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While the conversion of the normal 
form of prion protein to a con-

formationally distinct pathogenic form 
is recognized to be the primary cause 
of prion disease, it is not clear how this 
leads to spongiform change, neuronal 
dysfunction and death. Mahogunin ring 
finger-1 (Mgrn1) and Attractin (Atrn) 
null mutant mice accumulate vacuoles 
throughout the brain that appear very 
similar to those associated with prion 
disease, but they do not accumulate the 
protease-resistant scrapie form of the 
prion protein or become sick. A study 
demonstrating an interaction between 
cytosolically-exposed prion protein 
and MGRN1 suggested that disrup-
tion of MGRN1 function may contrib-
ute to prion disease pathogenesis, but 
we recently showed that neither loss 
of MGRN1 nor MGRN1 overexpres-
sion influences the onset or progression 
of prion disease following intracere-
bral inoculation with Rocky Mountain 
Laboratory prions. Here, we show that 
loss of ATRN also has no effect on prion 
disease onset or progression and discuss 
possible mechanisms that could cause 
vacuolation of the central nervous system 
in Mgrn1 and Atrn null mutant mice and 
whether the same pathways might con-
tribute to this intriguing phenotype in 
prion disease.

Introduction

One of the most striking and intriguing 
neuropathological hallmarks of prion dis-
ease is the widespread appearance of vacu-
oles in the central nervous system (CNS). 
Other features, such as neuronal loss and 
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gliosis, are associated with many neuro-
degenerative disorders, but spongiform 
change is found in fewer, seemingly unre-
lated disorders, including prion disease, 
viral infection (i.e., HIV encephalopathy) 
and metabolic diseases.1-4 In transmissible 
spongiform encephalopathies, vacuoles are 
most commonly observed within the neu-
ropil and contain membrane fragments 
and amorphous material. Both the mech-
anism by which they arise and their role 
in prion disease remain unclear. The lyso-
somal pathway is thought to be involved 
since spongiform degeneration is reduced 
in the brains of aged prion-infected mink 
homozygous for the Aleutian allele, which 
is a loss-of-function mutation in the 
lysosomal trafficking regulator (LYST) 
gene.5,6 Interestingly, disease incubation 
time, clinical signs and gliosis are not 
altered, suggesting that the effect of the 
LYST mutation on the lysosomal pathway 
is specific to the formation of vacuoles and 
that this phenotype can be separated from 
other aspects of prion disease.

Vacuolation and gliosis of the CNS 
without accumulation of the protease-
resistant scrapie form of the prion pro-
tein (PrPSc) occurs in several mouse 
mutants, including Mahogunin ring  
finger-1 (Mgrn1) and Attractin (Atrn) null 
animals.7 These mice develop widespread 
spongiform encephalopathy with a similar 
anatomical distribution and histological 
appearance to that associated with prion 
diseases (Fig. 1) but do not become clini-
cally ill. If there is a shared mechanism 
underlying this phenotype in prion dis-
eases and Mgrn1 and Atrn mutant mice, 
then understanding the normal function 
of the MGRN1 and ATRN proteins in the 



268 Prion Volume 7 issue 4

or PrPSc in RML prion-infected GT1 or 
CAD cells.17

Mice homozygous for null alleles of 
Atrn also develop CNS vacuolation but 
at a much earlier age than Mgrn1 null 
mutants.18 If ATRN and MGRN1 act 
in the same pathway, this would suggest 
that loss of ATRN causes a more severe 
disruption of that pathway and that prion 
disease might therefore be more likely 
to progress more rapidly in Atrn null 
mutant mice than in wild-type or Mgrn1 
null mutant mice. To test this, female 
Atrn null (Atrnmg-3J/mg-3J) and wild-type 
control mice were inoculated with RML 
prions at 37–52 d of age. No significant 
genotype-dependent differences were 
observed in incubation or survival time 
(Fig. 2), indicating that RML-prions do 
not act through an ATRN-dependent 
pathway to cause disease. Although the 
role of ATRN in the CNS is not known, 
it appears to be required for normal mem-
brane homeostasis since Atrn null mutant 
mice show age-dependent loss of deter-
gent-resistant glycolipid-enriched mem-
brane domains (sometimes referred to as 
membrane rafts).19 When brain protein 
lysates from adult Atrn null mutant mice 
are centrifuged through a discontinuous 
sucrose gradient, proteins normally found 
in detergent-resistant membrane frac-
tions (i.e., flotillin-1) relocalize to high-
density membrane fractions (Fig. 3). The 

Cytosolically-exposed PrP has been 
detected in both transmissible and inher-
ited forms of prion disease,14,15 suggesting 
that CNS vacuolation associated with 
these diseases might be caused by dis-
rupted MGRN1 function. If this were 
the case, a complete absence of MGRN1 
might be expected to accelerate the onset 
of pathogenesis, while overexpression of 
Mgrn1 could be protective.

We tested whether MGRN1 plays a 
role in the pathogenesis of transmissible 
prion disease by inoculating Mgrn1 null 
mutant (Mgrn1md-nc/md-nc) mice and trans-
genic mice that overexpress Mgrn1 with 
Rocky Mountain Laboratory (RML)  
prions. MGRN1 levels had no effect on 
PrPSc accumulation or the onset, pro-
gression, symptoms or histopathology of 
disease.16 This suggests that cytosolically-
exposed PrP either is not produced or does 
not play a significant role in the patho-
genesis of prion disease caused by RML-
prions. The fact that disease progression 
was not altered in mice lacking MGRN1 
also suggests that partial disruption of 
TSG101-dependent endosomal trafficking 
does not significantly impact the conver-
sion of PrPC to PrPSc. This is consistent 
with a report that siRNA knockdown of 
ALIX (an ESCRT-associated protein) 
does not affect the production of PrPSc 
or the intracellular localization of PrPC 

brain and the pathways disrupted by their 
absence will provide insight into the cause 
of vacuolation in prion disease.

RML Prions Act Through MGRN1 
and ATRN-Independent Pathways

ATRN is a widely expressed type I trans-
membrane protein, the CNS function 
of which remains unknown.8 MGRN1 
is a RING-domain family E3 ubiquitin 
ligase, the only target of which identified 
to date is the endosomal sorting complex 
required for transport-I (ESCRT-I) pro-
tein, tumor susceptibility gene 101 pro-
tein (TSG101).9,10 TSG101 is required for 
the sorting of ubiquitinated proteins into 
multivesicular bodies (MVBs) and MVB 
formation.11 Its depletion from mam-
malian cells results in the accumulation 
of vacuolar, multicisternal endosomes,12 
which is likely to have an indirect effect on 
membrane homeostasis. Loss of MGRN1 
causes a partial loss of TSG101 function 
that leads to abnormalities in early and 
late endosomes and prolonged epidermal 
growth factor receptor signaling. In cul-
tured cells, cytosolically-exposed PrP was 
shown to interact with and functionally 
sequester MGRN1, resulting in endo-
somal defects similar to those observed 
in cells in which Mgrn1 expression was 
knocked down by siRNA.13 These defects 
could be rescued by Mgrn1 overexpression. 

Figure 1. Histologically similar spongiform degeneration of the CNS with a similar anatomical distribution is observed in rML prion-inoculated mice 
and mice lacking AtrN or MGrN1. top row, CA3 region of hippocampus; bottom row, thalamus.
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in a variety of disorders, although in the 
case of prion disease this would most 
likely be a secondary effect of either loss of 
PrPC or accumulation of PrPSc in neuronal 
membranes. An alternative mechanism 
could involve disrupted membrane func-
tions due to the accumulation of PrPSc, 
in prion diseases, or an effect of loss of 
ATRN or MGRN1 on membrane homeo-
stasis. Consistent with this hypothesis, 
widespread CNS vacuolation is observed 
in mice homozygous for loss-of-function 
mutations in FIG4 homolog gene (Fig4) or 
Vac14,34,35 the products of which form a 
complex that regulates phosphatidylinosi-
tol-3,5-bisphosphate (PI[3,5]P

2
) levels and 

select membrane trafficking pathways.
There is evidence for both neuronal- 

and oligodendroglial-dependent forms of 

it is not known whether ATRN plays a 
role in this pathway, while age-dependent 
loss of lipid raft domains associated with 
loss of ATRN is not observed in the brains 
of Mgrn1 null mutant mice (Fig. 3). A 
phenotype that is shared by Atrn and 
Mgrn1 null mutant mice is elevated oxida-
tive stress and mitochondrial dysfunction, 
apparent in the CNS by 1-mo of age.22 
Interestingly, mitochondrial diseases and 
mutations that disrupt mitochondrial 
function can cause spongiform encepha-
lopathy,23-29 and mitochondrial dysfunc-
tion has been observed in the brains of 
scrapie-infected mice30,31 and hamsters,32 
as well as in mice lacking PrPC.33 These 
observations suggest that reduced energy 
production due to mitochondrial dysfunc-
tion may contribute to CNS vacuolation 

distribution of membrane raft proteins 
was normal in brain lysates from both 
young (post-natal day 5) Atrn null mutant 
mice and adult animals homozygous for a 
hypomorphic allele (Atrnmg-L), neither of 
which have histologically-detectable vacu-
oles in their brain (Fig. 3; refs. 18 and 19). 
Localization of PrPC to lipid rafts has been 
implicated in its conversion to PrPSc,20 but 
the existence of these membrane domains 
remains controversial.21 The fact that nei-
ther the onset nor progression of disease is 
delayed in Atrn null mutant mice inocu-
lated with RML-prions at an age by which 
they already show spongiform change 
and have begun to lose membrane raft 
domains suggests that the conversion of 
PrPC to PrPSc can occur even as the ability 
of cells in the CNS to maintain membrane 
rafts is diminishing.

Are All Vacuoles Created Equal?

MGRN1 and ATRN are unlikely to act 
downstream of PrPSc to mediate prion 
disease pathogenesis since neither loss of 
MGRN1 or ATRN nor overexpression of 
MGRN1 altered the course of disease in 
RML-prion inoculated animals. The fact 
that Mgrn1 and Atrn null mice develop 
spongiform change without overt neuro-
logical symptoms or illness suggests vacu-
oles may be a secondary phenotype, but 
understanding how they form could reveal 
primary mechanisms and perturbed path-
ways in prion disease, and it is possible that 
loss of MGRN1 or ATRN and the pres-
ence of PrPSc (and/or loss of PrPC) act on 
the same downstream pathway(s) to cause 
spongiform change. Loss of MGRN1 has 
been associated with disrupted TSG101-
dependent endo-lysosomal trafficking but 

Figure 2. Kaplan-Meier plot showing health status following rML prion inoculation of Atrn null 
(C3HeB/FeJ-Atrnmg-3J/mg-3J) and control (C3HeB/FeJ) mice. A total of 8 (5 female, 3 male) mutant and 
10 (6 female, 4 male) control mice were inoculated intracerebrally with rML-prions at 37–52 d of 
age and monitored daily for general health status and thrice weekly for neurological symptoms. 
there was no significant difference in the time to onset of clinical symptoms of Atrn-deficient 
mice relative to controls.

Figure 3. Atrn but not Mgrn1 null mutant mice show age-dependent loss of membrane raft domains. Brain proteins were extracted in MES buffered 
saline containing 0.1% triton-x100 and protease inhibitors from animals of the indicated genotypes and ages. Lysates were centrifuged through 
a discontinuous sucrose gradient as described in ref. 40 and fractions analyzed for the presence of the raft marker flotillin-1 by western blotting. 
Detergent-resistant membrane rafts float to the interface between 5% and 35% sucrose (detergent-resistant fraction, DrF). in samples from the brains 
of wild-type C3H/HeJ mice, young (postnatal day 5, P5) Atrn null mutants, adult mice homozygous for the hypomorphic Atrnmg-L allele and aged (1 year 
old) Mgrn1 null mutant mice, the vast majority of flotillin-1 localized to the DrF. in samples from the brains of adult Atrn null mutant mice (postnatal 
day 68 (P68) shown), there is progressive redistribution of flotillin-1 from the DrF to the detergent-soluble fraction (DSF), consistent with loss of mem-
brane rafts.
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