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Abstract
Background: Detailed knowledge of the subcellular location of each expressed protein is critical to a full
understanding of its function. Fluorescence microscopy, in combination with methods for fluorescent
tagging, is the most suitable current method for proteome-wide determination of subcellular location.
Previous work has shown that neural network classifiers can distinguish all major protein subcellular
location patterns in both 2D and 3D fluorescence microscope images. Building on these results, we
evaluate here new classifiers and features to improve the recognition of protein subcellular location
patterns in both 2D and 3D fluorescence microscope images.

Results: We report here a thorough comparison of the performance on this problem of eight different
state-of-the-art classification methods, including neural networks, support vector machines with linear,
polynomial, radial basis, and exponential radial basis kernel functions, and ensemble methods such as
AdaBoost, Bagging, and Mixtures-of-Experts. Ten-fold cross validation was used to evaluate each classifier
with various parameters on different Subcellular Location Feature sets representing both 2D and 3D
fluorescence microscope images, including new feature sets incorporating features derived from Gabor
and Daubechies wavelet transforms. After optimal parameters were chosen for each of the eight
classifiers, optimal majority-voting ensemble classifiers were formed for each feature set. Comparison of
results for each image for all eight classifiers permits estimation of the lower bound classification error
rate for each subcellular pattern, which we interpret to reflect the fraction of cells whose patterns are
distorted by mitosis, cell death or acquisition errors. Overall, we obtained statistically significant
improvements in classification accuracy over the best previously published results, with the overall error
rate being reduced by one-third to one-half and with the average accuracy for single 2D images being
higher than 90% for the first time. In particular, the classification accuracy for the easily confused
endomembrane compartments (endoplasmic reticulum, Golgi, endosomes, lysosomes) was improved by
5–15%. We achieved further improvements when classification was conducted on image sets rather than
on individual cell images.

Conclusions: The availability of accurate, fast, automated classification systems for protein location
patterns in conjunction with high throughput fluorescence microscope imaging techniques enables a new
subfield of proteomics, location proteomics. The accuracy and sensitivity of this approach represents an
important alternative to low-resolution assignments by curation or sequence-based prediction.
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Background
High-throughput methods for proteomics have become
necessary in order to characterize the tens of thousands of
proteins expressed in each multicellular organism.
Although high-throughput methods for structural pro-
teomics [1] and expression proteomics [2] are available
and a number of large-scale projects have been initiated to
make use of them, far less attention has been paid to auto-
mating the determination of the subcellular locations of
proteins.

As an alternative to experimental determination, various
approaches to predicting subcellular location from pro-
tein sequences have been described. These have used
amino acid composition [3,4], N-terminal signal peptide
sequences [5], functional domain composition [6,7], and
combined evidence from sequence properties and expres-
sion levels [8]. The limitation in these approaches to date
has been the absence of a systematic, high-resolution
framework for describing subcellular location. That is,
since only a small number (4–12) of broad location
classes have been used to train these systems, they cannot
distinguish the many different distributions that proteins
can have within a single organelle (or the many combina-
tions of these distributions that may occur). The perform-
ance of these approaches cannot be significantly
improved unless a large number of subcellular location
patterns are determined experimentally.

The spatial distribution of each protein in a cell type can
be detected by various methods for fluorescently tagging a
protein followed by fluorescence microscope imaging. In
recent years, automated classification systems that can be
used to assign proteins to the major subcellular location
classes have been described [9-11]. The combination of
such methods with high throughput imaging systems [12]
holds enormous promise for automating the systematic
determination of this critical aspect of protein function.
The information that can be obtained from such systems
can potentially be used to train improved systems for pre-
dicting location from primary sequence.

High-throughput automated recognition of protein sub-
cellular distributions requires both robust image features
and accurate classifiers. Several different image feature sets
have been derived for 2D and 3D fluorescence microscope
images [9,11,13,14], which capture information such as
texture, object morphology and geometrical properties.
Advanced feature reduction techniques have been used to
select the most discriminative features from these feature
sets [15]. Ten major subcellular location patterns in 2D
images and eleven in 3D images, including two that can-
not be discriminated by visual inspection, can be distin-
guished using these features.

Our group has considered two variations on this recogni-
tion problem, one in which only gray level images of the
distribution of a single protein are available, and the other
in which a parallel image of the DNA distribution in the
same cell is also available. Our initial work made use of an
artificial neural network for classification. With this classi-
fier, we have achieved 86% average classification accuracy
on 2D HeLa cell images without parallel DNA images and
88% accuracy with them [14]. For 3D HeLa cell images,
we have achieved 91% average accuracy for the same pat-
terns [11]. The goal of the work described here was to
improve upon these results using state-of-the-art classifi-
ers and new features. The classifiers evaluated in this paper
are described briefly below.

Support Vector Machines (SVM)
Support Vector Machines [16] are linear classifiers that
find a hyperplane between two classes which maximizes
the minimum distance between the hyperplane and the
data points (the maximum margin hyperplane). The
hyperplane can be sparsely represented by a small amount
of data lying on the boundary of the maximum margin.
Theoretically, maximum-margin classifiers can minimize
the classification structural risk, the upper bound on the
error expected for a test set [17].

SVM were first characterized in a two-class learning envi-
ronment. However, they can be extended to solve multi-
class learning problems by using one of three methods.

• Max-win classification [17] trains N support vector
machines, each of which separates class i from non-i. The
predicted class from the machine generating the highest
output score is selected as the prediction.

• Pair-wise classification [18] trains a separate binary clas-
sifier for distinguishing each possible pair of classes. Each
of these binary classifiers is given a vote and the class with
the most votes is selected as the predicted class.

• DAG (Directed Acyclic Graph) classification [19] puts
the binary classifiers trained in the pair-wise classification
method into nodes of a rooted binary DAG. The output of
each SVM is used to trace the graph until a leaf node that
specifies the final prediction is reached. The rationale
behind this method is that achieving a maximum margin
classifier at each node of the classifier graph guarantees an
upper bound on the generalization error [19].

Ensemble Methods
All current machine learning models have some con-
straints or local minima in certain application domains
given limited training data [20], resulting in the fact that
different learning models might perform better for differ-
ent application domains. Therefore it is useful to build an
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ensemble expert that can combine the outputs from dif-
ferent classifiers in a way such that the local limitations of
each individual model can be overcome in the ensemble
by other models that do not have the same constraints. In
practice, ensemble methods have been shown to perform
better than any of the base classifiers if the output errors
of each base classifier are not fully dependent [20-23].
However, it is still an open question whether an ensemble
model consisting of base classifiers with independent
errors performs better than one consisting of base classifi-
ers with partially dependent errors [24]. Many different
ways of creating ensemble classifiers have been described
[20,25] and we summarize some of these approaches
here.

AdaBoost
AdaBoost is an example of ensemble methods that create
new and improved base classifiers by iteratively manipu-
lating the training dataset [26]. It generates base classifi-
ers, such as a neural network or decision tree, at each
training iteration. Every newly created base classifier is fed
an adjusted distribution in which each data point in the
training set is assigned a weight computed from its classi-
fication result for the previous base classifier. The ration-
ale behind Adaboost is to force a new base classifier to
focus on the data points that were incorrectly classified
previously such that those hard examples can be better
classified in the new base classifier [26].

Bagging
Bagging, which stands for bootstrap aggregation, is
another way of manipulating training data for ensemble
methods. In each bagging iteration, the training examples
are bootstrapped (resampled with replacement), to gener-
ate a different training set for the base classifier [20]. On
average, 63.2% of the total original training examples are
retained in each bootstrapped set [20]. The rational
behind bagging is that unstable base classifiers, such as
neural networks and decision trees whose behavior could
be significantly changed by small fluctuations in the train-
ing dataset, are more likely to be stabilized after being
trained with different input data and combined after-
wards [20,25].

Mixtures-of-Experts
An ensemble method can also use a divide-and-conquer
strategy to separate the training examples into many par-
titions, train a local base classifier (an expert) for each par-
tition, and then combine the outputs of these local experts
in a supervised-learning way [25,27]. Mixtures-of-Experts
[27-29] is one kind of these ensemble methods.

Mixtures-of-Experts models the target data generation
process as [27]:

where Y stands for the target data, X is the input data, and
Z is a representation of hidden experts that relate an input
data point to a target. The target generation process can be
regarded as two steps [27,28]: one is to assign every input
data point to a specific expert and the other is to compute
the target data given the input data point and its related
expert. A gating network is used in Mixtures-of-Experts to
model P(Z | X), the first step above, and local expert net-
works are used to model P(Y | X, Z), which is the second
step above [27].

Majority-voting Ensembles
The majority-voting ensemble classifier is one of the sim-
plest ensemble forms that can combine the outputs of
multiple classifiers. Instead of using the complicated
schemes described above, we can simply choose the pre-
dicted class by plurality from a classifier pool [20,25].
Assuming that the errors made by the classifiers are not
highly correlated, the samples that are not accurately clas-
sified by one classifier have a good chance to be correctly
classified by a plurality of the other classifiers. The major-
ity-voting ensemble classifier overcomes the difficulty of
choosing one classifier from a pool of classifiers with sim-
ilar performance. Different weighting schemes have been
described to form the plurality prediction from the classi-
fier pool [20,30].

Results and Discussion
Subcellular Image Datasets
In order to demonstrate the feasibility of recognizing the
major subcellular structures in fluorescence microscope
images of single cells, we have previously created large col-
lections of 2D and 3D immunofluorescence images of
HeLa cells [9,11]. The subcellular location patterns in
these collections include endoplasmic reticulum (ER), the
Golgi complex, lysosomes, mitochondria, nucleoli, actin
microfilaments, endosomes, microtubules, and nuclear
DNA. We designed sets of numerical features to describe
the pattern in the images, which we term SLF (for Subcel-
lular Location Features). When these features were used to
train neural network classifiers, from 73–99% of the
images could be correctly classified (depending on the
pattern) [11,14]. Figure 1 depicts the most typical 2D and
3D image of each pattern from correctly classified images
using these neural network classifiers. (The most typical
image was selected using TypIC [31], an algorithm that
ranks images by their distance to the centroid of the fea-
ture space.) The goal of the work described here was to
improve on the previous performance.

P Y X P Z X P Y X Z
z

( | ) ( | ) ( | , )= ∑
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Comparison of Classifier Characteristics
Our first goal was to measure the performance of the dif-
ferent classifiers described above with the SLF that we
have used previously. Before embarking on this, we here
try to provide some insight into the differences between
the classifiers. For this purpose, we can describe them

using three characteristics. The first characteristic is the
complexity of the decision boundaries that a classifier can
generate. Figure 2 illustrates differences in this characteris-
tic for a pair of Golgi proteins, giantin and gpp130, that
are difficult to distinguish computationally (and essen-
tially impossible to distinguish visually [14]). There is

Representative images of each pattern from correctly classified images using previous neural network classifiersFigure 1
Representative images of each pattern from correctly classified images using previous neural network classifiers. Ten patterns 
from the 2D/3D HeLa cell image collection are depicted: endoplasmic reticulum (A/K), giantin (B/L), gpp130 (C/M), LAMP2 (D/
N), mitochondria (E/O), nucleolin (F/P), actin (G/Q), transferrin receptor (H/R), tubulin (I/S), and DNA (J/T). Each false color in 
the 3D images represents the fluorescence intensity from labeling the target protein (green), total DNA (red), and total pro-
tein (blue). Projections that are summed upon the Z or Y axis are shown. The feature sets SLF13 (2D) and SLF10 (3D) were 
used both for classification and for choosing a typical image.
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significant overlap in the feature distributions for these
classes but for illustration we selected the most
discriminative pair of features for the two Golgi patterns
using stepwise discriminant analysis (SDA) from the com-
bination of SLF7 and the 6 DNA features (SLF7DNA).
These were the fraction of fluorescence not in any object
(SLF7.79) and the convex hull eccentricity (SLF1.16). The
values of these features for each image are plotted in Fig-
ure 2 along with colored regions illustrating the boundary
between the two classes found by three different classifi-
ers. While the boundaries for the neural network and mix-
ture-of-experts classifiers are nearly linear, the boundary

for the exponential-rbf-kernel SVM is much more convo-
luted. The accuracy of the classifiers increases with the
extent of curvature, from 68.6% for the neural network, to
71.5% for the mixture-of-experts, to 75% for the exponen-
tial-rbf-kernel SVM.

A second classifier characteristic is the dependence of per-
formance on the size of the training set. This can be
divided into two parts: ability to learn from limited train-
ing data, and insensitivity to the presence of outliers when
training data is plentiful. Both of these can only be
described in relative terms by comparing the performance

Decision boundaries of various classifiers for distinguishing the patterns of two Golgi proteinsFigure 2
Decision boundaries of various classifiers for distinguishing the patterns of two Golgi proteins. A scatterplot of the two most 
informative features for distinguishing images of giantin (circle) and gpp130 (triangle). These were chosen from SLF7DNA by 
SDA. Various classifiers were trained using just these features and maps of the class assigned to various points in the feature 
plane by each trained classifier were created (a zero (white) pixel corresponded to gpp130). A false color map was created by 
combining the decision maps for exponential-rbf kernel SVM (green), the majority-voting ensemble classifier (red), and neural 
networks (blue).
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of different classifiers on the same data. Figure 3 shows a
comparison of the major classifiers for both 2D and 3D
images as a function of the amount of training data pro-
vided. For low numbers of training images, performance
is similar for all 2D classifiers but varies significantly for
the 3D classifiers. In particular, bagging does poorly for
low numbers of training images while the majority-voting
ensemble does quite well. As the amount of training data
is increased, all but one of the classifiers improve their
accuracy monotonically. The exception is the neural net-
work classifier, for which the accuracy decreases. We pre-
sume that this is due to a heightened chance of including
outlier images as the size of the training set increases.

The third characteristic is the sensitivity of performance to
the presence of uninformative features. This is illustrated
in Figure 4, in which classification accuracy is displayed as
a function of increasing numbers of features. For this pur-
pose, the features in SLF13 and SLF10 were ranked in
order of their discriminative ability by SDA. Classifiers
were trained using increasing numbers of the sorted fea-
tures, and when these were exhausted additional features
(which can be regarded as noisy or less informative fea-
tures) were randomly included from the 90-dimensional
SLF7DNA and 28-dimensional SLF9. For the 2D images
(Figure 4A), all classifiers except neural networks handled
the increasing number of input features with little impair-
ment from uninformative features. The decrease in accu-
racy for neural networks at high numbers of features,
along with the large fluctuations in their performance,

implies that feature selection is essential for neural net-
work classification in the SLF7DNA feature space. For 3D
images (Figure 4B), neural networks performed the best
and the SVM classifier showed a significant drop in accu-
racy as the number of features increased. When compared
to Figure 4A, the stability of neural networks as well as the
instability of SVM in the SLF9 feature space implies that
the ability of a classifier to adapt to more noisy features
depends on the feature space itself. As will be shown later,
image set classification is much less dependent on the fea-
ture space.

Table 1 summarizes the above three characteristics for all
major classifiers. It also shows the information content
(the number of parameters times the bits required for
each parameter) of the model that each classifier builds
from the training data. We note that the classifier with the
lowest information content, the neural network, is also
the most effective classifier at learning from limited train-
ing data.

Evaluation of Eight Classifiers
With this background, we proceeded to evaluate the dif-
ferent classifiers using two different feature sets for 2D
HeLa images, namely SLF8 and SLF13, and two different
feature sets for 3D HeLa images, namely SLF10 and SLF14.
Two feature sets were used for each image collection so
that performance with and without DNA features could
be compared. Eight classifiers, including a one-hidden-
layer neural network, linear-kernel SVM, rbf-kernel SVM,

Dependence of classifier performance on amount of training dataFigure 3
Dependence of classifier performance on amount of training data. The average performances of neural network (filled circle), 
SVM (open diamond), AdaBoost (filled triangle), Bagging (filled square), Mixtures-of-Experts (filled diamond), and majority-vot-
ing ensemble (open square) classifiers are shown as a function of the amount of training data given to the classifier. Average 
performance is defined as the average fraction of images in ten (2D) or eleven (3D) classes that were correctly classified over 
ten cross-validation trials. A) Results for 2D images using feature set SLF13. B) Results for 3D images using feature set SLF10.
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exponential-rbf-kernel SVM, polynomial-kernel SVM,
AdaBoost, Bagging, and Mixtures-of-Experts, were evalu-
ated by 10-fold cross validation.

Table 2 shows the results for each classifier with its opti-
mal parameters for each of the four feature sets. To
address the statistical significance of the experiments, we
conducted a paired t-test between the 10-fold cross valida-
tion results of each of the eight classifiers and those for the
neural network classifier topology we described previ-
ously. Previous results have shown that the inclusion of
features calculated from a parallel DNA image can
improve classification accuracy. The parallel DNA channel
provides an additional landmark for locating protein sub-

cellular distributions. For instance, a nucleolar protein
would be expected to overlap completely with the DNA
channel, while a mitochondrial protein would be local-
ized around but not in the nucleus. As expected, both
SLF13 and SLF10 performed better than their no-DNA
counterparts SLF8 and SLF14, respectively. However, the
benefit from the DNA features was much larger for 3D
image classification (about 6%) than for 2D image classi-
fication (about 1%). The reason for this is unclear, but
could be due either to the greater amount of information
present in 3D images, or to the presence of redundancy
between the non-DNA and DNA features for 2D but not
3D images.

Dependence of classifier performance on number of input featuresFigure 4
Dependence of classifier performance on number of input features. The average performances of neural network (filled circle), 
SVM (open diamond), AdaBoost (filled triangle), Bagging (filled square), Mixtures-of-Experts (filled diamond), and majority-vot-
ing ensemble (open square) classifiers are shown as a function of the number of features used to train the classifier. Average 
performance is defined as the average fraction of images in ten (2D) or eleven (3D) classes that were correctly classified over 
ten cross-validation trials. The features in SLF7DNA (A) or SLF9 (B) were ranked in order of their ability to discriminate the 
classes using SDA and increasing numbers of the features were used to train classifiers.

Table 1: Comparison of the characteristics of the classifiers used in this study. The results are derived from the data in Figures 2-4.

Classifier Ability to generate 
nonlinear decision 
boundary

Ability to learn well 
from limited training 
data

Insensitivity to 
outliers in training 
data

Insensitivity to 
uninformative 
features

Log information 
content* (2D/3D)

Neural Networks Low High Medium Medium 10.0/10.0
Exponential-rbf-kernel SVM High High High Low 14.2/13.9
AdaBoost Medium Med High High 13.5/13.4
Bagging Medium Low High High 14.8/12.0
Mixtures-of-Experts Medium Low High High 13.5/13.5
Majority-voting Ensemble Medium High High High 14.7/14.6

* The natural logarithmic of the information content was calculated as described in the Methods section for the feature set SLF13 (2D) and SLF10 
(3D). The classifiers were configured as detailed in Table 2.
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The various parameters selected for each classifier on dif-
ferent feature sets suggest that the right configuration of a
classifier is highly dependent on the input data. Given
limited data, a classifier can only be optimized to an
extent that its performance is maximized on this specific
set of data. However, we can still observe some common
trends in parameter selection. The pairwise method for
combining binary SVMs was never selected in our experi-
ments, although the pairwise method was reported to give

good performance in some application domains. There is
an assumption in this method that the binary classifier
should generate an unknown prediction for classes that it
cannot recognize. In other words, a binary classifier
trained between classes a and b should give equal weights
to both a and b given a data point from a third class c.
However, this assumption seemed not to hold in our
experiments. None of the pairwise methods gave an aver-
age accuracy over 20% for any of the four feature sets (data

Table 2: Comparison of eight classifiers for 2D and 3D image classification. The average classification accuracy on test data (from 10-
fold cross-validation) is shown for the optimal parameters settings (shown in parentheses) for each classification approach. The 
parameters are: nhu – number of hidden nodes in neural network, stop-fract – the fraction of the training data used to stop neural 
network training, C – error penalty in SVMs, sigma – kernel variance in SVMs, nboost – total number of iterations in AdaBoost, nbag – 
total number of iterations in Bagging, nhug – number of hidden nodes in the gating network of Mixtures-of-Experts, and ne – total 
number of experts in Mixtures-of-Experts. The accuracies across the 10-fold cross-validation trials were compared to those for the 
previously described neural network configuration (nhu = 20, stop-fract = 0.3) by a paired t-test (88% for SLF13, 86% for SLF8, 93% for 
SLF10, and 84% for SLF14). The best performances are underscored and highlighted for each feature set. *CPU times listed for each 
classifier are for training and testing for all images in each cross-validation trial (training times include times calculating features), which 
were measured on an Athlon 1.7 GHz processor with 1.5 GB memory running Redhat Linux 7.1.

Feature Set Classifier Classification 
accuracy (%)

Average training 
time* (s)

Average testing 
time* (s)

P-value

SLF13 (2D DNA) Neural Network (nhu = 16, stop-fract = 0.1) 87.8 116.3 0.001 0.43
SVM (linear, DAG, C = 1) 87.9 0.7 0.088 0.36
SVM (rbf, DAG, sigma = 8, C = 16) 89.4 1.1 0.470 0.03
SVM (exprbf, maxwin, sigma = 4, C = 4) 89.2 3.5 0.530 0.04
SVM (poly, maxwin, degree = 2, C = 0.01) 88.6 4.7 0.140 0.21
Adaboost (nhu = 8, nboost = 64) 88.9 55.2 0.018 0.10
Bagging (nhu = 64, nbag = 32) 88.9 111.0 0.078 0.09
Mixtures-of-Experts (nhu = 16, nhug = 64, ne = 16) 89.7 38.3 0.010 0.02

SLF8 (2D) Neural Network (nhu = 16, stop-fract = 0.3) 86.1 139.1 0.001 0.53
SVM (linear, DAG, C = 1) 84.9 0.7 0.075 0.83
SVM (rbf, maxwin, sigma = 8, C = 64) 87.9 11.4 1.600 0.15
SVM (exprbf, maxwin, sigma = 8, C = 16) 88.1 4.0 0.540 0.02
SVM (poly, maxwin, degree = 2, C = 0.01) 86.7 5.2 0.170 0.37
Adaboost (nhu = 32, nboost = 128) 88.2 412.0 0.190 0.12
Bagging (nhu = 64, nbag = 64) 87.2 238.2 0.160 0.17
Mixtures-of-Experts (nhu = 32, nhug = 16, ne = 4) 87.0 11.6 0.002 0.22

SLF10 (3D DNA) Neural Network (nhu = 32, stop-fract = 0.1) 95.3 740.3 0.001 0.06
SVM (linear, DAG, C = 8) 93.3 0.3 0.043 0.47
SVM (rbf, maxwin, sigma = 2, C = 64) 95.0 2.3 0.230 0.08
SVM (exprbf, DAG, sigma = 1, C = 1) 95.2 0.5 0.081 0.06
SVM (poly, maxwin, degree = 2, C = 1) 93.1 2.0 0.067 0.51
Adaboost (nhu = 32, nboost = 32) 93.2 43.2 0.016 0.46
Bagging (nhu = 64, nbag = 4) 89.4 6.8 0.003 0.99
Mixtures-of-Experts (nhu = 32, nhug = 64, ne = 16) 92.2 45.8 0.007 0.74

SLF14 (3D) Neural Network (nhu = 32, stop-fract = 0) 88.4 172.0 0.001 0.02
SVM (linear, DAG, C = 32) 86.5 1.0 0.047 0.12
SVM (rbf, maxwin, sigma = 2, C = 32) 86.6 4.6 0.290 0.17
SVM (exprbf, maxwin, sigma = 2, C = 8) 89.1 1.4 0.170 0.05
SVM (poly, maxwin, degree = 2, C = 2) 87.3 8.3 0.068 0.05
Adaboost (nhu = 64, nboost = 64) 87.7 144.3 0.085 0.03
Bagging (nhu = 64, nbag = 256) 82.2 505.7 0.340 0.82
Mixtures-of-Experts (nhu = 16, nhug = 8, ne = 2) 83.8 2.9 0.001 0.59
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not shown). On the contrary, both maxwin and DAG
methods gave much better results and it is hard to tell
which one of the two was more advantageous. The close
performance of linear-kernel SVMs with other nonlinear-
kernel SVMs in most experiments suggested that the clas-
sification boundaries in the original input spaces of all
four feature sets were not far from linear. This can be con-
firmed by the optimal choices of the polynomial degrees
in the polynomial-kernel SVMs. A polynomial degree of 2
was selected for all four feature sets. The smaller the
degree, the more linear the final classification boundary
would be. SVMs, ranked in the top two for all four feature
sets, performed generally very well among all classifiers in
both 2D and 3D classifications. Ensemble methods dis-
played more varieties in their performances. Although
two ensemble methods, Mixtures-of-Experts and Ada-
Boost, performed the best on the feature set SLF13 and
SLF8 respectively, these methods did not perform well in
3D classifications. Among the ensemble methods, Ada-
Boost showed the most consistent performance.

Table 2 also shows cpu times for training and testing each
classifier. Although the training and testing time of a clas-
sifier can be affected by the number of features, the data
itself, and the implementation details, we observe some
trends from the experimental results. As expected, the
more hidden nodes in a neural network, the longer it will
take to train, which can be observed in neural networks,
Adaboost, Bagging, and Mixtures-of-Experts. It is also
obvious that longer iterations of boosting, bagging, and
larger number of experts in Mixtures-of-Experts account
for more time in training classifiers. SVMs are the fastest
to train among all eight classifiers, although relatively
slow in the test phase. Despite various changes in its
parameters, the training time of SVM stays consistent for
each kernel function. Neural network is the fastest classi-

fier in the testing phase in three out of the four
experiments conducted. Three ensemble methods also
show faster performance in testing than SVMs, partially
because the building blocks of these methods in the
experiments are also neural networks.

To determine the significance of improvements in per-
formance by individual classifiers over our previous neu-
ral network approach, we conducted a paired t-test [32],
on the 10-fold cross validation results of each classifier
against those of the previously configured neural net-
works. From Table 2, we can see that three, one, and two
of the eight individually configured classifiers performed
significantly better than the previous neural network clas-
sifiers on SLF13, SLF8, and SLF14 feature sets respectively.
None of the eight classifiers could perform statistically
better than the previous neural network classifier on
SLF10. If a single classifier has to be selected for each of
the four feature sets, a support vector machine classifier
with exponential-rbf kernel function can be used given its
reasonable accuracy and speed, although some fine tun-
ing of its parameters might need to be conducted.

Optimal Majority-voting Ensembles of Eight Classifiers
More improvement might be achieved by taking a major-
ity-voting ensemble model of all possible combinations
of the eight tested classifiers. Since all eight classifiers were
trained differently and were based on either different ker-
nel functions or different theoretical justifications, their
error can be regarded as mostly independent, which
makes constructing a larger ensemble model possible.
Table 3 shows the statistics of pairwise-classifier-error cor-
relation coefficients between all 8 classifiers on six differ-
ent feature sets. As expected, all pairs of classifiers did not
show strong error correlation. The mean error correlation
coefficients from all six experiments were less than 0.15.

Table 3: Analysis of error correlation between different classifiers. For each of the classifiers listed in Table 2, a list of all test images 
that were incorrectly classified was generated. The correlation coefficient between the incorrectly classified images was calculated for 
each pair of classifiers, and the minimum, maximum, mean and standard deviation of these correlations were calculated for all pairs. 
This process was repeated for each feature set.

Feature Set Pairwise-Classifier-Error Correlation Coefficients

Min Max Mean St. dev.

SLF8 (2D) 0.01 0.22 0.09 0.06
SLF15 (2D) 0.00 0.22 0.10 0.06
SLF13 (2D DNA) 0.00 0.25 0.10 0.06
SLF16 (2D DNA) 0.00 0.26 0.10 0.07
SLF14 (3D) 0.00 0.25 0.11 0.07
SLF10 (3D DNA) 0.01 0.41 0.13 0.10
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There are many possible voting schemes that can be
employed in a majority-voting ensemble. Some experi-
ments have shown that a relatively simple method such as
unweighted majority voting works as well as those more
complicated trainable weighted voting methods [30].
Therefore, we constructed an unweighted majority-voting
ensemble of all possible combinations of the 8 classifiers
for each feature set. Table 4 shows the optimal majority-
voting classifiers found for each feature set. The accuracies
on both SLF8 and SLF13 feature sets were improved by
1% by combining three classifiers for each: exponential-
rbf-kernel SVM, AdaBoost, and Bagging for SLF8; rbf-ker-
nel SVM, AdaBoost, and Mixtures-of-Experts for SLF13.
Less than 1% improvement, however, were observed on
the SLF10 and SLF14 feature sets. Two of the top three
classifiers for each feature set (Table 2) were selected in all
optimal majority-voting ensembles. The same paired t-
test was conducted between the majority-voting classifier
and the previously configured neural network classifier
for each feature set. Statistically significant improvements
were obtained for all four feature sets. Compared to the
individual optimal classifiers listed in Table 2 for each fea-

ture set, the majority-voting classifiers for SLF13 also
showed statistically significant improvement. Although
only a marginal improvement was observed by using a
majority-voting classifier for each feature set in general, it
eliminates the subjective errors resulting from having to
choose a single classifier for a classification problem.

Assuming we were able to select the best classifier for each
individual image, we can calculate the upper bounds of
classification accuracy on the current feature sets. Over
95% of all images can be correctly classified by at least one
of the eight tested classifiers for each of the four feature
sets. SLF10, containing only 9 features, gave the closest
performance to its upper bound among the feature sets.
The accuracy upper bounds presumably represent the frac-
tion of cells whose patterns were distorted by mitosis, cell
death or acquisition errors.

Inclusion of New Texture Features
Having presumably identified the limits of classification
accuracy using the existing SLF, we next examined
whether adding new features could improve these

Table 4: Improvement in classification accuracy using majority voting ensembles. Optimal unweighted majority-voting ensemble 
classifiers were formed by selecting classifiers from all 8 classifiers for each feature set listed and the average classification accuracy for 
10-fold cross-validation was calculated. A paired-t test was performed for each ensemble classifier against the previous neural network 
classifier for each feature subset (SLF15 and SLF16 were compared against the previous classifier for SLF8 and SLF13, respectively). 
Each ensemble classifier was also compared against the optimal classifier for each feature set listed in Table 2 (SLF15 and SLF16 were 
compared with the individual optimal classifiers for SLF8 and SLF13, respectively).

Feature Set Classifiers in the Optimal 
Majority-voting Ensemble

Average classification 
accuracy (%)

P-value of paired t test 
with previous results

P-value of paired t test 
with optimal single 

classifier

Classification 
Accuracy Upper 

Bound* (%)

SLF8 (2D) Exprbf-kernel SVM
AdaBoost
Bagging

89.4 0.003 0.08 95.5

SLF15 (2D) Rbf-kernel SVM
Exponential-rbf-kernel SVM

Polynomial-kernel SVM

91.5 0.0006 0.01 96.1

SLF13 (2D DNA) Rbf-kernel SVM
AdaBoost

Mixtures-of-Experts

90.7 0.003 0.03 95.6

SLF16 (2D DNA) Neural Network
Linear-kernel SVM
Exprbf-kernel SVM

Polynomial-kernel SVM
AdaBoost

92.3 0.003 0.02 96.6

SLF14 (3D) Neural Network
Linear-kernel SVM
Exprbf-kernel SVM

Polynomial-kernel SVM
AdaBoost

89.8 0.02 0.29 96.3

SLF10 (3D DNA) Linear-kernel SVM
Rbf-kernel SVM

Exprbf-kernel SVM
Mixtures-of-Experts

95.8 0.02 0.35 98.2

* The upper bound of classification accuracy for a feature set is defined as the percentage of all images that could be correctly classified by at least 
one of the eight tested classifiers using that feature set.
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accuracies. In looking for new features, we noted that
eleven of the features selected for SLF8 and nine of the fea-
tures selected for SLF13 were Haralick texture features
[14]. To explore the possibility that other types of texture
features might provide additional descriptive power, a
wavelet-based multiresolution filtering technique was
used to derive two additional sets of texture features,
namely Gabor texture features [33] and Daubechies 4
wavelet features [34]. Gabor texture features were reported
to outperform a number of other wavelet transformations
in a task of analyzing images with natural textures [35,36].

60 Gabor texture features and 30 Daubechies 4 wavelet
features were added to the current 2D image features. In
addition to the six features derived from parallel DNA
images and the original 84 features from the SLF7 feature
set, we ended up with 180 features in total for 2D image
description. We have shown that feature reduction can
significantly improve classification accuracy and reduce
the training and testing time [15]. Among a group of eight
different feature reduction methods, stepwise discrimi-
nant analysis (SDA) was rated as the best [15]. We
therefore applied SDA on both the 180-feature set
including 6 DNA features and the 174-feature set without
DNA features. 53 ranked features were returned from the
180-feature set and 51 features from the 174-feature set.
The optimal majority-voting ensemble classifiers for
SLF13 and SLF8 listed in Table 4 were applied to the 53-
feature set and 51-feature set respectively to evaluate the

sequential inclusion of these ranked features. Figure 5
shows the sequential inclusion of the top-ranked features
in both sets evaluated by the ensemble classifiers. The top
47 out of 53 features selected by SDA from the 180-feature
set gave the highest accuracy on the optimal majority-vot-
ing ensemble classifier from SLF13, and we defined these
as a new feature set, SLF16. The top 44 features selected by
SDA from the 174-feature set gave the highest accuracy on
the optimal majority-voting ensemble classifier from
SLF8. We defined a new feature set containing these 44
features as SLF15.

Both SLF16 and SLF15 were then evaluated using all eight
classifiers. Table 3 shows the pairwise-classifier-error cor-
relation coefficients for these two new feature sets. Again,
all 8 classifiers gave few dependent errors on both feature
sets. Optimal majority-voting ensemble classifiers were
created and found to include neural network, linear-ker-
nel SVM, exponential-rbf-kernel SVM, polynomial-kernel
SVM, and AdaBoost for SLF16, and rbf-kernel SVM, expo-
nential-rbf-kernel SVM, and polynomial-kernel SVM for
SLF15 (Table 4). We achieved a 92.3% average accuracy
for 2D image classification by using SLF16 and 91.5% by
using SLF15. These two majority-voting classifiers for
SLF16 and SLF15 performed statistically better than the
previously configured neural networks and the individual
classifiers for SLF13 and SLF8 respectively. The benefits of
including the new texture features can be represented by a
2% improvement on classifying 2D protein fluorescence
microscope images both with and without DNA features.
Table 4 also showed that the accuracy upper bounds for
SLF16 and SLF15 are higher than those of SLF13 and SLF8
feature sets respectively.

To gain insight into the basis for the improvement, we
compared the distributions in the two feature spaces of
those images that were misclassified by the neural net-
work classifier using SLF13 but were correctly classified by
the ensemble classifier using SLF16. The ratio of the aver-
age distance of these images from their class mean over
the average distance of all images from their class mean
changed from 0.08 in the SLF13 feature space to 0.07 in
that of SLF16. Thus the new features apparently moved
the outlier images close enough to their class means that
they could be correctly classified.

Improved distinction between similar classes
That the best classifiers described above represent
improvement over previous results not only in average
classification accuracy but also in the ability to discrimi-
nate similar patterns is shown by the confusion matrixes
in Tables 5A and 5B. Compared to the best previous
results on 2D and 3D classification [11,14], the recogni-
tion accuracies on most patterns are significantly
improved. The Golgi proteins giantin and Gpp130, which

Selection of feature subsets including Gabor and Daubechies featuresFigure 5
Selection of feature subsets including Gabor and Daubechies 
features. Classifiers were trained using increasing numbers of 
features from the ranked list selected by SDA from either 
the 180-feature set including DNA features (filled circle) or 
the 174-feature set without DNA features (filled diamond) 
and performance evaluated by 10-fold cross validation. The 
classifiers used were the optimal majority-voting ensemble 
classifiers for SLF13 and SLF8 respectively (see Table 4).
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cannot be distinguished by visual inspection [14], can be
distinguished over 82% of the time in 2D images using
SLF16 and 96% in 3D images using SLF10. These are 12%
and 15% higher than the previous best performance for
2D and 3D images respectively. The transferrin receptor
pattern (TfR), which has a similar distribution to that of
the lysosomal protein LAMP2 (Lam), was the least accu-
rately classified pattern in both 2D and 3D. Its recognition
was improved by 6% compared to previous results for 2D
images, but not at all for 3D images. This suggests the
need for future work to improve its recognition.

The better performance achieved from the new features
and the ensemble classifiers can be further seen by
inspecting images that were misclassified by the original
neural network classifier but could be correctly classified
using the new texture features (Figure 6). We note that the
images in Figure 6 are much less typical of the patterns
expected for the major organelles than those in Figure 1.
For instance, mitochondria typically locate around the
nucleus (Figure 1E) but the image shown in Figure 6E
includes staining over the nucleus. The same is true for the
tubulin pattern. The blurry image shown in Figure 6I is

much less typical compared to the branched pattern
shown in Figure 1I. Presumably, the new features that rely
on texture are not confused by these visible differences. As
a further example, the nucleolin pattern shown in Figure
6F only contains one big object, while that of Figure 1F
includes a few round objects. Although the morphological
and geometric features would be very different for these
images, similar texture information can be observed in
both images. Furthermore, the relatively independent
errors (Table 3) among the classifiers of a majority-voting
ensemble contribute to a more robust prediction. For
instance, linear-kernel SVM, one of the five classifiers in
the best performing ensemble classifier of SLF16 (Table
4), predicted the image of the transferrin receptor pattern
in Figure 6 as tubulin, while all other classifiers in the
ensemble made the accurate prediction. This error would
not be avoided if the linear-kernel SVM was selected as the
only classifier. Therefore, the accurate recognition of these
less typical images can be attributed to the new texture fea-
tures that capture more frequency information from the
fluorescence distribution and the ensemble classifier that
enriches the prediction confidence by combining outputs
from multiple classifiers.

Table 5: Confusion matrix for 2D HeLa cell (A) and 3D HeLa cell (B) images using optimal majority-voting ensemble classifier with 
feature set SLF16 (A) and SLF10 (B) respectively. (Due to rounding, each row may not sum to 100). The average accuracy was 92.3% 
for 2D images (A) and 95.8% for 3D images (B).

A)
DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub

DNA 98.9 1.2 0 0 0 0 0 0 0 0
ER 0 96.5 0 0 0 2.3 0 0 0 1.2
Gia 0 0 90.8 6.9 0 0 0 0 2.3 0
Gpp 0 0 14.1 82.4 0 0 2.4 0 1.2 0
Lam 0 0 1.2 0 88.1 1.2 0 0 9.5 0
Mit 0 2.7 0 0 0 91.8 0 0 2.7 2.7
Nuc 0 0 0 0 0 0 98.8 0 1.3 0
Act 0 0 0 0 0 0 0 100 0 0
TfR 0 1.1 0 0 12.1 2.2 0 1.1 81.3 2.2
Tub 1.1 2.2 0 0 0 1.1 0 0 1.1 94.5

B)
Cyt DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub

Cyt 100 0 0 0 0 0 0 0 0 0 0
DNA 0 98.1 0 0 0 0 0 1.9 0 0 0
ER 0 0 96.6 0 0 0 0 0 1.7 0 1.7
Gia 0 0 0 98.2 0 1.9 0 0 0 0 0
Gpp 0 0 0 4 96.0 0 0 0 0 0 0
Lam 0 0 0 1.8 1.8 96.4 0 0 0 0 0
Mit 0 0 0 3.5 0 0 94.7 0 1.8 0 0
Nuc 0 0 0 0 0 0 0 100 0 0 0
Act 0 0 1.7 0 0 0 1.7 0 94.8 1.7 0
TfR 0 0 0 0 0 5.7 3.8 0 1.9 84.9 3.8
Tub 0 0 3.7 0 0 0 0 0 0 1.9 94.4
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Figure 7 shows example 2D images that could not be cor-
rectly classified by any of the eight classifiers using the
new feature set SLF16. The giantin and gpp130 images in
Figure 7 show patterns that are much more diffuse than
typical Golgi images. This is presumably due to the onset
of Golgi breakdown prior to mitosis. The LAMP2 and
mitochondria patterns in Figure 7 may also be affected by
mitosis (or perhaps cell death) given the extensive fluores-
cence in the nucleus and cytoplasm that are not usually
observed (Figure 1). In future work, we plan to seek more
robust features that can minimize the effect of mitotic
changes and capture the common information that exists
between the images in Figure 7 and those in Figure 1. Of
course, we expect that some images that are perturbed by
cell death and other experimental artifacts may never be
correctly classified.

Tradeoffs between classification accuracy and 
computational cost for feature sets
To further investigate the utility of our classification sys-
tems, we examined the processing time ("cost") of each
feature. Image preprocessing steps including background
subtraction, cropping, thresholding, and filtering need to
be conducted before calculating features for 2D images.
For 3D images, similar preprocessing steps were
employed except that cropping is replaced by seeded
watershed segmentation [11]. Since many features are

related to each other, we divided the calculation of each
feature to two parts, the setup cost and the computation
cost. For instance, SLF7.80–7.84 are object skeleton fea-
tures [14] that all require object finding as the setup cost
before calculating each individual feature. Therefore, the
total cost of SLF7.80–7.84 is the common setup cost plus
the cost of calculating each individual feature. Since
Gabor and Daubechies wavelet features involve decom-
posing an input image with filters that have different
scales, we consider using them as a group for image clas-
sification. Table 6 shows the time costs and performances
of the six feature sets used in our experiments as well as
other processing costs. The large increases in costs from
SLF13 to SLF16 and SLF8 to SLF15 are from the computa-
tion of both Gabor and Daubechies wavelet features. In
3D image classification, preprocessing and segmentation
dominate the total costs of a feature set. Given the rela-
tionship between performance and computation cost for
each of the six feature sets, a practical system can trade per-
formance against cost and select the optimal feature set for
a given purpose.

Classification of sets of images
Previous work has shown that classifying sets of images by
plurality voting can dramatically increase the overall accu-
racy of recognizing subcellular patterns [9]. We therefore
evaluated two strategies of image set classification by

Example 2D images that were misclassified by the original neural network classifier but could be correctly classified using the best performing ensemble classifier using SLF16Figure 6
Example 2D images that were misclassified by the original neural network classifier but could be correctly classified using the 
best performing ensemble classifier using SLF16. From among the images incorrectly classified by the neural network for each 
class, the image that was most frequently classified accurately during training of the ensemble classifier was chosen (a random 
choice was made in the case of ties). ER (A), giantin (B), gpp130 (C), LAMP2 (D), mitochondria (E), nucleolin (F), actin (G), 
transferrin receptor (H), and tubulin (I). The only DNA image that was misclassified by the original neural network classifier 
was also missed by the ensemble.
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Example 2D images that could not be correctly classified by any individual classifier using feature set SLF16Figure 7
Example 2D images that could not be correctly classified by any individual classifier using feature set SLF16. The image that was 
most frequently classified incorrectly during training of the ensemble classifier was chosen (a random choice was made in the 
case of ties). ER (A), giantin (B), gpp130 (C), LAMP2 (D), mitochondria (E), and transferrin receptor (F). All images in the other 
classes could be correctly classified by at least one of the eight classifiers.

Table 6: Processing costs for calculating feature sets as well as the performance of each feature set. The costs were averaged on ten 
random images selected from all classes of both 2D and 3D fluorescence microscope images. Costs shown for feature sets include 
preprocessing (and segmentation) costs.

Operation Number of Features CPU time (s) Overall Accuracy (%)

2D preprocessing N/A 0.6 N/A
3D preprocessing N/A 21.1 N/A
3D segmentation N/A 6.8 N/A

SLF8 (2D) 32 13.2 89.4
SLF15 (2D) 44 68.3 91.5

SLF13 (2D DNA) 31 10.8 90.7
SLF16 (2D DNA) 47 66.3 92.3

SLF14 (3D) 14 31.5 89.8
SLF10 (3D DNA) 9 32.0 95.8
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using the six feature sets. Firstly, different image set sizes
were tested for the six feature sets. Figure 8A shows the
average performance of the majority-voting classifier for
each feature set (Table 4) over 1000 random trials of
image sets drawn from each class in the test set. The dom-
inant predicted class in an image set was taken as the out-
put, while random choice was made if several classes tied.
The more images in a set, the more accurate the classifier
will be. The smallest numbers of images in a set required
to reach an average accuracy of 99% are 7, 9, 5, 6, 7, and
7 for SLF13, SLF8, SLF10, SLF14, SLF16, and SLF15 respec-
tively. 3D image classification requires fewer images in a
set to achieve 99% classification accuracy than for 2D. Sec-
ondly, we tested different numbers of features (in incre-
ments of 3) selected from each feature set given a fixed
image set size of 10. The results are shown in Figure 8B. To
achieve an average 99% classification accuracy in a 10-
image set, the top 24, 30, 6, 6, 9, 9 features of SLF13, SLF8,
SLF10, SLF14, SLF16, and SLF15 need to be included
respectively. Again, 3D image classification shows more
advantages in image sets classification than 2D image sets
classification. The benefits of SLF16 and SLF15 can be rep-
resented by a large reduction of the numbers of features
required to achieve an average 99% accuracy compared to
SLF13 and SLF8 respectively. Unlike the fluctuation in
classifier performance on individual images given

increasing number of features in different feature spaces
(Figure 4), the performance on image sets approaches a
plateau as the number of features increases for all feature
spaces. Image sets are often easily acquired in biological
imaging experiments; therefore classifying sets of images
has practical feasibility and can dramatically enhance sys-
tem performance. By using only 9 and 6 features for 2D
and 3D image sets that have 10 images, we can achieve
essentially perfect classification accuracy.

Conclusions
This paper addresses a supervised learning problem in the
domain of protein subcellular location determination.
Through employing new classifiers and features in our
system, we reduced the error rates of our previous system
by one third to one half for 2D and 3D image classifica-
tion. The current system is able to give 92–93%
classification accuracy on 10 major eukaryotic subcellular
location patterns from 2D fluorescence microscope
images with DNA features (compared to 88% previously)
and 91–92% accuracy without DNA features (compared
to 86% previously). Around 96% classification accuracy
can be expected using the current system to recognize 11
major eukaryotic subcellular location patterns from 3D
images with DNA features (compared to 91% previously)
and 89–90% accuracy without DNA features. Patterns that

Dependence of image set classification accuracy on set size and feature set sizeFigure 8
Dependence of image set classification accuracy on set size and feature set size. Panel A depicts classification accuracy for sets 
of images drawn from the same class. The accuracy obtained using plurality voting was averaged on 1000 random trials of 
image sets of various sizes drawn from each class in the test set by using the optimal majority-voting classifier for feature set 
SLF8 (filled square), SLF15 (filled triangle), SLF13 (filled diamond), SLF16 (filled circle), SLF14 (open square), and SLF10 (open 
diamond). Panel B depicts classification accuracy for reduced feature subsets using plurality voting. The accuracy obtained using 
plurality voting was averaged on 1000 random trials of sets of 10 images drawn from each class in the test set for various num-
bers of features from SLF8 (filled square), SLF15 (filled triangle), SLF13 (filled diamond), SLF16 (filled circle), SLF14 (open 
square), and SLF10 (open diamond).
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cannot be distinguished by visual examination, Giantin
and Gpp130, can now be distinguished 96% of the time
in 3D images. In addition, essentially perfect results can
be achieved by classifying sets of images using a small
number of features. These results are the best currently
available for the protein subcellular location domain.

This fast and automated image-based approach can be
combined with high-throughput fluorescence microscope
imaging techniques, forming a new subfield of proteom-
ics which we have termed location proteomics. By taking
fluorescence microscope images of all proteins expressed
in a certain cell type, we can cluster proteins by their loca-
tion similarity and create a Subcellular Location Tree
organizing location families [37]. The system also has
possible applications in medicine, including identifica-
tion of proteins whose location patterns change as a result
of disease and which may be either diagnostic markers or
therapeutic targets.

Methods
Training of the Classifiers
Throughout this section, K represents the total number of
classes, F stands for the number of input features to each
classifier, and P denotes the total number of parameters of
a given model. We define the information content of each
classifier, similar to the minimum description length [32],
as the number of bits that need to be learned and deliv-
ered in order to evaluate the classifier on test datasets.
Since each parameter is represented by a floating point
number, the total number of bits is calculated as 32P.

Support Vector Machine
We tested SVM with four different kernel functions as well
as the three multi-class expansion methods. The kernel
functions used were a linear kernel, a polynomial kernel,
a Gaussian radial basis kernel, and an exponential radial
basis kernel. The optimal values of the parameters for the
last three kernels as well as the error penalty C for each
kernel were determined for a given dataset by 10-fold
cross validation, and the highest scoring kernel was cho-
sen. A Matlab SVM toolbox was downloaded from http://
theoval.sys.uea.ac.uk/~gcc/svm/toolbox/.

The parameters of an SVM classifier include the support
vectors represented in the feature space, the weights
associated with each support vector plus the bias, kernel
parameters used in the kernel function, and the scale fac-
tor introduced by a multi-class expansion method. Let Si
denote the number of support vectors in the ith model, k
denote the number of kernel parameters, and m denote
the number of models that need to be saved for a given
multi-class expansion method. The total number of
parameters of an SVM is then:

where m = K for the maxwin strategy and m = K * (K - 1)/
2 for the DAG and pairwise strategies. Except for the linear
kernel function that has only one kernel parameter (pen-
alty C), all other three kernel functions have two kernel
parameters (Table 2).

AdaBoost
A C++ machine learning library, Torch [38], was used as
an implementation of AdaBoost.M1 with a one-hidden-
layer neural network as the base classifier. Based on pre-
liminary experiments (data not shown), we used a maxi-
mum iteration number of 300 and a learning rate decay of
0.1 for the training of the neural network leaving all other
parameters at their defaults. The neural network was
trained until the error rate on the training set was minimal
or the maximum number of iterations was reached. We
tested different numbers of hidden nodes in the base clas-
sifier as well as different numbers of boosting iterations.

The parameters of an AdaBoost classifier include the
weights associated with each base classifier to form the
final output and the weights of each neural network base
classifier. Let Nhu denote the number of hidden nodes in
the base classifier and Nboost denote the number of
boosting iterations. We can calculate the total number of
parameters of a given AdaBoost classifier as:

P = (Nhu * (K + F) + 1) * Nboost.

Bagging
We also used the Torch software as an implementation of
bagging with a one-hidden-layer neural network as the
base classifier (as described above for Adaboost). An
equally weighted sum was used as the output. We tested
different numbers of hidden nodes in the base classifier as
well as different numbers of bagging iterations.

Similar to AdaBoost, the parameters of a bagging classifier
include the weights of each base classifier. However, equal
weights are associated to each base classifier to form the
output. Therefore, we can calculate the total number of
parameters as:

P = Nhu * (K + F) * Nbag

where Nhu denotes the number of hidden nodes in the
base classifier and Nbag stands for the number of bagging
iterations.

Mixtures-of-Experts
We also used the Torch software implementation of Mix-
tures-of-Experts with a one-hidden-layer neural network
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as both the gating and expert networks. We tested differ-
ent numbers of hidden nodes in both the gating and
expert networks and different numbers of experts.

The parameters of a Mixture-of-Experts classifier involve
those of the gating network and the local expert networks.
Let Ne denote the number of local experts, Nhu denote the
number of hidden nodes in each local expert, and Nhug
represent the number of hidden nodes in the gating net-
work. The total number of parameters of a given Mixtures-
of-Experts classifier can be calculated as:

P = Nhu * (K + F) * Ne + Nhug * (K + K * Ne).

Netlab Neural Network
For comparison, we also used the same neural network
implementation as in our previous work. This was the gra-
dient descent back-propagation neural network with one
hidden layer implemented by the Netlab neural network
toolbox http://www.ncrg.aston.ac.uk/netlab/, which was
used with momentum and learning rate set to 0.9 and
0.001 respectively [9]. A single hidden layer network was
used given our previous observation that a two-hidden
layer network did not significantly improve classification
accuracy for the 2D HeLa images [13]. The training set was
further divided into "use for training" and "use to stop
training" subsets. We tested different fractions of the
training set in these subsets, as well as different numbers
of hidden nodes. The total number of parameters of a
neural network classifier can be calculated as:

P = Nhu * (K + F)

where Nhu stands for the number of hidden nodes in the
network.

Features
Previous Subcellular Location Features
We have previously designed numerical features from dif-
ferent sources to describe protein location patterns in
fluorescence microscope images. These features are invar-
iant to cell rotation and translation, and are robust over
various cell types and fluorescence microscopy methods.
To date, the best feature sets for describing 2D subcellular
patterns are SLF8 and SLF13 [14], which are used when a
parallel DNA image is not or is available, respectively.
SLF8 was derived by feature selection starting from an 84-
feature set, SLF7, that includes various moment, texture,
morphological, and geometric features. SLF8 contains 7
Zernike moment features, 11 Haralick texture features,
and 14 geometric and morphological features. SLF13 is
selected from the combination of SLF7 with 6 features
derived from a parallel DNA image that were originally
defined as part of SLF2 [9]. SLF13 contains 6 Zernike
moment features, 9 Haralick texture features, and 16 geo-

metric and morphological features including the DNA
features.

Our previous best feature set for 3D fluorescence micro-
scope images is SLF10 (Velliste and Murphy, in prepara-
tion). It is derived from feature set SLF9 [11], which
contains 28 geometric and morphological features, 14
derived from a protein pattern itself and 14 derived from
its relationship to a parallel DNA image. SLF10 contains 9
features selected by stepwise discriminant analysis from
this set (Velliste and Murphy, in preparation). For cases
where a parallel DNA image is not available, we define
here the 14 features from SLF9 that do not require a par-
allel DNA image as the feature set SLF14. Since this feature
set is already fairly small, we did not do feature selection
to reduce it further.

New Texture Features
A 2D Gabor function is a 2D Gaussian modulated by a
sinusoid [36]:

where W is the frequency bandwidth of Gabor filters.

Given a Gabor filter with scale m and orientation n, we
convolved an image with this filter and took the mean and
standard deviation of the resulting image as texture fea-
tures. For this purpose, we used the Gabor texture feature
extractor [36] downloaded from http://
vision.ece.ucsb.edu/texture/software/index.html. The
default parameters were used to construct a Gabor wavelet
bank of five different scales and six different orientations.
A total of 60 Gabor texture features were derived from
each image.

Thirty conventional Daubechies 4 wavelet features were
calculated up to the 10th level decomposition using both
the scaling and wavelet functions of the Daubechies 4
wavelet transformation [34]. The scaling function and
wavelet function can be viewed as a low-pass and a high-
pass filter respectively. After decomposing an image col-
umn-wise and row-wise sequentially using the two filters,
we obtained four convolved images, three of which cap-
tured the high-frequency information in the x, y, and diag-
onal directions and the remaining one stored the low-
frequency information and was decomposed in the next
iteration. The average energy of the three high-frequency
components were taken as features at each level, and we
therefore ended up with 30 features by decomposing an
image 10 times. The Daubechies 4 wavelet transformation
was implemented by using the Matlab (R12) Wavelet
toolbox.
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Since features derived from wavelet transformation are
not invariant to cell rotation and translation, we con-
ducted a principal axis alignment on each image before
performing wavelet transformations. After background
subtraction, thresholding, and filtering, the image was
pivoted to its center of fluorescence. The angle between
the coordinate axis and the principal axis of the cell was
computed using secondary moments and the image was
rotated to align the primary axis with the y axis. To align
the direction of the minor axis, an additional 180° rota-
tion was carried out when the x skewness was negative.

Feature Selection
Feature reduction is often beneficial for faster and more
accurate classification, and we have previously observed
that stepwise discriminant analysis (SDA) performs the
best in a comparison of eight different feature reduction
methods [15]. SDA considers the goodness of a feature as
its ability to differentiate classes while at the same time
clustering data from the same class as compactly as possi-
ble [39]. This goodness can be represented by F-statistics
involving the ratio between the within-class and among-
class covariance matrix. We implemented SDA using the
STEPDISC function of SAS (SAS Institute, Cary, NC, USA),
which employed a forward-backward scheme to select fea-
tures based on their goodness measured by F-statistics.
The 90 Gabor and Daubechies features were merged with
SLF7 either without or with the 6 DNA features. The sets
obtained from SDA were defined as SLF15 and SLF16,
respectively.

Feature Normalizaton
All features in a given training set were normalized to have
zero mean and unit variance and the same mean and var-
iance were used to normalize the features for the corre-
sponding test set.

Data
To evaluate different classifiers, 2D and 3D HeLa image
collections described previously were used. These two
image data sets were created to include the most common
protein subcellular distributions as well as a pair of pro-
teins, giantin and Gpp130, that cannot be distinguished
by visual comparison. We have previously reported the
inability of a human subject to distinguish these proteins
[14].

The 2D HeLa image set [9] representing 10 major subcel-
lular distributions was acquired by introducing antibodies
and molecular probes against proteins in major subcellu-
lar organelles as well as nuclear DNA. The nine proteins in
this image set included an endoplasmic reticulum pro-
tein, f-actin in microfilaments, Giantin and Gpp130 in the
Golgi complex, the nucleolar protein nucleolin, a mito-
chondrial outer membrane protein, LAMP2 in the lyso-

somes, endosomal transferrin receptor, and tubulin in
microtubules. A set of three images separated by 0.23
microns were collected for each field, and nearest neigh-
bor deconvolution was used to generate a single image
corresponding to the central slice after removal of esti-
mated out of focus fluorescence. The collection contains
from 73 to 98 images for each of the 10 classes for a total
of 862 single-cell images. Every image has a resolution of
382 × 512 pixels, each representing 0.23 × 0.23 microns.
The most typical image of each pattern from correctly clas-
sified images by the original neural network classifier is
shown in Figure 1.

The 3D HeLa image set [11] was created with a three-laser
confocal laser scanning microscope by using probes for
the nine proteins above as well as DNA and total protein.
In addition to being used as a reference image for the pro-
teins, the DNA and total protein images were also used to
create two additional classes (DNA and Cytoplasm,
respectively), resulting in a total 11 classes. Each of these
11 classes has a number of 3D images ranging from 50 to
58 for a total of 598 single-cell images. Every 3D image is
a stack of 14 to 24 2D slices, each of which has a resolu-
tion of 1024 × 1024 voxels. Each voxel in the 3D stack rep-
resents 0.049 × 0.049 × 0.2 microns of the sample. The
most typical image of each pattern from correctly
classified images by the original neural network classifier
is shown in Figure 1.
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