up to 
a significant enhancement to unconjugated gardiquimod (Table 
S1 in Supplementary Material), which itself is a potent agent 
originally developed as a potential successor of imiquimod. The 

activity of 4 is in keeping with the conjugation chemistry interfer-
ing with receptor binding only at a single hydrogen bond (28). 
The linker-equipped resiquimod 4 is therefore a valid smTLRa 
for later comparison with its mRNA-conjugate. Of note, an MTS-
based cell viability assay (Figure S15 in Supplementary Material) 
showed decreased metabolic activity after exposure to 10  μg/
mL resiquimod, which likely explains the reduced IFN secretion 
under these conditions. However, cells showed normal viability 
under all other conditions.

synthesis of alkyne-Modified mrna and 
Posttranscriptional Functionalization
Using eGFP encoding mRNA as a model that allowed report-
ing its functionality in protein biosynthesis, we synthesized 
alkyne-modified mRNA by IVT with T7 RNA polymerase 
from a linearized plasmid-DNA template comprising a poly-dT 
sequence of 64 dTs for the in  situ synthesis of a 3′-poly-A-tail. 
For alkyne-modified mRNAs, 1 or 10% of the standard UTP 
reaction concentration were substituted with EUTP (65, 66), 
with no discernible impact on the IVT yield. The 5′-end of 
the purified IVT-construct was subsequently equipped with a 
7-methylguanosine-ppp-Gm cap structure (Cap1) (Figure S16A 
in Supplementary Material). This was effected by means of com-
bined enzymatic reactions of the vaccinia capping enzyme and 
2′-O-methyltransferase (67, 68) after optimization employing 
a tritium incorporation assay with 3H-S-adenosyl-methionine 
(Figure S16B in Supplementary Material).

With an mRNA equipped with terminal alkyne moieties and 
azide-functionalized small molecule derivatives (Figure 3A) in 
hand, CuAAC-click reactions were conducted according to Hong 
et al. (69). Integrity of the mRNA after click reaction was verified 
by PAGE (Figure S17 in Supplementary Material).
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FigUre 3 | synthesis of small molecule-Tlra bearing egFP-mrna. (a) Symbolic synthesis scheme of Cu(I)-catalyzed azide-alkyne-cycloaddition between 
azide-functionalized toll-like receptor (TLR) agonists and in vitro transcribed (n)alkyne-modified eGFP-mRNA. (B) HPLC-quantification of EU content (light green) in 
in vitro transcription (IVT)- and TLRa-eGFP-mRNA including click efficiency (blue) (n = 5; mean + SD).
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To assess incorporation of clickable nucleoside and click effi-
ciency, both, alkyne-containing in vitro transcripts and products 
from click reactions, were analyzed on the nucleoside level with 
respect to their existing/remaining EU content. Therefore, the 
RNA oligonucleotides were digested to nucleosides by stepwise 
incubation with nuclease P1, snake venom phosphodiesterase, 
and alkaline phosphatase and subjected to quantitative HPLC 
analysis. With the sequence of the unmodified mRNA containing 
119 uridines (Supplementary Material, p. 26), it was expected to 
find 1–2 and 12, respectively, of them replaced by 5-ethynyluri-
dine in IVT syntheses when employing 1 and 10% EU, respec-
tively. Figure  3B shows quantification results (light-green bars 
for EU-mRNA) confirming this assumption.

The yield of the implemented click reactions was determined 
from residual EU (light green and blue bars in Figure 3B). For 
both ligands, click modification of 1% EU-mRNA proceeded to 
82% completion, corresponding to 1–2 conjugated small mol-
ecules per molecule mRNA, and to 70% of the 10% EU-mRNA, 
equaling 8–9 conjugated small molecules per molecule mRNA.

To gauge the dynamic range of a potential cooperative stimu-
lation by both types of TLR7 agonists, they were tested together. 
Therefore, unmodified mRNA concentration was varied at a con-
stant concentration (0.1 μg/μL) of the smTLRa. Figure 4 shows 
that smTLRa based IFN-α secretion can be increased by addition 
of mRNA (dark blue bars). In particular, the maximum effect of 
resiquimod, determined to be at 0.1  μg/mL in Figure  2C, was 
increased as a function of the concentration of additional mRNA 
(Figure  4; Figure S18 in Supplementary Material). Similarly, 
IFN-α secretion based on RPA, gardiquimod, or GDA alone, was 
increased upon addition of mRNA.

According to the working hypothesis, a relative increase upon 
stimulation with the covalent conjugates was expected. As shown 
in Figure  4, the impact on covalent attachment of the TLRa 
derivatives to mRNA in terms of TLR7 stimulation contradicted 
this original hypothesis. Rather than showing an amplification 
or synergistic effect, the TLRa moieties clicked onto the mRNA 
(yellow and orange bars) dampen the emission of IFN-α in com-
parison to free mRNA (gray bars) or the combined mRNA and 
smTLRa (dark blue bars). The effect is mild at 1–2 TLRa moieties 
per molecule mRNA but clearly more pronounced at a higher 
degree of modification, i.e., 8–9 moieties per mRNA.

non-Tlr-Binding Moieties also shield 
rna-conjugate Molecules from 
stimulating Tlr7
Since the mRNA bioconjugates tested so far all contained sub-
structures known to interact with TLR7, we decided to expand 
the scope of these investigations to include structures that are 
bona fide non-PAMPs. Figure  5A shows four azides employed 
in this perspective, which did indeed not cause any IFN-α secre-
tion in stimulation tests (not shown). Two are highly hydrophilic 
sugar moieties of divergent size, and two are fluorescent dyes 
of planar structure, whose lipophilicity is partially mitigated by 
sulfonyl groups. Synthesis of mRNA conjugates was performed 
as above. Click yields ranged from 50 to 60%, corresponding to 
1 or 6 clicked moieties per mRNA molecule, for 1 and 10% EU 
content, respectively (Figure 5B). As detailed in Figure 5C, the 
corresponding mRNA conjugates showed a dampened immune 
response, although to varying degrees. As before, any observable 
effects increase with the number of attached moieties. The most 
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FigUre 4 | comparison of the effect of small molecules Tlr7 agonists, rna, and covalent conjugates of both in immunostimulation. Titration of 
PBMCs with eGFP-mRNA (gray), commercial small molecules and their respective azide derivatives (light blue), 0.1 μg/mL of SMs titrated individually with 
eGFP-mRNA (dark blue), 1% (yellow) and 10% (orange) alkyne-eGFP-mRNA clicked with resiquimod-polyethylene-glycol-azide (RPA) and gardiquimod-diethylene-
glycol-azide (GDA), respectively. IFN-α production was measured by ELISA as technical duplicate of biological triplicates (three donors). Due to donor variation in the 
absolute amount of IFN-α secreted, data from each individual were normalized to 1.0 μg/mL eGFP-mRNA (=100%) of the respective (n = 3; mean + SD). Numeric P 
values are given in Figure S18 in Supplementary Material.
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pronounced effect was seen for the PDI dye, which also has the 
largest molecular weight. This conjugate is also the only one with 
a clear effect at 1% EU.

Transfer to sirna
The above findings suggest that conjugation of small molecules 
to mRNA reduces the potency of RNA to trigger TLR7-mediated 
IFN-α secretion and that the degree of reduction depends on 
the size and the number of small molecules attached to the 
RNA. This implies a certain dependence on the modification 
density, i.e., the number of conjugation sites per length unit of 
the RNA. Consequently, the effect would be expected to be more 
pronounced even for single attachment sites on smaller RNAs 
such as siRNAs. We therefore synthesized siRNA conjugates 
by CuAAC using the same azides as before (Figures  2 and 5). 
We used an siRNA sequence that previously had been shown to 
stimulate TLR7 (42). In contrast to mRNA, siRNA conjugates 
had the additional advantage that they could be separated from 
unreacted material, hence the immunostimulation data can be 
attributed to molecules carrying exactly one conjugation site per 
22 nucleotides ssRNA, illustrated in Figure 6A. The purified sense 
strands (Figure 6B) were tested for IFN-α secretion as described 
before. As shown in Figure 6C, the alkyne-bearing control sense 
strand (MH662) gives the most prominent amplitude in IFN-α 

secretion at a concentration of 1 μg/mL. In contrast, all siRNA 
conjugates show at least a decrease to 55% in TLR7 activation, 
with the strongest outcome being a sixfold reduction to 20% for 
the TMA conjugate.

influence of rna Modification  
on Biologic activity
The biological activities of both types of RNA after CuAAC 
conjugation were investigated bearing in mind that both are 
being actively investigated as therapeutic agents. Translation 
efficacies of click-conjugated mRNA derivatives were compared 
to their untreated controls by measuring the fluorescence of 
the encoded reporter protein eGFP. Therefore, immature DCs 
were electroporated with differentially treated mRNA samples. 
Fluorescence intensity was measured 24 h later by flow cytometry. 
The introduction of an alkyne moiety via IVT did not have any 
negative impact on protein expression at neither 1% (Figure S19 
in Supplementary Material) nor 10 EU% (not shown). However, 
CuAAC-mediated conjugation of any azide compound featured 
in Figures  2 and 5 ablated translational activity completely. 
Testing of material from mock reactions, i.e., click reactions 
without azide compound, confirmed that this effect is due to the 
conjugation and not a consequence of the reaction conditions of 
the CuAAC (Figure S19 in Supplementary Material). We conclude 
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FigUre 5 | (a) Selected azide-bearing molecules of different molecular weight: sugar moieties mono- and trimannose (5, 6), fluorescent dyes Sulfo-Cy5 (7), and 
perylene-derivative PDI (8). (B) HPLC quantification of EU content (light green) in in vitro transcription- and clicked-eGFP-mRNA including click efficiency (blue) 
(n = 2–5; mean + SD) (ct = unmodified control eGFP-mRNA). (c) Titration of PBMCs with eGFP-mRNA, 1 and 10% alkyne-eGFP-mRNA clicked with molecules 5–8 
(nt, non-treated). IFN-α production was measured by ELISA as technical duplicate of biological triplicates (three donors). Due to donor variation in the absolute 
amount of IFN-α secreted, data from each individual were normalized to 1.0 μg/mL eGFP-mRNA (=100%) of the respective donor (n = 3; mean + SD). [Asterisks 
above bars indicate the respective P values evaluated by ANOVA and Sidak’s multiple comparisons test; no declaration = not significant (ns).].
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that even a single lateral conjugation anywhere onto an mRNA is 
incompatible with the translation apparatus.

In order to assess how the respective bioconjugations would 
influence the RNAi efficiency of an siRNA, IC50 values were deter-
mined in HeLa MAZ cells (59) via the knockdown of a destabilized 
eGFP with selected constructs (Figure 6D). After hybridization of 
clicked sense-strand derivatives to the appropriate antisense strand, 
cells were incubated with a concentration series of siRNA double 
strands and eGFP fluorescence emission measured by FACS 24 h 
later. In keeping with our previously reported identification of a 
permissive attachment site on the 3′-end of the sense strand (70), 
conjugation of various azides did not significantly increase the IC50 
values (Figure 6D). Indeed, the *PDI derivative (pink in Figure 6) 
showed an IC50 value improved by ~3-fold.

The effect of Bioconjugates on Tlr7-
Mediated immunostimulation is Distinct 
from inhibition by ribose Methylation
Given that the bioconjugates of smTLRa ligands, as well as all 
other conjugates showed a decreased stimulation of TLR7, the 
question arose, if this decrease was comparable to that known from 

RNA carrying a Gm residue. This residue, a G nucleotide with a 
2′-O-methylation, when placed in the right sequence context, 
was previously shown to act as a TLR7 antagonist when applied 
together with otherwise stimulatory RNA (33, 35). A correspond-
ing assay was carried out with four of the above siRNA conjugates, 
namely, of RPA, GDA, TMA, and PDI. A constant concentration 
of stimulatory siRNA was co-incubated with increasing amounts 
of the conjugates, and for comparison an siRNA carrying a Gm 
modification was investigated under the same conditions. Figure 7 
shows a striking and clear inhibition of the Gm-RNA in comparison 
to the stimulatory RNA alone. In contrast, all mixtures of stimula-
tory RNA and conjugates showed a moderate and concentration 
dependent increase of IFN-α emission relative to the standard, 
presumably as a result of an overall increased amount of applied 
RNA. Hence, the effect of bioconjugation on stimulation of TLR7 
is neither inhibitory, nor as pronounced as that of Gm.

DiscUssiOn

The work described here was based on the working hypothesis 
that TLR7 activation might be synergistically increased by the 
combination of two known but distinct TLRa, namely, ssRNA 
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FigUre 6 | application on commercial mono-alkyne-functionalized sense egFP-sirna. (a) Sense siRNA constructs for PBMC stimulation. (B) Denaturing 
polyacrylamide gel electrophoresis for comparison of the click efficiency of the single-stranded, alkyne-modified oligonucleotide MH662 (sense), free azides (4, 2, 
5–8), and purified clicked (*) oligonucleotides, showing band shift after click reaction and additional fluorescent signals for SCy5 (blue) and PDI (purple). Before 
staining, excitation for dye-carrying constructs was done at 532 nm (PDI) and 633 nm (SCy5). Stains-all (gray/633 nm) was used as loading control to visualize 
non-fluorescent bands. Emission signals were recorded at 610BP30 nm and 670 nm (superimposition shown). (c) Titration of PBMCs with sense siRNA, clicked 
with molecules 2, 4, and 5–8 (nt, non-treated). IFN-α production was measured by ELISA as technical duplicate of biological triplicates (three donors). To account for 
donor variation in the absolute amount of IFN-α secreted, data from each individual were normalized to 1.0 μg/mL unmodified siRNA MH662 (=100%) of the 
respective donor (n = 3; mean + SD). (Asterisks above bars indicate P values evaluated by ANOVA and Sidak’s multiple comparisons test; no declaration = ns.)  
(D) eGFP-knockdown experiments with unlabeled control- (sense), TMA (6)- and PDI (8)-siRNA double strands [with antisense-strand MH533 (as)] in HeLa MAZ 
(stably expressing eGFP). IC50 (n = 3; mean + SD). (Respective P values for IC50 were evaluated by ANOVA and Dunnett’s multiple comparisons test.)
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and small molecules of the -quimod series. Previous work by 
the Weber group provided experimental evidence that these two 
classes of TLRa engage TLR7 in different recognition modes, 
since they lead to different signaling cascades (27), which could 
be confirmed by resent investigations on TLR7-crystal structures 
by Zhang et  al. (28). Our attempts to unite both patterns in a 
single bidentate molecular entity clearly failed, since the covalent 
conjugates of resiquimod to RNA decreased the TLR7-mediated 
interferon response, rather than increasing it. One interesting 
result is contained within the control reactions performed in this 
context, though: combined administration of mRNA and (uncon-
jugated) resiquimod can still increase the interferon response 
that was already saturated with respect to resiquimod—compare 
light blue and dark blue bars in the R848 panel in Figure 4. This 
indicates additional capacity for activation not accessible by R848 
alone. Synergistic but also anti-synergistic effects of stimulation 

by nucleic acid in combination with imidazoquinolines have 
been described for DNA in the context of human and murine 
TLR7/8 systems (71–73). For example, poly(T) ODNs inhibited 
TLR7 activation but enhanced TLR8 signaling by imidazoquino-
line derivatives optimized to trigger either TLR7 or TLR8. Those 
effects seemed to be independent from DNA receptor TLR9. 
Here, experiments with GDA, a non-stimulatory derivate, show 
that the opposite also occurs: coupling GDA to mRNA (Figure 4) 
inhibited activation by otherwise stimulatory RNA nucleic acid.

This modification scheme by CuAAC chemistry on mRNA 
was explored, to our best knowledge, for the first time concern-
ing immunostimulation and protein expression. The complete 
ablation of mRNA translation on the 5-position of uridines, even 
by a single modification, is somewhat surprising. It suggests that, 
besides the coding region, the entire length of the RNA (with the 
possible exception of the poly-A tail) is subject to some kind of 
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FigUre 7 | a new distinct type of prevention of toll-like receptor 
7-mediated immunostimulation: steric shielding acts different from 
ribose methylation. PBMCs were incubated with 1.0 μg/mL sense siRNA 
(MH662) and simultaneously with a titration series of MH662 bearing either a 
Gm motive (2′-OMe) at position 8, or MH662 clicked to azides of resiquimod-
polyethylene-glycol-azide (4), gardiquimod-diethylene-glycol-azide (2), TMA 
(6), or PDI (8) (nt, non-treated). IFN-α production was measured by ELISA as 
technical duplicate of biological triplicates (three donors). To account for 
donor variation in the absolute amount of IFN-α secreted, data from each 
individual were normalized to 1.0 μg/mL unmodified siRNA MH662 (=100%) 
of the respective donor (n = 3; mean + SD). (Asterisks above bars indicate 
the respective P values evaluated by ANOVA and Dunnett’s multiple 
comparisons test; no declaration = ns.)
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steric surveillance, which is unlikely to be effected by ribosomes 
alone, since the 3′-UTR is also concerned. More promising is 
the continued function of siRNA conjugates, whose potentially 
undesired immunostimulation can be partially shielded by bulky 
conjugates. A serendipitous discovery is the actual improvement 
of RNAi efficiency upon addition of the large perylene dye. While 
one might speculate this to be related to issues of membrane 
penetration from the endosomal compartment into the cytosol, 
detailed follow-up studies are required to determine the extent 
of this effect.

The recurrent observation of a moderately decreased response 
to conjugates containing small molecules attached to the RNA 
chain laterally (mRNA) or terminally (siRNA) are in contrast 
to our previous observations of a truly active antagonist mode 
displayed by naturally occurring ribose methylations in defined 
nucleotide contexts, which, despite being much smaller, block 
activation even in the presence of otherwise potently stimulatory 
RNA (33, 35). Because we have ruled out a similar effect for the 
RNA bioconjugates synthesized here (see comparative data in 
Figure  7), we conclude that it is likely that the bioconjugated 
small molecule residues provide some amount of steric shield-
ing to the RNA, reducing TLR activation simply by blocking 
access to recognition notices in the RNA proper. In contrast, 
the antagonistic action of ribose-methylated RNAs is more in 
keeping with a mechanism in which the methylated RNA is 

bound by TRL7 but inhibits a conformational rearrangement 
conductive to signaling. Given that our work failed to identify a 
new structural principle for the activation of TLR7, we feel that 
it would mean over-interpretation to excessively discuss solely 
negative data in the context of the published X-ray structures of 
TLR/and TLR8 (28, 29).

In summary, in failing to show cooperative TLR7 stimula-
tion by R848-RNA conjugates, we have described a general 
steric shielding effect to reduce TLR7 stimulation by RNA. Our 
concluding experiment (Figure  7) has shown that the steric 
shielding effect discovered here is of fundamentally different 
nature than the inhibition known from ribose methylation  
(33, 35). Although, the latter is already an elegant method to 
prevent RNA molecules from immunostimulation, our findings 
are by no means negligible in RNA-bioconjugate chemistry as any 
label may potentially influence TLR7 stimulation. Of note, siRNA 
conjugates to trimeric sugar moieties similar to the trimannose 
conjugate (*TMA in Figures  5 and 6) are in preclinical trials 
(74), and their immunogenic potential is likely to be affected in 
a similar way.
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