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Abstract

Aging and longevity are considered to be highly complex genetic traits. In order to gain insight into aging as a polygenic
trait, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard strain RM11 and a
laboratory strain S288c, to identify quantitative trait loci that control chronological lifespan. Among the major loci that
regulate chronological lifespan in this cross, one genetic linkage was found to be congruent with a previously mapped locus
that controls telomere length variation. We found that a single nucleotide polymorphism in BUL2, encoding a component of
an ubiquitin ligase complex involved in trafficking of amino acid permeases, controls chronological lifespan and telomere
length as well as amino acid uptake. Cellular amino acid availability changes conferred by the BUL2 polymorphism alter
telomere length by modulating activity of a transcription factor Gln3. Among the GLN3 transcriptional targets relevant to
this phenotype, we identified Wtm1, whose upregulation promotes nuclear retention of ribonucleotide reductase (RNR)
components and inhibits the assembly of the RNR enzyme complex during S-phase. Inhibition of RNR is one of the
mechanisms by which Gln3 modulates telomere length. Identification of a polymorphism in BUL2 in this outbred yeast
population revealed a link among cellular amino acid availability, chronological lifespan, and telomere length control.
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Introduction

The observation that dietary restriction promotes longevity in

organisms ranging from yeast to primates raises the expectation

that molecular mechanisms mediating this lifespan extension may

also be shared among species. In support of the idea that related

genetic circuitry controls aging in different species are the findings

that genetic or pharmacological modulations of the conserved

nutrient responsive pathways, such as target of rapamycin (TOR)

[1] or insulin-like-growth factor (IGF-1) [2], increase lifespan in a

wide range of species including mammals. The budding yeast

Saccharomyces cerevisiae has become a popular model for studying the

genetic and molecular basis for variation in lifespan. Two different

forms of aging have been studied in yeast. Replicative lifespan

(RLS) is defined by the number of daughter cells that are

generated by a budding mother cell whereas chronological lifespan

(CLS) is defined as the ability of yeast cells to survive in stationary

phase as judged by the their capability to reenter the cell cycle

after nutrients are reintroduced [3,4]. The two types of aging in

yeast are thought to have their counterparts in mammals as the

aging of dividing stem cells or the aging of non-dividing cells such

as neurons or muscle cells, respectively. In addition to replicative

and chronological aging, mutant yeast cells dividing in the absence

of telomerase components exhibit loss of viability [5] similarl to

replicative senescence of human fibroblasts in culture [6].

Recent epidemiological studies of human populations demon-

strated a correlation between reduced leukocyte telomere length

and overall mortality [7], suggesting a link between telomere

maintenance and organismal aging. Furthermore, life stress has

been shown to influence leukocyte telomere length [8], establish-

ing a role for environmental stress in telomere stability. Little is

known about how these processes connect, though twin studies

suggest that both telomere length regulation and longevity in

humans have a strong genetic component [9,10].

Most of what we have learned about telomere maintenance

mechanisms and the genetics of aging comes from model

organisms where the effects of the single gene changes can be

examined independently from other genetic alterations. However,

because natural populations are genetically diverse, differences in

aging and telomere maintenance are more likely to result from the

integration of effects of polymorphisms at multiple loci. In order to

gain insight into telomere maintenance in genetically diverse

populations, we have previously employed an outbred yeast model

consisting of 122 haploid progeny derived by a cross of vineyard

RM11-1a (RM) and laboratory S288c yeast (BY) [11]. Parental

strains differ at 0.5% of their nucleotides and the progeny have
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been genotyped at .3000 markers, allowing for quantitative trait

locus (QTL) mapping. In a previous telomere length study, we

identified several loci that control telomere variation in this cross

[12].

In this study, we used the same outbred model to explore

chronological aging as a complex trait. During the course of these

studies, we found that that one of the loci that controls

chronological lifespan is identical to a major locus found to

control telomere length, suggesting a previously unrecognized link

between the two yeast aging-related phenotypes. This was an

intriguing finding because changes in telomere length are linked to

DNA replication, while chronological aging occurs in non-dividing

cells. Furthermore, the two phenotypes were regulated in opposite

directions by this locus: strains that inherited the vineyard allele

had shorter telomeres and longer lifespans. We found that a single

amino acid substitution in Bul2, a component of an ubiquitin

ligase complex which polyubiquitylates amino acid permeases and

regulates their presence at the cell membrane, controls cellular

amino acid availability and is responsible for the variation in both

telomere length and CLS. We also elucidated a pathway by which

decreased cellular amino acid uptake conferred by the BUL2

polymorphism and the consequent inhibition of nutrient-respon-

sive TOR1 signaling lead to reduced telomere length.

Results

Regulation of chronological lifespan is a dynamic process
controlled by many loci

To determine chronological lifespan of the 122 haploid progeny

(segregants) from the RM/BY cross, strains were grown in YPD

medium in 96-well plates to stationary phase, where cells maintain

metabolic activity but cease mitotic division. Chronological

lifespan (CLS) studies are often done in synthetic media, where

yeast lifespans can be analyzed in a few weeks [13]. Because of the

observation that the use of synthetic medium in CLS studies

exposes cells to lifespan-limiting acidification [14], we decided to

carry out segregant CLS analysis in YPD where acidification of the

media during culture outgrowth is not a problem. After intervals of

approximately 30 days, we harvested 1 mL of each stationary

phase culture, spotted culture dilutions on YPD plates, and

determined viability of cultures as the ratio of microcolonies after

24 hours of growth to the total cell number plated. We found

excellent correlation (R = 0.98) between the cell viability deter-

mined using our microcolony method and the viability measured

using colony forming ability (Figure S1). The vast majority of

cultures were found to be fully viable after the initial interval of 5

days in stationary phase (Figure 1A). Further along in stationary

phase, segregant culture viabilities decreased to an average of 70%

after 31 days (range 30–91%), 35% after 59 days (range 11–62%)

and 20% after 100 days (range 0.5–40%). The observed viability

distributions of the chronologically aged segregant strains

displayed several interesting features. First, the variation in

viability between segregants was continuous, suggesting that

multiple genetic loci control survival among the segregants.

Second, we observed that the parental strains’ phenotypes are in

the middle of the range. Such transgressive segregation, in which

the segregant progeny exhibit more extreme phenotypes than

either parental strain, suggests the presence of compensatory

genetic loci within both the RM and BY parental backgrounds.

Finally, the rank of the segregant viabilities was not static, as

illustrated by the changing order of the parental strains over time,

which suggests that different genes are responsible for early and

late viabilities.

We used genome-wide linkage analysis to identify the loci

(QTL) responsible for the variation in chronological lifespan. Each

segregant strain has been characterized for BY or RM inheritance

at 2,956 polymorphic markers across the genome [11]. Using

genome-wide linkage analysis, phenotype distributions can be

compared between segregants that inherit the BY or RM sequence

at each locus. A significant difference between the two distribu-

tions establishes a linkage between the trait of interest and the

genomic sequence near the tested polymorphic marker. We found

that stationary phase survival is linked to several genetic loci,

consistent with the observed continuous range in viability

(Figure 1B–1D, Table S2). We also noticed that the strength of

linkage of the mapped loci changes with time. The chromosome

13 linkage, for instance, has LOD scores .3.5 at 31 and 59 days,

yet it has no role in controlling viability after 100 days in culture.

On the other hand, the chromosome 14 linkage had the opposite

temporal pattern: not significant at day 31 yet has LOD scores

.3.5 at day 59 and 100. The alteration of the relative importance

of different loci at different time points suggests that cells depend

on different cellular processes during early and late stages of

chronological lifespan.

Chronological lifespan, telomere length, and cellular
permease activity are linked to the same polymorphism
in BUL2

Comparison between the genome scan for loci that control

chronological lifespan and our previous analysis for loci that

control telomere length (Figure 1E) revealed that the strongest

linkage for chronological lifespan at day 31 (chromosome 13 locus)

is congruent with a previously identified locus that controls

telomere length [12]. The segregant strains which inherited the

RM allele of chromosome 13 locus had longer CLS (65% versus

56% viability at 30 days) and shorter telomeres (261 bp versus

286 bp) compared to strains which inherited the BY allele of the

locus. In order to determine whether other mutants with short or

long telomeres exhibit either reciprocal effects or alterations in

CLS in general, we examined a panel of deletion mutants known

Author Summary

Dietary restriction promotes longevity in many species,
ranging from yeast to primates, and delays aging-related
pathologies including cancer in rodent models. There is
considerable interest in understanding how nutrient
limitation mediates these beneficial effects. Much of what
we have learned about the genetics of aging comes from
studying isogenic model organisms, where the effects of
single gene changes can be examined independently of
other genetic alterations. In order to explore a broader
spectrum of genetic variation and to gain insight into
aging-related phenotypes as polygenic traits, we analyzed
the chronological lifespan of 122 S. cerevisiae strains
derived from a cross between laboratory and vineyard
yeast strains. The major genetic locus controlling chrono-
logical lifespan was found to be identical to a previously
mapped locus that controls telomere length. Identification
of the responsible polymorphism in BUL2, a gene involved
in controlling amino acid permeases, allowed us to
establish a previously unrecognized link among cellular
amino acid intake, chronological aging, and telomere
maintenance. While human epidemiological studies have
linked shortened telomeres with increased mortality, it is
unclear how these processes are connected. Our results
suggest that, in yeast, reduced amino acid uptake and
consequent reduced nutrient signaling extend chronolog-
ical lifespan but reduce telomere length.

Amino Acid Import Modulates Telomeres and Aging
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Figure 1. Genomic linkage of chronological lifespan in S. cerevisiae segregants. (A) Stationary phase viabilities of the segregants and
parental strains (denoted by arrow) at different timepoints. Genome-wide linkage scans for viability after (B) 30 days, (C) 59 days, (D) 100 days and for
(E) telomere length. Linkage to locus in common for telomere length and chronological lifespan on chromosome 13 is denoted by arrow.
doi:10.1371/journal.pgen.1002250.g001
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to have telomere length alterations and found no correlation

between telomere length changes and CLS (Figure S2). Likewise, a

more general comparison of CLS and telomere length, using data

from the recent global CLS study [15] and our previous telomere

length screen [12], did not reveal any correlation between

telomere length and CLS (Figure S2). While we found no general

correlation between telomere length and CLS, the striking overlap

of genetic linkage between telomere length and chronological

aging in this cross led us to hypothesize that these two traits are

both controlled by a common polymorphism and that identifying

the responsible gene may reveal an unexpected link between

telomere maintenance and chronological aging.

Among the polymorphisms in the mapped region, we identified

one in the coding region of BUL2, a gene encoding a component

of the Rsp5p E3-ubiquitin ligase complex involved in amino acid

permease sorting. During growth in the presence of rich nitrogen

sources, high affinity amino acid permeases, such as the general

amino acid permease GAP1 and the proline transporter PUT4,

are polyubiquitylated by a complex consisting of Bul1, Bul2 and

Rps5, which specifies vacuolar-targeting of permeases for

degradation [16,17]. Cellular amino acid permease activity can

be monitored using the toxic proline analogue ADCB, which is

transported across the cell membrane via nitrogen-regulated

PUT4 and GAP1 [18]. We found that the parental RM and BY

strains exhibit a striking difference in ADCB sensitivity when

grown with a rich nitrogen source (Figure 2A). Consistent with

higher permease activity and amino acid intake relative to the RM

strain, the BY strain was not able to grow at concentrations of

ADCB that were non-toxic to the RM strain. Genome-wide

linkage analysis of ADCB sensitivity in the segregants demon-

strates that the BUL2-containing locus underlies the parental

differences in permease activity (Figure 2B). The BY strain carries

a single Leu883Phe substitution relative to the RM version of

Bul2, which is conserved among many fungal homologs

(Figure 2C) and all but three of the sequenced S. cerevisiae strains

(F883L is present in S288c and the two baking isolates YS2 and

YS9) [19]. Engineering the RM allele of BUL2 into the BY strain

restored ADCB resistance, whereas substitution of the BY BUL2

allele into the RM strain resulted in ADCB sensitivity (Figure 2D).

These findings indicate that the BY BUL2 Phe883Leu polymor-

phism confers a loss of Bul2 function, similar to that of a bul2D
mutant, and increases permease activity and amino acid uptake.

We next evaluated whether the same BUL2 polymorphism that

controls cellular permease activity also mediates chronological

lifespan and telomere length variation. The replacement of BUL2

in the BY parental strain with the RM allele led to an increase in

chronological lifespan (from 55% to 65% viable cells at 30 days in

YPD medium), which was similar in magnitude to the increase in

chronological lifespan conferred by the RM BUL2 allele in the

segregants (Figure 3A, 3B). Conversely, the replacement of the

RM BUL2 allele with the BY BUL2 allele in the RM parental

strain decreased chronological lifespan (67% versus 62%) after 30

Figure 2. Chromosome 13 locus contains a loss of function polymorphism in BUL2. (A) The RM and BY parental strains show differential
growth in media containing the toxic proline analog ADCB. (B) QTL mapping reveals that segregant sensitivity to ADCB is strongly linked to the same
locus on chromosome 13 that controls chronological lifespan. (C) Alignment of amino acid sequences from Bul2 homologs identifies a leucine
substitution of a conserved phenylalanine residue at position 883 conferred by the BY allele of BUL2 (T2647C). (D) Full BUL2 RM allele replacement
and single nucleotide point mutation encoding the BUL2 L883F substitution both confer ADCB resistance in the BY strain background. BUL2BY allele
replacement or deletion of BUL2 decreases growth of RM strains in media containing ADCB.
doi:10.1371/journal.pgen.1002250.g002
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days. We next examined the effect of BUL2 alleles on the time-

dependant viability curves in both laboratory and vineyard

background using the synthetic media that is commonly used for

CLS studies. (In order to minimize the viability reduction due to

media acidification, we used buffered SC medium [14]).

Consistent with previous reports, we observed that CLS is

shortened in SC medium compared to YPD, however, restoration

of BUL2 function using RM BUL2 allele in the laboratory strain

extended chronological life span even more robustly than we have

observed in YPD (Figure 3C). BUL2 replacement in the vineyard

strain with the hypomorphic BUL2BY allele shortened CLS and

deletion of BUL2 led to further reduction in CLS (Figure 3D),

which parallels the effect of BUL2 allele replacement and BUL2

deletion on cellular permease activity in the vineyard strain,

judged by increased ADCB sensitivity in the BUL2BY alleles and

BUL2 deletion (Figure 2D). The effects of BUL2 allele

replacement on CLS results were also confirmed using standard

colony formation metrics [13]. These findings demonstrate that

the BUL2 polymorphism controls variation of chronological

lifespan in the RM/BY cross.

The average telomere length in the segregants that contain the

BY allele of BUL2 was 286 bp, which is 25 bp longer than the

telomere length average of segregants that contain the RM allele

(261 bp) (Figure 4A). Therefore, if BUL2 is the responsible

polymorphism for telomere length alteration, then the BUL2 allele

replacement in the RM parental strain is expected to create a

25 bp increase in telomere length, while the allele replacement in

the BY strain would have a modest telomere length reduction. We

found that allele replacement of BUL2 in both parental strains led

to alterations in telomere length as predicted by the segregant

analysis: telomeres were found to be longer in the RM strains with

BUL2 replaced by the BY allele and telomeres were shorter in the

BY strains containing the RM BUL2 allele replacement

(Figure 4B). As expected from the segregant analysis, the effect

of allele replacement was modest, but also consistent and

reproducible, as shown by analysis of several independent strains.

Deletion of BUL2 lengthened telomeres in the RM background,

but had no effect in the BY background (Figure 4C). These results

demonstrate that the leucine residue substitution present in the BY

parent creates loss of Bul2 function, leading to higher activity of

amino acid permeases on cell membranes, reduced chronological

lifespan, and increased telomere length.

Telomere length alteration by Bul2 polymorphisms is
mediated by Gln3

Reduced availability of cellular nitrogen and amino acids

conferred by the restoration of Bul2 function is expected to reduce

the activity of the nutrient sensitive TOR1 kinase. Since the region

containing the BUL2 locus had been previously identified as a

regulatory hotspot that controls abundance of many transcripts in

this cross [20], we evaluated whether these transcriptional

alterations could be mediated by alterations in TOR1 activity.

Consistent with this possibility, we found that the set of genes

overexpressed in strains containing BUL2RM significantly over-

laps with genes that were found to be overexpressed in response to

amino acid deprivation (p = 1.161028) and rapamycin

(p = 1.261023) (Figure 5A, Table S3) [21], known inhibitors of

TOR1 activity [22,23]. Because reduction of TOR1 signaling has

been shown to extend chronological lifespan [24,25], the viability

gain in chronological aging assays conferred by the restoration of

Bul2 function can be explained by reduced activity of the nutrient

responsive TOR pathway. Could the same gene network be

mediating telomere length alterations conferred by BUL2

function?

To investigate this possibility, we re-examined data from our

previous genome-wide telomere length screen [12], focusing on

deletion mutants of genes in the nitrogen signaling circuit. We

reasoned that such mutants would likely affect telomere length

through the same mechanism as BUL2, thus we might gain insight

into BUL2’s mechanism of action on telomere length from known

modes of action through these other nitrogen-signaling mutants.

Among the mutants in genes involved in nitrogen signaling, we

found that cells lacking TOR1 have modest reduction in telomere

length and that cells lacking URE2 have strikingly short telomeres

(Figure 5B). In rich nitrogen environments, Ure2 binds to the

transcriptional activator Gln3 and inactivates it through cytoplas-

mic sequestration [26,27]. Upon encountering nitrogen-limiting

environments, Gln3 is released from its complex with Ure2 and

translocates to the nucleus to upregulate nitrogen catabolite

responses [28]. The short telomere phenotype in ure2D mutants is

mediated by Gln3, as we found that the deletion of GLN3 restored

the short telomere lengths in ure2D cells back to wildtype lengths

(Figure 5C).

We hypothesized that the reduced nitrogen availability

occurring in cells with functional Bul2 (i.e. the RM allele) leads

to increased Gln3 transcriptional activity and shorter telomeres. In

order to evaluate whether transcriptional alterations previously

mapped to the region containing the BUL2 locus [20] could be

mediated by Gln3, we compared the set of genes that are

upregulated by the RM BUL2 allele with the genes that are

upregulated in response to URE2 deletion. Of the 19 transcripts

that are significantly upregulated in strains with the RM BUL2

allele, 10 transcripts were found to be overexpressed in our

transcript array analysis of ure2D cells (of which there were 208

transcripts), including known direct Gln3 targets such as BAT2

and DIP5 (Figure 5A, Table S4) (p = 8.5610211) [29]. These

findings, along with previous reports which link loss of Bul2 to

decreased Gln3 nuclear localization [30], support a model in

which restoration of Bul2 function leads to decreased cellular

nitrogen availability, thereby promoting Gln3 transcriptional

activity and reduction of telomere length.

Could Bul2’s effect on telomere length be mediated by Gln3?

To address this question, we examined the effect of the BUL2

allele replacement in cells lacking GLN3. We found that neither

did the RM BUL2 allele in the BY gln3D strain shorten telomeres,

nor did the BY allele replacement increase telomere length in the

RM gln3D strain (Figure 5D). The requirement of Gln3 for BUL2

allele-induced telomere alterations supports the idea that BUL2

telomere length changes are mediated by modulation of Gln3

transcriptional activity. These findings, along with previous reports

which link loss of Bul2 to decreased Gln3 nuclear localization [30],

Figure 3. The BUL2 polymorphism regulates chronological lifespan. (A) Viability of the parental and BUL2 allele replacement strains after 30
days in stationary phase in YPD. (B) Viabilities of segregants after 30 days in stationary phase, separated on basis of BUL2 inheritance. Mean viability
for segregant populations with BUL2BY and BUL2RM are 56% and 65% respectively (p = 6.161025). (C) The BUL2RM allele replacement significantly
extended longevity of the BY strain, measured by both microcolony counting (p#0.05 at days 10, 13, 18 and 24) and colony formation (p#0.05 at
days 18 and 24). The BY bul2D strain exhibited CLS identical to the BY parental strain. (D) The RM parental strain had greater CLS than either the
BUL2BY allele replacement (microcolony: p#0.05 at days 18, 24, 31 and 38; CFU: p#0.05 at days 24, 31 and 38) or BUL2 deletion strain (p#0.05 at
days 13, 18, 24, 31 and 38). For longevity curves in C and D, triplicate cultures were aged in buffered SC media.
doi:10.1371/journal.pgen.1002250.g003
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support a model in which restoration of Bul2 function leads to

decreased cellular nitrogen availability, thereby promoting Gln3

transcriptional activity and reduction of telomere length.

Gln3 modulates nuclear-cytoplasmic shuffling of
ribonucleotide reductase components

In order to determine the relationship of the telomere

maintenance defect caused by the deletion of URE2 to other

pathways that participate in telomere maintenance, we compared

telomere lengths of ure2D single mutants and double mutants that

were ure2D and deficient in either DNA damage signaling (tel1D),

telomerase (tlc1D), or telomere-capping (yku70D) functions. The

ure2D cells showed synthetic telomere length phenotypes with the

yku70D, tel1D, and tlc1D mutants (Figure S3), suggesting that

Ure2’s effect on telomere maintenance acts independently from

pathways involved in telomere extension, telomere-capping, and

TEL1-mediated DNA damage signaling.

Our previous study of telomere maintenance genes identified a

significant subset of mutants involved in nucleotide biosynthesis as

having altered telomere length [12]. For instance, loss of the

ribonucleotide reductase large subunit RNR1 results in telomere

shortening on par with loss of YKU70 or TEL1. Since nitrogen

availability dictates growth, we speculated that mimicry of

nitrogen starvation created by increased nuclear Gln3 would

induce cells to conserve nitrogen and restrict nucleotide synthesis,

and this in turn would cause shortening of telomeres. We first

examined transcript levels in ure2D cells, anticipating reductions in

nucleotide biosynthesis gene expression, but found only modest

decreases in RNR1 and other nucleotide genes unlikely to account

for the magnitude of telomere shortening in ure2D mutants.

However, among the upregulated genes in ure2D cells, we found a

strong increase in expression of Wtm1, an inhibitor of ribonucle-

otide reductase. Wtm1 protein levels were found to be almost 5-

fold higher in ure2D cells compared to wildtype (Figure 6A). In

addition, allele replacement with BUL2RM in the BY background

gave rise to a 50% increase in Wtm1, while in the vineyards strain

the replacement of BUL2 with the hypomorphic BUL2BY and

BUL2 deletion decreased the Wtm1 protein level by 40% and

80% respectively (Figure 6A).

The ribonucleotide reductase complex assembles during S-

phase and consists of large Rnr1 subunits and the two small

subunits Rnr2 and Rnr4. Unlike Rnr1, which is always

cytoplasmic, Rnr2 and Rnr4 are localized in the nucleus during

G1 and translocate to the cytoplasm during S-phase [31]. This

process is controlled by Dif1, which promotes nuclear import, and

Wtm1, which anchors the small subunits Rnr2 and Rnr4 in the

nucleus [32,33]. Based on our observation that Wtm1 expression

increases in ure2D cells, we hypothesized that ure2D cells have

increased nuclear retention of the small subunits Rnr2 and Rnr4.

As previously observed, we found that Rnr4-GFP is nuclear during

G1 and cytoplasmic during S-phase in wildtype cells (Figure 6B,

6C). While Rnr4-GFP is appropriately nuclear in ure2D cells

during G1, 56% of ure2D cells retain Rnr4-GFP in the nucleus

during S-phase. We determined that this aberrant nuclear Rnr4

localization in ure2D is dependent on Wtm1 since ure2Dwtm1D
double mutants have completely restored cytoplasmic localization

of Rnr4-GFP. Rescue by WTM1 deletion is not merely due to loss

of nuclear Rnr4 localization: more than 50% of wtm1D cells still

maintain nuclear localization of Rnr4-GFP in G1 (Figure 6C).

Examination of strains with different BUL2 alleles revealed that

alteration of Bul2 function has a small but reproducible effect on

S-phase Rnr4-GFP localization (Figure 6D). Both RM BUL2BY

Figure 4. The BUL2 polymorphism is responsible for segregant telomere length phenotypes. (A) Segregant telomere lengths, separated
by BUL2 inheritance. Mean telomere lengths of segregants with BUL2BY and BUL2RM are 286 basepairs and 261 basepairs respectively
(p = 3.061024). (B) Southern blot analysis comparing telomere length in multiple independent BUL2 allele replacement transformants and wildtype
parental strains. Strains with the BY allele of BUL2 have longer telomeres in both parental backgrounds. (C) In the RM background, deletion of BUL2
increases telomere length. BUL2 deletion in the BY background has no effect on telomere length.
doi:10.1371/journal.pgen.1002250.g004
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and RM bul2D strains had 2.6% of S-phase cells with nuclear

Rnr4-GFP, which is a significant decrease from the 5.6% seen in

the RM wildtype strain. The fraction of cells with nuclear Rnr4-

GFP increases from 8.0% in BY wildtype to 10.3% in the BY

strain with the RM allele of BUL2 and decreases to 5.6% of S-

phase cells in the BY bul2D strain. These results suggest that cells

with decreased TOR signaling, such as in ure2D mutants and cells

with BUL2RM, form fewer ribonucleotide reductase complexes

during S-phase due to increased Wtm1 expression.

We then investigated whether deletion of WTM1 would rescue

the ure2D telomere length shortening. Telomere length compar-

ison of ure2D and ure2Dwtm1D mutants reveals that deletion of

WTM1 partially rescues telomere shortening due to loss of URE2

(Figure 7A). Along the same lines, we found that deletion of the

Rnr1 inhibitor SML1 [34] also abrogates the ure2D short telomere

length defect (Figure 7B). These findings support our hypothesis

that the shortened telomeres in ure2D cells are due, at least in part,

to limitation of ribonucleotide reductase activity.

Discussion

Examination of quantitative trait loci that regulate chronolog-

ical aging and telomere length in the progeny from a cross

between the laboratory strain S288c and a vineyard strain, RM11-

1a, led to identification of a polymorphism in BUL2 which alters

trafficking of amino acid permeases and cellular amino acid

import. Loss of Bul2 function, conferred by the laboratory allele of

the gene, initiates a cascade of events outlined in Figure 8 that

Figure 5. Transcriptional activator Gln3 mediates BUL2 allele-induced telomere length alterations. (A) Overlap between transcripts
upregulated by the RM allele of BUL2 among the segregants and those which are upregulated by amino acid deprivation, rapamycin treatment, or
the deletion of URE2 in the BY background. 11 of the 464 genes upregulated by amino acid deprivation (1 hour), 8 of the 796 genes upregulated by
rapamycin treatment (1 hour), and 10 of the 208 genes that are upregulated in ure2D cells are among the18 genes that are upregulated by the RM
BUL2 allele (p = 1.161028, p = 1.261023, and p = 8.5610211 respectively for the probability of overlap occurring by chance). (18 of the 19 BUL2RM
upregulated transcripts are represented in the amino acid deprivation, rapamycin, and ure2D transcript data). (B) tor1D and ure2D mutants in the BY
background have shorter telomeres than wildtype cells. (C) Deletion of URE2 in the BY background shortens telomere length through a GLN3-
dependent mechanism. ure2D mutant telomere length shortening is rescued by the deletion of GLN3. (D) Southern blot analysis comparing telomere
length of multiple independent BUL2 allele replacement transformants and parental strains lacking GLN3. BUL2 allele replacement does not alter
telomere length in parental strains lacking GLN3.
doi:10.1371/journal.pgen.1002250.g005
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centers on TOR, a nutrient-responsive protein kinase previously

implicated in CLS control. Our study defines a novel downstream

role for TOR signaling in the regulation DNA replication and

telomere maintenance through Gln3-mediated assembly of

ribonucleotide reductase during S-phase.

Amino acids are powerful activators of TOR signaling not only

in yeast, but also in multicellular eukaryotes. For Drosophila

melanogaster larvae, amino acid deprivation inhibits TOR activity

and leads to growth inhibition and reduced body size [35].

Similarly, Caenorhabditis elegans lacking the intestinal amino acid

transporter pep-2 also have reduced body size [36]. Increasing

evidence suggests that reduced intake of amino acids, which

consequently reduces TOR activity, may be a key component of

life-extending dietary interventions. Lifespan extension granted by

dietary restriction in D. melanogaster was abolished by re-addition of

amino acids [37]. Additionally, dietary reduction of a single

essential amino acid, either tryptophan or methionine, was

sufficient to confer lifespan extension in both mice and rats [38–

40]. While dietary restriction studies in S. cerevisiae typically involve

glucose restriction, our finding that restoration of Bul2 function

and resulting reduction of cellular amino acid import extends CLS

supports the idea that amino acid-mediated regulation of TOR

signaling controls longevity.

While several of the upstream molecular events that control

TOR activity, such as growth factors and energy status, are

understood in great detail [41], we only have rudimentary

knowledge of how cells sense amino acid sufficiency and transmit

this signal to TOR. TOR forms two separate complexes: the

rapamycin-sensitive TOR complex 1 (TORC1), which regulates

growth, ribosome biogenesis, translation and lifespan, and the

rapamycin-insensitive TOR complex 2 (TORC2) involved in actin

cytoskeleton organization and cell wall integrity [42]. Recent

studies in mammalian cells have identified several components

that are required for TOR activation by amino acids, including

Rag GTPase heterodimers involved in the recruitment of TORC1

complex to the lysosomal membrane compartment [43]. In

addition to their roles as activators of TOR, the S. cerevisiae Rag

GTPase orthologs Gtr1 and Gtr2 [23] are also implicated in the

retrieval of Gap1 and other high affinity amino acid permeases

from the vacuolar trafficking pathway [44], thus promoting their

localization to the plasma membrane. Because the retrieval of

Gap1 from the vacuolar targeting pathway is regulated by amino

acid availability (discussed below), these findings raise the

possibility that the related amino acid-responsive pathway that

controls TOR also controls recycling of high affinity transporters

to the cell membrane.

In contrast to the majority of the 23 amino acid permeases in

yeast, which are constitutively expressed and import specific

amino-acids with low affinity, high affinity permeases such as the

general amino acid permease Gap1 and proline permease Put4 are

highly expressed only during nitrogen limitation [16,45,46]. Gap1

and its related class of permeases have a high capacity for amino

acid transport and are thought to scavenge amino acids for use as a

source of nitrogen. Intracellular sorting is one of the mechanisms

by which the quality of available nitrogen controls the presence of

high affinity permeases at the cell membrane: during growth with

a good nitrogen source such as ammonium, glutamate and

glutamine, Gap1 is sorted to the vacuole for degradation [16].

When cellular nitrogen and amino acids levels are low, Gap1 is

sorted to the plasma membrane. A complex consisting of Rps5,

Bul1 and Bul2 ubiquitylates Gap1 and specifies its sorting to the

multivesicular endosome. From the endosome, Gap1 can be

targeted either to the vacuole or trafficked to the plasma

membrane depending of the amino acid availability [47]. The

amino acid-regulated step in this process appears to be Gap1

retrieval from the endosome rather than Gap1 ubiquitylation.

Nevertheless, ubiquitylation is a prerequisite for controlling Gap1

localization because in its absence, Gap1 never reaches the

endosome and is constitutively targeted to the plasma membrane.

Therefore, loss of Bul2 function, such as in cells with the BY allele

of BUL2, results in non-discriminatory import of amino acids and

greater intracellular amino acid and nitrogen availability. Our

finding that the common laboratory strain S288c carries a loss-of-

function mutation in BUL2, subsequently leading to indiscrimi-

nant amino acid uptake, is important for future studies that exploit

yeast as a model for amino acid sufficiency and TOR signaling.

Specifically, such studies should include strains with wild-type

Figure 7. Removal of ribonucleotide reductase inhibition
alleviates the short telomere phenotype in strains lacking
URE2. Deletion of genes encoding ribonucleotide reductase inhibitors
(A) WTM1 and (B) SML1 partially rescues telomere shortening conferred
by deletion of URE2.
doi:10.1371/journal.pgen.1002250.g007

Figure 6. ure2D mutants and cells with BUL2RM have increased Wtm1 expression and activity. (A) Immunoblotting confirms that ureD
mutants and strains with BUL2RM have increased expression of Wtm1, an inhibitor of ribonucleotide reductase. Wtm1 expression was normalized to
actin and Wtm1 intensity is listed as relative to wildtype expression. (B,C) Wildtype budded (S-phase) cells have largely cytoplasmic Rnr4-GFP
localization (black arrowhead), with nuclear exclusion of Rnr4-GFP, while ure2D mutants exhibit high fractions of budded S-phase cells with nuclear
localization of Rnr4-GFP (white arrowhead). Increased nuclear retention of Rnr4-GFP in ure2D mutant is rescued by deletion of WTM1. Unbudded (G1)
wildtype and ure2D cells both have primarily nuclear Rnr4-GFP localization, which is reduced by the deletion of WTM1. (D) Restoration of Bul2
function with the BUL2RM allele in the BY strain increases the number of cells with nuclear S-phase Rnr4-GFP (p = 0.02), while replacement with the
hypomorphic BUL2BY allele in the RM strain results in fewer cells with S-phase nuclear Rnr4-GFP (p = 0.05). Deletion of BUL2 reduced the amount of
cells with nuclear S-phase Rnr4-GFP in both the BY strain (p = 0.0002) and RM strain (p = 0.03).
doi:10.1371/journal.pgen.1002250.g006
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BUL2; for example, they could employ the allele substitution

strains described here. The mutation in BUL2 adds to the list of

genetic alterations in the standard laboratory strain that are not

representative of other members of the species such as loss of

function changes in AMN1 [48] and MKT1 [49].

Similar to the control of Gap1, mammalian growth factor

receptors are also regulated by ubiquitin-mediated trafficking.

While yeast cells detect cellular resources directly through their

import via permeases, multicellular organisms rely on growth

factors such as IGF-1, which also stimulates TOR activity through

Akt-Tsc-Rheb signaling, to coordinate nutrient availability with

growth [1]. Cell surface localization of the IGF-1 receptor (IGF-

1R) has been shown to depend on ubiquitylation by Nedd4, a

homolog of the catalytic Rsp5 subunit of the Rsp5/Bul1/Bul2

ubiquitin ligase [50]. It is intriguing that Nedd42/+ mice have

reduced IGF-1 receptors on the cell surface and phenotypes

consistent with reduced IGF-1 signaling, including decreased body

size [51], raising the possibility that they may share increased

longevity with other IGF-1-related dwarf mice.

Reduced amino acid import in cells with functional Bul2

inhibits TORC1 activity, consistent with our observation of

increased activity of TOR-inhibited transcription factor GLN3 in

cells containing the RM BUL2 allele compared with cells which

have the BY allele of BUL2. (In favorable nitrogen conditions,

high TORC1 activity sequesters Gln3 in the cytoplasm.) Reduced

TOR activity has been previously shown to extend both

chronological and replicative lifespan in yeast [24,25,52]. Because

reduced TOR activity extends lifespan also in higher eukaryotes

Figure 8. Model for BUL2-mediated alteration of telomere length and chronological lifespan.
doi:10.1371/journal.pgen.1002250.g008
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[53–55], there is great interest in understanding the downstream

events that mediate this effect.

Several mechanisms by which nutrients and TOR inhibition

promotes CLS in yeast have been proposed, including reduced

accumulation of acetate and/or acidification of culture media

[14], promotion of respiration and autophagy [56,57], and

increased activity of stationary phase and stress-responsive

transcription factors [25]. CLS experiments are often carried out

in synthetic media which is complicated by significant media

acidification due to release of organic acids during fermentation

(the initial media pH of 4.2 decreases to ,3 after cells reach

stationary phase). A combination of acidic pH and high

concentration of acetate in the media has been linked to reduction

of cell viability [14]. Because our chronological aging assays are

performed in rich media (YPD), which has an initial pH of 6.0 that

reduces only to 5.8 after cells reach stationary phase, or buffered

synthetic media, acetate toxicity is an unlikely mechanism for CLS

modulation in our study.

A study by Bonawitz et al. linked reduction in TOR activity to

increased cellular respiratory capacity [56]. While translation is

generally inhibited by reduced TOR activity, Bonawitz et al. found

that translation of mitochondrial proteins was enhanced and led to

increased respiration during growth in glucose. Respiration

becomes increasingly important for maintaining energy supplies

and viability as cells transition from fermentative growth to

stationary phase. The importance of respiration during the

stationary phase transition is supported by the findings of two

recent genome-wide studies that identified respiratory deficient

mutants among those with the shortest CLS [15,57]. In the same

studies, mutants defective in autophagy, another process stimulat-

ed by TOR inhibition, were also found to have short CLS. These

observations suggest that autophagy and respiration constitute

important mediators by which reduced TOR activity promotes

CLS.

The inhibition of TOR that occurs in cells during the post-

diauxic shift and preparation for stationary phase also elicits

specific transcriptional responses that are essential for maintaining

viability during quiescence [25]. One target of TOR is the Rim15

protein kinase that translates nutrient limitation signals from

TOR, as well as Ras/PKA and Sch9, into upregulation of cellular

responses necessary for survival in stationary phase [58]. Similarly

to Gln3, Rim15 is phosphorylated by the nutrient-sensing kinases

and retained in the cytoplasm, but upon nutrient deprivation,

dephosphorylated Rim15 translocates to the nucleus to activate

transcription factors Gis1 and Msn2/4, which upregulate genes

necessary for post-diauxic shift [59] and stress response respec-

tively [60,61]. Deletion of either RIM15 or its target transcription

factors shortens CLS and abolishes benefits conferred by caloric

restriction or mutations in Tor/Ras/Sch9 that mimic calorie

restriction [25]. Since Rim15 and Gln3 are both directly regulated

by TOR through cytoplasmic sequestration, we predicted that

Gln3, like Rim15, would be essential for proper stationary phase

transition and survival. In support of this idea, we have found that

deletion of GLN3 in the vineyard strain dramatically shortens CLS

(Figure S4) and that alteration of Bul2 function did not affect CLS

in gln3D mutants. However, consistent with previous reports

[24,25], we found that deletion of GLN3 in the laboratory strain

increased CLS. The paradoxical increase in CLS in response to

GLN3 deletion in the laboratory strain is in opposition to the CLS

detriment conferred by the loss of function of other transcription

factors such as Msn2/4 or Gis1 which are, similarly to Gln3,

upregulated during starvation. Furthermore, the opposing effect of

GLN3 deletion in the laboratory and vineyard strains makes it

difficult to determine the precise role of GLN3 as a mediator of

CLS alterations in the cascade of events initiated by the BUL2

polymorphism.

Serving as a central link between nutrient availability and

growth, TORC1 regulates many cellular processes including

ribosome biogenesis, protein translation, autophagy and respira-

tion [1]. During the examination of how telomere maintenance is

affected by amino acid import, we discovered that ribonucleotide

reductase (RNR) complex assembly during S-phase is modulated

by the TOR-responsive transcription factor Gln3, defining a novel

downstream role for TOR in DNA replication. We found that

increased Gln3 activity, conferred by the deletion of URE2,

upregulates Wtm1, which, in turn, promotes nuclear retention of

the small RNR4 subunit in the nucleus. Deletion of WTM1

restores cytoplasmic localization of the small subunits and partially

rescues the telomere length defect of ure2D cells. TORC1

inhibition by rapamycin was previously associated with genotoxic

stress sensitivity and inability to maintain high Rnr1 and Rnr3

levels in response to DNA damage [62]. Using telomere length as a

phenotype, we have uncovered a role of TORC1-responsive

transcription factor GLN3 in modulation of RNR assembly during

S-phase in response to cellular amino acid availability. TOR-

mediated control of DNA replication adds further to TORC1’s

role in coordinating nutrient availability, growth and cell division.

What is the relevance of our observation to mammalian and

human aging? Both dietary restriction and inhibition of TOR

activity have been linked to lifespan extension in mice [40,55]. At

the same time, epidemiological studies in humans have found an

association between longevity and long telomeres [9,10]. Because

our study demonstrates that dietary restriction and consequent

reduction in TOR activity lead to reduction of telomere length, it

will be important to determine whether reduced signaling in

response to dietary restriction through this highly conserved

nutrient and growth related pathway also reduces telomere length

in mammals.

Materials and Methods

Yeast strains and media
Experiments were carried out using standard YPD media (2%

glucose, 1% yeast extract, 2% peptone) unless otherwise noted (ie.

ADCB assays). The strains used in this study, listed in Table S1,

are from either the S288c (BY) or RM11-1A (RM) S. cerevisiae

backgrounds. The segregant library has been previously described

[11], except that AMN1 has been deleted in each of the segregants

to facilitate single cell viability analysis. (The RM allele of AMN1

confers clumpiness, which precludes single cell analysis, whereas

the S288c allele of AMN1 was previously shown to create a loss of

AMN1 function [48]). Gene deletion mutants were either from

yeast ORF deletion collection or were created using standard PCR

transformation methods.

For allele replacement, we PCR-cloned a fragment containing

1 kb of the 39 end of BUL2 and 1 kb BUL2 downstream sequence

from either the BY or RM strain using a 59 primer with an XhoI site

(59- GGCTCGAGGATTGATGATACCGCCAGCCAATCACC)

and a 39 primer with a HindIII site (39- GGCCAAGCTTGCGG-

GAAAAAGGCCAAACTCTACG). These fragments were inserted

between the XhoI and HindIII sites in pRS406, a vector containing

URA3. We used site-directed mutagenesis (QuikChange II kit,

Stratagene) to introduce the L883F polymorphism into the BY

BUL2 vector. Allele replacement strains were generated using the

‘‘pop-in/pop-out’’ gene replacement method with the linearized

BUL2 vector [63]. BUL2 allele replacement strains were first

screened by sensitivity to ADCB and then PCR-sequenced to

confirm the desired BUL2 polymorphisms.
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Microcolony assay for chronological aging
For each strain, 1 mL of saturated culture was inoculated into

150 mL of YPD (2% glucose) or buffered synthetic complete media

[14] in 96-well plates. Plates were then incubated for 2 days at

30uC, at which point they were foil-sealed to prevent evaporation

and kept at 30uC for the remaining time. Strains were examined in

triplicate. To assay viability, 1 ml of each resuspended culture was

harvested, diluted in water, spotted onto solid YPD media, and

incubated for 24 hours at 30uC. Microcolonies and cells that had

not divided were counted using a microscope, with the total

number of events (n.200 for each culture) used as the

denominator to determine viability percentage. Additionally,

colony formation unit (CFU) assays was used to determine

viability in select RM and BY strains. Comparison between

CFU and microcolony values obtained show that the two assays

are highly correlative (R = 0.98) (Figure S1).

QTL mapping/genome-wide linkage analysis
Genome-wide linkage analysis of segregant data was performed

using the publicly available R/qtl software. Effects of RM/BY

allele inheritance in the segregants were examined using R (box

plots) and Excel (student’s t-test).

ADCB toxicity assays
Initial ADCB toxicity assays were carried out using 25 mg/mL

ADCB (L-Azetidine-2-Carboxylic Acid, Sigma-Aldrich) dissolved

in SD media (1.9 g YNB, 0.5% (NH4)2SO4, 2% dextrose)

supplemented with leucine (80 mg/mL), lysine (60 mg/mL), and

uracil (20 mg/mL) to compensate for the auxotrophies present in

the segregant library. Cells were inoculated into 150 mL media in

96-well plate and incubated at 30uC. Segregant growth in ADCB

was quantified using absorbance at OD660 after 17 hours in

30uC. BUL2 allele replacement spot assays were carried out on

solid SD media of the same composition with 25 mg/mL ADCB.

Telomere length analysis
Genomic DNA was harvested from saturated 3 mL cultures

using a phenol:chloroform DNA extraction. Telomere lengths

were evaluated as described in Gatbonton et al. [12]: genomic

DNA was digested overnight with XhoI, resolved by gel

electrophoresis (0.5% TBE, 0.9% agarose gel, run for 360 VNhr)

and transferred to Hybond-N membrane. Terminal restriction

fragments containing telomeres were visualized using 32P-labeled

probes amplified from the Y9 subtelomeric sequence.

Microarrays
Total RNA was harvested from 20 mL logarithmic phase

cultures in biological triplicate using the hot phenol method

previously described by Schmitt et al. [64]. Three competitive

hybridizations for each experimental group (ure2D versus wildtype)

were performed using three separate cultures, and the log2 of the

expression ratio was calculated for every ORF. To assess the

intrinsic variation of expression levels for different ORFs, wildtype

versus pooled wildtype hybridizations were performed using three

separate cultures. Arrays used were spotted oligo probe arrays

generated by the Fred Hutchinson Cancer Research Center

Genomics Resource. Probability of overlap with BUL2RM-

upregulated transcripts was calculated using the binomial

probability formula.

Western blot analysis
Yeast whole cell extracts from 5 mL logarithmic phase cultures

were harvested using the NaOH protein extraction method

previously used by Thaminy et al. [65] and Kushnirov [66].

Proteins were resolved using SDS-PAGE (10% polyacrylamide

gel, 120 V for 90 minutes) and transferred to a nitrocellulose

membrane. Proteins of interest were probed with antibodies

against actin (1:1000 dilution, Neomarkers) or HA (1:5000

dilution, Covance) and visualized using HRP-conjugated IgG

antibodies (1:1000, Vector Laboratories). Wtm1 blot intensity was

quantified using ImageJ and normalized to actin intensity.

Fluorescence microscopy
The Rnr4-GFP strain was obtained from the commercially

available Invitrogen/UCSF GFP-tagged collection and genes were

deleted using standard PCR transformation protocols. Cells from

logarithmic phase cultures were harvested and fixed using

paraformaldehyde, as previously described by Biggins et al. [67].

To visualize nuclei, fixed cells were incubated with 1 mg/mL

DAPI for 1 hour, washed once and resuspended in sorbitol. Cells

were sonicated before visualization and scoring. At least 200

events for both S-phase and G1 cells were scored for wildtype,

ure2D, wtm1D and ure2Dwtm1D strains. At least 500 S-phase cells

were scored for RM and BY BUL2 allele strains. Images were

captured using a Nikon E800 fluorescence microscope.

Supporting Information

Figure S1 Comparison of viability values obtained via the CFU

assay versus the microcolony assay.

(TIF)

Figure S2 Comparison of phenotypes from telomere length and

chronological aging genome-wide deletion screens. Telomere

lengths of BY deletion strains from Gatbonton et al. [12] were

plotted against their corresponding CLS from Fabrizio et al. [15].

Telomere length is indicated on the x-axis as 21,22,23 for

mutants with shorter telomeres (shortened by by #50 bp, 50–

200 bp, and $200 bp respectively) and as +1,+2,+3 for mutants

with longer telomeres (longer by #50 bp, 50–200 bp, and

$200 bp respectively). In this study, 72 mutants were identified

as having short telomeres and 80 mutants with long telomeres. On

the y-axis, we have plotted the fitness at day 11 of each deletion

strain relative to the rest of the pool of ,5000 strains from the

deletion collection. (Strains were grown as pools and viability of

each deletion strain is assessed at different timepoints as a ratio to

the rest of the pool. Relative abundance of each strain at day 11

compared with their relative abundance at day 3 (t = 0) is taken as

a measure of their relative fitness at day 11. For instance, a strain

with a score of 1 has doubled its ratio of viable cells when

compared to its ratio to the rest of the pool at day 3.) Of the

roughly 600 strains identified as having putative altered longevity,

either increased or decreased CLS, only a few also exhibit a

telomere length defect. Conversely, most of the telomere length

mutants have unremarkable CLS (most of the strains fall between

21 and 1 on the y-axis). Even the strains exhibiting altered

telomere length and altered CLS did not fall into a set pattern:

strains with telomere length defects, for both longer or shorter

telomeres, were equally likely exhibit have increased or decreased

viability.

(TIF)

Figure S3 Short telomeres conferred by deletion of URE2 are

not epistatic with TLC1, YKU70 or TEL1. Southern blots show

telomere length of single ure2D and double ure2D tlc1D/yku70D/

tel1D mutants 25 doublings after germination of URE2/ure2D
heterozygous diploids which are also TLC1/tlc1D, YKU70/

yku70D, or TEL1/tel1D. Telomere lengths of the double
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ure2Dtlc1D, ure2Dyku70, and ure2Dtel1D mutants are shorter than

the telomere lengths of single ure2D, tlc1D, yku70D, or tel1D
mutants.

(TIF)

Figure S4 CLS curves for gln3D and telomere length mutants.

(A) Deletion of GLN3 extends lifespan in the BY parental strain,

yet GLN3 deletion results in decreased lifespan in the RM

parental background. Changes to Bul2 function, from either

BUL2 allele replacement or BUL2 deletion, have no effect on

lifespan in gln3D mutants in either parental background. (B) CLS

analysis of gln3D, ure2D, wtm1D and ure2Dgln3D mutants in the BY

background. (C) CLS analysis of mutants with long telomeres and

short telomeres. We found no correlation between telomere length

and chronological longevity.

(TIF)

Table S1 List of S. cerevisiae strains used in this study.

(XLS)

Table S2 Genomic loci linked to chronological lifespan.

(XLS)

Table S3 BUL2RM-upregulated transcripts overlap with those

upregulated by amino acid deprivation, rapamycin treatment and

loss of URE2. Transcripts upregulated in the segregants with the

RM BUL2 allele and their corresponding expression level in cells

undergoing amino acid deprivation, rapamycin treatment, or in

ure2D mutant cells.

(XLS)

Table S4 ure2D transcript dataset. Transcripts which were

upregulated 1.5-fold or more in ure2D cells relative to wildtype

cells. The abundance of each transcript is presented as a log2 ratio

relative to wildtype expression.

(XLS)
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