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ABSTRACT
Background  The CHIC study (COVID-19 High-
intensity Immunosuppression in Cytokine storm 
syndrome) is a quasi-experimental treatment study 
exploring immunosuppressive treatment versus 
supportive treatment only in patients with COVID-19 
with life-threatening hyperinflammation. Causal 
inference provides a means of investigating causality 
in non-randomised experiments. Here we report 
14-day improvement as well as 30-day and 90-day 
mortality.
Patients and methods  The first 86 patients (period 
1) received optimal supportive care only; the second 
86 patients (period 2) received methylprednisolone 
and (if necessary) tocilizumab, in addition to optimal 
supportive care. The main outcomes were 14-day 
clinical improvement and 30-day and 90-day survival. 
An 80% decline in C reactive protein (CRP) was 
recorded on or before day 13 (CRP >100 mg/L was 
an inclusion criterion). Non-linear mediation analysis 
was performed to decompose CRP-mediated effects 
of immunosuppression (defined as natural indirect 
effects) and non-CRP-mediated effects attributable 
to natural prognostic differences between periods 
(defined as natural direct effects).
Results  The natural direct (non-CRP-mediated) 
effects for period 2 versus period 1 showed an OR of 
1.38 (38% better) for 14-day improvement and an OR 
of 1.16 (16% better) for 30-day and 90-day survival. 
The natural indirect (CRP-mediated) effects for period 
2 showed an OR of 2.27 (127% better) for 14-day 
improvement, an OR of 1.60 (60% better) for 30-day 
survival and an OR of 1.49 (49% better) for 90-day 
survival. The number needed to treat was 5 for 14-
day improvement, 9 for survival on day 30, and 10 for 
survival on day 90.
Conclusion  Causal inference with non-linear 
mediation analysis further substantiates the 
claim that a brief but intensive treatment with 
immunosuppressants in patients with COVID-19 and 
systemic hyperinflammation adds to rapid recovery 
and saves lives. Causal inference is an alternative 
to conventional trial analysis, when randomised 
controlled trials are considered unethical, unfeasible 
or impracticable.

INTRODUCTION
Patients with COVID-19 pneumonia may 
develop a syndrome characterised by severe 
systemic hyperinflammation, sometimes 
called cytokine storm syndrome (CSS). 
Patients with COVID-19-associated CSS are 
at an increased risk of severe pulmonary 
thrombosis, respiratory insufficiency and 
death.1

Key messages

What is already known about this subject?
►► We have previously shown in a quasi-experimental 
treatment study with non-equivalent treatment 
arms (the CHIC study, COVID-19 High-intensity 
Immunosuppression in Cytokine storm syndrome) 
that a brief course of high-dose methylpredniso-
lone plus tocilizumab if necessary may accelerate 
recovery and save lives of patients with COVID-19-
associated cytokine storm syndrome.

►► The CHIC study was a non-randomised study, which 
leaves room for potential selection biases explain-
ing treatment differences and precludes causal 
conclusions.

What does this study add?
►► Causal inference with non-linear mediation analysis 
allows under certain circumstances a causal inter-
pretation of the results of quasi-randomised experi-
ments with a control group.

►► We showed that the beneficial effects of 5–7 days of 
intense immunosuppressive therapy in patients with 
COVID-19-associated CSS on 14-day improvement 
and 90-day survival are mediated via an immediate 
and profound C reactive protein response.

How might this impact on clinical practice?
►► Results of quasi-experimental studies conducted 
under difficult circumstances or time pressure, or 
when randomised controlled trials are considered 
unfeasible or unethical, may gain credibility by ap-
plication of the principles of causal inference.
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http://rmdopen.bmj.com/
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Recently, we have shown in a quasi-experimental 
study2 with matched historical control patients (the 
so-called non-equivalent group design with matched 
controls, NEGD) that a strategy of immunosuppres-
sion with high-dose methylprednisolone (MP) plus 
the interleukin 6 receptor blocker tocilizumab (TCZ) 
for those who did not immediately respond may accel-
erate recovery and reduce mortality in patients with 
predefined signs of CSS.3 All study patients fulfilled 
the criteria for hyperinflammation, but the patients 
of the historical control group were admitted between 
7 March and 31 March (period 1) and the patients 
of the immunosuppressive treatment group starting 
from 1 April (period 2). None of the patients in period 
1 received (components of) the immunosuppressive 
treatment strategy, while all of the eligible patients in 
period 2 were treated according to this strategy. This 
strict assurance of period specificity excluded bias by 
indication. Further, conventional confounding anal-
ysis revealed that the treatment contrast between the 
intervention group and the historical control group 
remained fully intact after adjustment for baseline 
differences between both groups.3

It was argued by ourselves3 and by others4 that 
this quasi-experimental design did not preclude the 
scenario that the prognosis for patients in period 1 
was worse than for patients in period 2. This is a valid 
argument since hospitals were overwhelmed by criti-
cally ill patients in the first most hectic weeks of the 
pandemic and optimal supportive care for COVID-19 
had to be fully developed. Only a randomised 
controlled trial (RCT), it was argued, would have 
provided unambiguous proof. However, in the design 
phase of the study, we felt ethical and practical argu-
ments precluded the conduct of a randomised clin-
ical experiment with an untreated control arm in our 
setting.

In the absence of RCTs, causal inference has been 
proposed for studies with NEGD to further elaborate 
potentially causal relationships.5 Here we have applied 
the principles of causal inference to further substantiate 
the effects of immunosuppressive therapy in COVID-
19-induced hyperinflammation. We have used non-
linear mediation analysis, a form of causal inference, to 
decompose the effects due to differences in prognosis 
between different time periods and the effects due to 
the treatment itself, by introducing a mediator variable 
CRP response. The hypothesis, based on prior knowledge, 
was that part of the observed beneficial effect of immu-
nosuppressive therapy during period 2 was mediated by 
active suppression of inflammation and another part by 
a better prognosis in period 2 than in period 1. The anal-
ysis described here is an example of how, in the absence 
of a randomised controlled experiment, the credibility of 
quasi-experimental studies can be increased by the prin-
ciples of causal reasoning.

METHODS
The experimental study
Patients from the CHIC study (COVID-19 High-intensity 
Immunosuppression in Cytokine storm syndrome), 
described elsewhere in more detail,3 were analysed. The 
CHIC study was a quasi-experimental treatment study 
that used matched historical control patients. In brief, 
patients had to have COVID-19 pneumonia, compli-
cated by signs of hyperinflammation, as defined by 
rapid respiratory deterioration on or during admission, 
plus fulfilment of at least two out of three biomarker 
criteria (C reactive protein (CRP) >100 mg/L, serum 
ferritin >900 μg/L, D-dimer >1.500 μg/L). Treatment was 
strictly time-separated. Patients assigned to the historical 
control group had to be admitted in period 1 and were 
selected retrospectively using the same above-mentioned 
(biomarker) criteria. Patients eligible for the interven-
tion had to be admitted in period 2 and received treat-
ment with MP 250 mg intravenously on day 1, followed 
by MP 80 mg intravenously for at least 4 consecutive 
days. Single-dose TCZ, 8 mg/kg body weight, maximum 
of 800 mg, was administered intravenously if the clinical 
situation did not improve, or instead worsened between 
day 2 and day 5.

In the original CHIC study report, three primary 
outcome variables were defined: discharge from the 
hospital or at least two stages of improvement according 
to the WHO improvement scale designed for the purpose 
of influenza pneumonia; hospital mortality; and the need 
to start invasive ventilation.3 Outcomes were analysed on 
the basis of time-to-event. In comparison with patients 
in period 1 (on standard care), patients in period 2 (on 
treatment) had a 79% higher likelihood of two-stage 
WHO improvement, 65% less hospital mortality and 71% 
less need for mechanical ventilation.

For this causal inference analysis, three outcomes were 
analysed: WHO improvement on day 14 of CSS, survival 
on day 30 and survival on day 90. We refrained from 
analysing mechanical ventilation as an outcome since 
mechanical ventilation was considered another interme-
diate outcome variable between WHO improvement (in 
hospital) and survival on day 30 (partially in hospital) 
and day 90 (outside the hospital).

Causal inference
Causal inference, or causal reasoning, is a process of 
drawing conclusions based on the conditions of the occur-
rence of a certain effect.6 7 Causal inference shares the 
elements of a Bayesian analysis8 and incorporates prior 
knowledge and information about the pathophysiology 
of a condition, as well as knowledge about the mecha-
nism of action that is presumably at the basis of a certain 
effect.6 According to Pearl and MacKenzie6, causal infer-
ence presumes an association between exposure (X) and 
outcome (Y) (the question of correlation, forming the 
first layer of causal hierarchy), insight into how an inter-
vention on X (reflected by the operator do(X)) changes Y 
(the intervention question, forming the second layer of 
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causal hierarchy), and a theory about—or insight into—
how a different intervention on X than was really applied 
would have modified Y (the counterfactual question, 
forming the third layer of causal hierarchy).6 In an RCT, 
the counterfactual question is addressed by interpreting 
the effect in the control group (sometimes placebo). 
In studies with NEGD, other sources for counterfactual 
information should be sought and justified. In the CHIC 
study, counterfactual information was obtained using the 
untreated patients in period 1.

The structural causal model
The model of interest in this study is the relation between 
the COVID-19-induced state of hyperinflammation (X) 
on the one hand, and worsening of disease followed 
by respiratory insufficiency and death (outcome Y) on 
the other hand. According to Pearl and MacKenzie6, 
causality assumes that an intervention on X (do (X)) 
leads to a change in Y. Intensive immunosuppressive 
treatment with high doses of MP (or TCZ) administered 
intravenously is widely known to suppress inflammation 
in systemic rheumatological diseases, such as rheuma-
toid arthritis, systemic lupus erythematosus and vascu-
litis, and to improve their outcomes.9 10 The most widely 
available and sensitive biomarker to follow the state of 
systemic inflammation (X) is the patient’s serum CRP 
level. CRP can respond quickly (within days) to high-dose 
immunosuppressive treatment. A true causal relationship 
therefore not only requires an association between the 

treatment and the CRP response, but also between the 
CRP response and the outcome (Y). In addition, causality 
requires irreversibility, implying here that drug-induced 
suppression of inflammation (a positive CRP response) 
precedes a change in the clinical situation and not vice 
versa (namely that the clinical situation of the patient 
determines (precedes) the choice of treatment (which 
would cause bias by indication)).

The hypothesised structural causal graph (or directed 
acyclic graph) is visualised in figure 1A.

The association between X and Y (figure 1A) can be 
influenced by a set of variables (Ci) that can impact 
both X and Y and may confound the relationship of X 
on Y. Some of these confounders have been measured 
and adjusted for; others have not and can be respon-
sible for residual confounding. One consequence of 
applying the causal inference theory is that this back-door 
via Ci is closed by conditioning on do(X) by a phenom-
enon called d-separation11: arrows descending from do(X) 
and C1 collide in X (C1 and do(X) are the colliders), and 
the effects of C1 for the interpretation of the effects of 
X on Y can be ignored. Another (imaginary) set of vari-
ables (Ui) can be formulated that may have an impact 
on both do(X) and Y, and for which d-separation is irrel-
evant because there are no common causes. Examples 
of such disturbing variables, often found in studies with 
NEGD, are variables reflecting the severity of the disease, 
which physicians take into consideration when deciding 
about the start, change or intensity of a treatment. Such 
variables may cause confounding by indication. In the 
CHIC study (figure 1B), classic confounding by indica-
tion can be ruled out since treatment assignment was 
strictly time-separated (treatment=0 for period 1 and 
treatment=1 for period 2), but prognostic differences 
between period 1 and period 2 (a period effect) could 
still exist, and confounding of this type may contribute 
to explaining the observed treatment effects. In order to 
decompose the specific effect of treatment and the non-
specific effects of period (1 and 2) (referred to by Pearl12 
as front-door adjustment), a mediator variable (ΔCRP) 
is introduced that best reflects the pathophysiological 
mechanism by which immunosuppressive treatment is 
supposed to reduce hyperinflammation (X) and influ-
ence the outcome (Y). Non-linear mediation analysis 
(according to Pearl12 and VanderWeele13) is used to esti-
mate what part of the total observed effect is attributable 
to period (natural direct effect, NDE) and what part is 
attributable to treatment-induced suppression of inflam-
mation, mediated via ΔCRP (natural indirect effect, 
NIE) (see online supplemental text S1 and S2 for a more 
detailed discussion).

The mediator variable
It was hypothesised that active treatment (do (X)=1) in 
patients with hyperinflammation (X) will lead to a meas-
urable CRP response (M), which will in turn lead to a 
change in the outcome (Y). The discriminating capacity 
of M in predicting Y was tested by conventional receiver 

Figure 1  Structural causal model of how an intervention 
(do(X)=1) in patients fulfilling certain selection criteria (X) 
may have impact on a certain outcome (Y) in the context of 
a non-equivalent group design (A). (B) The situation worked 
out for the CHIC study in particular, where treatment refers 
to immunosuppressive treatment for patients with COVID-19 
who are in a state of life-threatening hyperinflammation 
(X), outcome to WHO improvement or survival (30 days 
and 90 days, respectively) (Y), and ΔCRP to a mediator 
80% CRP response (M). CHIC, COVID-19 High-intensity 
Immunosuppression in Cytokine storm syndrome; CRP, C 
reactive protein.

https://dx.doi.org/10.1136/rmdopen-2021-001638
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operating characteristic analysis. The optimal CRP 
response, measured up to 13 days after inclusion, based 
on the best balance between sensitivity and specificity for 
discriminating between clinical improvement (assessed 
after 14 days) or not, or survival (after 30 days) or not, 
appeared to be 80% decrease from baseline (data not 
shown).

Definition of natural indirect and direct effects
NIE is defined here as the effect that is mediated via M 
(the CRP response). NDE is defined here as all other 
effects (positive or negative) that are not mediated via 
M. Such effects may include adverse effects of the treat-
ment (eg, patients on immunosuppressive treatment may 
get complications such as bacterial infections) as well as 
unmeasured prognostic differences between patients 
in period 1 and patients in period 2, either existing at 
baseline or occurring during follow-up (unmeasured 
confounding) and not related to the mediator.

Modelling of the impact of treatment
After decomposition of the NDE and NIE, the ORs for 
the NIE (ORNIE in table 2) were assumed to reflect the 
unbiased effects of immunosuppressive treatment, and 
the ORs for the NDE (ORNDE in table 2) were assumed to 
reflect the unbiased effect of changed (improved) prog-
nosis in period 2 versus period 1. Only ORNIE was used 
to calculate the post-treatment likelihood for all three 
outcomes, as a function of their pretreatment likelihood 
(probability plots), using Bayes’ rule.14 Bayes’ rule implies 
post-treatment likelihood (expressed as odds) is propor-
tional to the product of OR for the treatment effect and 
pretreatment likelihood (expressed as odds):

post-treatment odds=ORNIE×pretreatment odds

Observed pretreatment odds were assumed to be the 
odds on the outcomes (Y) actually observed in period 1 
(the control period). The number needed to treat (NNT) 
with intensive immunosuppressive treatment in order to 
find one additional patient with a favourable outcome 
(Y) was calculated as NNT=1/absolute risk reduction 
(ARR). ARR was defined as the likelihood of Y in period 
2 minus the likelihood of Y in period 1.

RESULTS
Due to missing CRP values at follow-up, a proper CRP 
response could not be calculated in 6 of the 86 patients 
from period 1. Data on a CRP response were available for 
all 86 patients from period 2. In total 166 patients were 
included in this analysis. The mean (SD) baseline CRP 
level was 167 (98) mg/L for patients in period 1 and 159 
(73) mg/L for patients in period 2. The mean (SD) CRP 
response was 20% (51%) in period 1 and 85% (83%) in 
period 2. Table 1 proves that the likelihood of WHO clin-
ical improvement on day 14 and survival on days 30 and 
90 was strongly associated with the occurrence of an early 
CRP response (last column); those with a CRP response 
had better outcomes than those without. This effect was 
found both in period 1 (the period without treatment) 
and in period 2 (with treatment) (see columns 3 and 4). 
However, the likelihood of a positive CRP response was 
far higher for patients in period 2 (who had received 
treatment) than for patients in period 1 (who had not 
received treatment). Still, in period 1, a few positive CRP 
responses (8 of 80 had it) were documented, while not all 
patients in period 2 had a positive CRP response (21 of 
86 did not have it).

Table 1  Likelihood of clinical improvement (day 14) and survival (days 30 and 90) in both periods, stratified by CRP 
response* (up to day 13)

Likelihood (P)

Period 1, control patients
Period 2, patients on 
active treatment

Periods 1 and 
2, all patients

Improvement at 14 days ΔCRPno
0.24 (17/72)† 0.33 (7/21) 0.26 (24/93)

ΔCRPyes
0.88 (7/8) 0.75 (49/65) 0.77 (56/73)

All 0.30 (24/80) 0.65 (56/86) 0.48 (80/166)

Survival at 30 days ΔCRPno
0.49 (35/72) 0.57 (12/21) 0.51 (47/93)

ΔCRPyes
1.0 (8/8) 0.91 (59/65) 0.92 (67/73)

All 0.54 (43/80) 0.83 (71/86) 0.69 (114/166)

Survival at 90 days ΔCRPno
0.49 (35/72) 0.57 (12/21) 0.51 (47/93)

ΔCRPyes
1.0 (8/8) 0.85 (55/65) 0.86 (63/73)

All 0.54 (43/80) 0.78 (67/86) 0.66 (110/166)

Figures in brackets reflect the number of patients (n/N).

*The ΔCRP threshold for a ‘good CRP response’ was defined as 80% decrease from baseline based on receiver operator characteristic 
analysis.
†0 ≤ likelihood (P) ≤1.
CRP, C reactive protein.
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When looking in the strata of ‘no CRP response’ (the 
lines with ΔCRPno), there was also some effect of period 
2 versus period 1, independent of CRP response, but this 
contrast was smaller than the contrast between positive 
CRP response and no positive CRP response for all three 
outcomes. So far, it looks as if immunosuppressive treat-
ment had an effect on outcome via CRP response (an 
indirect effect), but that there was also a period effect (a 
direct effect).

Direct and indirect effects were further decomposed 
and quantified using non-linear mediation analysis 
(table 2). For all three outcomes, direct (CRP response-
independent) period effects could be demonstrated. 
The likelihood of non-treatment-related WHO clinical 
improvement on day 14 was 38% higher (OR=1.38) for 
patients in period 2 than in period 1, and survival was 
16% higher (OR=1.16) (both on day 30 and day 90). 
This means that, irrespective of immunosuppressive 
treatment, the overall prognosis of period 2 patients for 
improvement and survival was better than of period 1 
patients.

For all three outcomes, substantial indirect effects 
could also be demonstrated. The likelihood of CRP 
response-mediated clinical improvement on day 14 was 
127% (OR=2.27) higher for patients in period 2 than in 
period 1, 30-day survival was 60% (OR=1.60) higher and 
90-day survival was 49% (OR=1.49) higher.

Figure 2 extrapolates the impact of the treatment effects 
(the decomposed NIE) to different virtual pretreatment 
levels. Note that the figure reflects modelled data based 
on measured effects in the CHIC study and not real data. 
The treatment effects visualised in this graph can be 
considered as unbiased. All curves lying above the diag-
onal represent beneficial treatment effects. The more 
the curve deviates from the diagonal the more impressive 
the treatment effect is. More treatment effects are seen 
in 14-day clinical improvement than in 30-day and 90-day 
survival. The symbols representing the actually measured 
data in the CHIC study are plotted in the graph. The 

NNTs calculated on the basis of these really observed 
data are 5 for 14-day clinical improvement, 9 for 30-day 
survival, and 10 for 90-day survival.

DISCUSSION
The data indicate that, in comparison with period 1, the 
immunosuppressive therapy administered to patients in 
period 2 has increased the 14-day clinical improvement 
rate over and above the level that could be expected 
based on the prognostic advantages that patients in 
period 2 (apparently) had. Similar effects were found for 
(30-day and 90-day) survival. It was possible to decompose 
the period effect (direct) from the CRP-mediated effect 
(indirect) by using mediation analysis. The period effect 
includes non-CRP-related improvements in management 
over time, such as better ventilatory support techniques,15 
more focus on anticoagulation,16 and putatively a better 
natural prognosis. While it cannot be entirely excluded 
that these improvements have also had some impact on 
CRP response, it is hard to believe that they could reduce 
baseline CRP levels by more than 80% within 13 days. 
The estimate of the immunosuppressive treatment effect 
is nevertheless conservative. It is possible that part of the 
specific effect by immunosuppressive treatment was not 
captured by us as indirect effect. As said, the threshold 
of 80% improvement in CRP before a CRP response 
was counted as present was quite high, and it cannot be 
excluded that some patients with a beneficial outcome 
due to immunosuppressive treatment had in reality a 
CRP response slightly lower than 80%. If true, this would 
mean that the real contribution of immunosuppressive 
therapy is even higher than estimated by us.

The difference in prognosis between period 1 and 
period 2 (the period effect), here reflected by an ORNDE >1 
in the decomposition analysis, was obvious. The primary 
(conventional) analysis of the CHIC study already showed 
that the existing (measured) differences at baseline 
could not be held responsible for the observed treatment 

Table 2  Decomposition of effects: OR for the natural direct effect (NDE), the natural indirect effect (NIE) and the total causal 
effect (TCE)

Between-group effect not 
mediated via CRP

Between-group effect 
mediated via CRP Total effect

ORNDE ORNIE ORTCE

Improvement at 14 days 1.38* 2.27 3.14

Survival at 30 days 1.16 1.60 1.87

Survival at 90 days 1.16 1.49 1.73

Two types of contrasts can be distinguished: contrasts not mediated by CRP response and contrasts mediated by CRP response. Contrasts 
not mediated by CRP response refer to ‘natural’ prognostic differences between period 1 and period 2 and may include differences 
existing already at baseline (measured and unmeasured) or differences occurring during follow-up (eg, differences in ventilatory support, or 
differences in antithrombotic treatment or unwarranted effects due to bacterial superinfection). Contrasts mediated by CRP response include 
differences specifically due to immunosuppressive therapy under the assumption that these cause suppression of inflammation (as assessed 
by an 80% CRP response).
*ORs refer to the contrast in outcome between period 2 and period 1. OR <1 indicates less effect on the outcome in period 2 than in period 
1; OR >1 indicates more effect in period 2 than in period 1.
CRP, C reactive protein.
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effects.3 Still, as brought up by others, differences in 
unmeasured variables can be responsible for differences 
in prognosis in a study with NEGD. Not only patients’ 
baseline prognosis may have differed, prognostic differ-
ences could also have occurred during follow-up through 
non-inflammation-mediated mechanisms (eg, differences 
in mechanical ventilation or anticoagulation therapy, or 
adverse effects due to immunosuppressive therapy).

At the roots of this causal analysis was the critique that 
the real efficacy of immunosuppressive therapy could 
not be estimated properly because of these prognostic 
differences (see figure 1: the proposed structural causal 
model). Formally, the CHIC study lacks the internal 
validity of an RCT. That there were prognostically rele-
vant differences between period 1 patients and period 2 
patients has been proven by this analysis, but the medi-
ation analysis also has made clear that these prognostic 
benefits only account for part of the observed differ-
ences between period 1 and period 2. In fact, the positive 

effects of immunosuppressive therapy outweigh the posi-
tive effects of a better prognosis over time.

In the primary analysis, it has already been stipu-
lated, using conventional statistical analysis, that the 
observed treatment contrast was robust to adjustment 
for measured (known) confounders. The structural 
causal model further adds credibility to this observation. 
Formally, by changing the state of hyperinflammation 
(X) through administering immunosuppressants (do 
(X)), by ruling out confounding of the relationship of X 
on Y by d-separation, and by proving that changing (X) 
has a positive impact on the outcome (Y) mediated by 
CRP (M), the relation between the ‘parent’ (X) and its 
‘descendant’ (Y) proves to be causal.6 This means immu-
nosuppressive therapy can be considered an effective 
means of improving outcome via reducing inflammation, 
as measured by CRP response. The requirement of time 
precedence, relevant for causation, is fulfilled since a CRP 
response up to day 13 follows the intervention on day 0 

Figure 2  Probability curves for the post-treatment likelihood of clinical improvement and survival, plotted against different 
(virtual) pretreatment likelihoods. Post-treatment likelihood is the product of prior likelihood (expressed as odds) and OR 
for the natural indirect effects (ORNIE), as determined in table 2. The diagonal reflects the situation of zero treatment effect. 
Curves above the diagonal reflect a beneficial effect on outcome (Y) by treatment (do(X)=1). Pretreatment likelihood for 14-day 
clinical improvement, 30-day survival and 90-day survival, as observed in period 1 of the CHIC study, is marked with arrows 
in the figure. The number needed to treat (NNT) was calculated for these rates actually observed in the CHIC study by taking 
the reciprocal of the difference between pretreatment and post-treatment likelihood (NNT=1/absolute risk reduction). CHIC, 
COVID-19 High-intensity Immunosuppression in Cytokine storm syndrome.
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and precedes the clinical outcomes on days 14, 30 and 
90, respectively. The formal requirement of ignorability, 
meaning that treatment is independent of the outcome, 
assured in an RCT by random treatment assignment, is 
met here by the strict time separation of period 1 and 
period 2 and period exclusivity for control (period 1) 
and immunosuppressive (period 2) treatment. We had 
already stipulated in the primary publication that bias 
by indication could be ruled out as an explanation for 
observed treatment differences.3

The potential implications for the treatment of 
patients with COVID-19 are noteworthy. Figure 2 shows 
the potential impact of immunosuppressive treatment on 
top of optimal supportive care in appropriately selected 
patients, namely those with hyperinflammation or CSS. 
Note that these effects should be considered free of bias 
since we separated them from the period effects. At first 
glance the effects visualised in figure 2 do not seem to 
be very impressive, but the intervention is only brief and 
temporary (5–10 days), applied during the acute phase of 
COVID-19, while its benefit in terms of improvement and 
better survival extends until at least 90 days. The brief 
intervention is assumed to help patients recovering from 
a temporary but dangerous period of hyperinflamma-
tion, invoked by the viral infection followed by dysregu-
lation of the immune system.1 We used the CHIC study 
data to estimate NNTs, which were understandably better 
for clinical improvement than for survival. These esti-
mated NNTs compare very well with those that can be 
deduced from the RECOVERY trial, which has compared 
the effects of the glucocorticoid dexamethasone on top 
of supportive care only versus supportive care alone.17 
The beneficial effect of dexamethasone on 30-day 
mortality was rather small in the entire study population 
(we calculated an NNT of 36). Looking at the patients 
who needed mechanical ventilation, more likely those 
with hyperinflammation, the NNT in the RECOVERY 
trial was 8–9, very close to what we estimated for 30-day 
and 90-day survival in the CHIC study. Unfortunately, the 
RECOVERY investigators did not look at the subgroup 
of patients with increased CRP at baseline. Taking both 
studies together, though, NNTs of approximately 10 
for mortality/survival are very reasonable and broadly 
considered clinically relevant. It means that 10 patients 
with COVID-19-induced hyperinflammation should be 
treated in order to save one additional life.

The structural causal model we have proposed here 
applies to patients with COVID-19 who fulfil our criteria 
for hyperinflammation (generalisability). This means 
not all patients with COVID-19 admitted to the hospital 
should be treated with immunosuppressive drugs, even 
though independent RCTs have now claimed benefits 
for both components of our strategy, when adminis-
tered separately.17 18 The RECOVERY investigators also 
concluded that dexamethasone did not provide benefits 
when administered to patients who did not need oxygen 
to be supplied (the less severe patients)17 and TCZ 

seemed to be less effective in trials with patients without 
signs of hyperinflammation.19 20

The structural causal model as worked out here 
predicts the beneficial effects of immunosuppressive 
drugs are non-specific and depend on the rapid suppres-
sion of hyperinflammation (measured by a rapid and 
profound CRP response). It does not suggest or support 
a compound-specific treatment effect. Further, the struc-
tural causal model implies that immunosuppressive 
therapy only improves the outcome on top of optimal 
supportive care (ventilation, anticoagulation and so on), 
which should not be omitted.

Acceptability of clinical research, measured as clinical 
implementation, depends on a combination of several 
factors, including scientific rigour, comprehension and 
face validity. It is obvious that the results of RCTs are 
more credible than those of quasi-experimental studies, 
which is why the clinical community as well as guideline 
committees always wait for the trials. While the logic of 
causal inference is not fundamentally different from that 
underpinning RCTs, causal inference will be mistrusted, 
maybe since clinicians consider it less statistical (this 
article does not contain one p value) and medical jour-
nals will basically be reluctant to accept. One should for, 
instance, accept that a conclusion of causality depends 
on the acceptability of using counterfactual information 
(the third layer of causation). For the CHIC study, this 
means accepting the estimation of how patients in period 
1 would have responded on immunosuppressive therapy, 
based on a biologically plausible mechanism (suppres-
sion of inflammation). In reality, however, no one in 
period 1 has ever received immunosuppressive therapy. 
Clinicians and guideline committees, used to interpret 
RCT results that provide a global estimation of counter-
factuals on a silver platter (the control arm), will find 
this difficult to accept, but counterfactuals have become 
common in many fields of science and facets of society, 
such as artificial intelligence and machine learning, 
social sciences and econometrics.21–23 Societies cannot 
even properly function anymore without accepting coun-
terfactual information and principles of causal inference.

We still think conventional RCTs should be done 
whenever possible to resolve the most burning clinical 
questions and especially in situations of maximum uncer-
tainty (equipoise). However, clinical scenarios may exist 
in which RCTs are unrealistic, unethical or impractical. 
In such circumstances, causal inference provides a basis 
for accepting the added value of certain treatments that 
have not passed the filter of RCTs yet, or will never do so.
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