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Abstract: Quantitative imaging using radiomics can capture distinct

phenotypic differences between tumors and may have predictive power

for certain phenotypes according to specific genetic mutations. We aimed

to identify the clinicoradiologic predictors of tumors with ALK (anaplastic

lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during

transfection) fusions in patients with lung adenocarcinoma.

A total of 539 pathologically confirmed lung adenocarcinomas were

included in this retrospective study. The baseline clinicopathologic

characteristics were retrieved from the patients’ medical records and

the ALK/ROS1/RET fusion status was reviewed. Quantitative computed

tomography (CT) and positron emission tomography imaging charac-

teristics were evaluated using a radiomics approach. Significant features

for the fusion-positive tumor prediction model were extracted from all of

the clinicoradiologic features, and were used to calculate diagnostic
yeseung Kim, MS, RN, MSN,
and Jhingook Kim, MD

The fusion-positive tumor prediction model was a combination of

younger age, advanced tumor stage, solid tumor on CT, higher values for

SUVmax and tumor mass, lower values for kurtosis and inverse variance

on 3-voxel distance than those of fusion-negative tumors (sensitivity and

specificity, 0.73 and 0.70, respectively). ALK fusion-positive tumors were

significantly different in tumor stage, central location, SUVmax, hom-

ogeneity on 1-, 2-, and 3-voxel distances, and sum mean on 2-voxel

distance compared with ROS1/RET fusion-positive tumors.

ALK/ROS1/RET fusion-positive lung adenocarcinomas possess cer-

tain clinical and imaging features that enable good discrimination of

fusion-positive from fusion-negative lung adenocarcinomas.

(Medicine 94(41):e1753)

Abbreviations: ALK = anaplastic lymphoma kinase, CT =

computed tomography, EGFR = epidermal growth factor

receptor, FDG = 18F-fluorodeoxyglucose, GGO = ground-glass

opacity, GLCM = gray level co-occurrence matrix, HU =

hounsfield unit, NSCLC = nonsmall cell lung cancer, OS =

overall survival, PET = positron emission tomography, RET =

rearranged during transfection, RFS = recurrence-free survival,

ROIs = regions of interest, ROS1 = c-ros oncogene 1, SUV =

standardized uptake value.

INTRODUCTION

R ecently, chromosomal rearrangements that lead to gene
fusions have emerged as important oncogenic drivers of

lung cancer. The anaplastic lymphoma kinase (ALK) rearrange-
ment has been identified as a novel oncogenic event in lung
adenocarcinoma,1–4 and represents an important breakthrough
in lung cancer management. ALK fusion-positive lung cancer
shows a dramatic clinical response to ALK inhibitors, crizotinib
(Xalkori; Pfizer, New York, NY).1,5–7 The success of crizotinib
in the management of ALK fusion-positive patients has elicited
efforts to find new oncogenic fusion genes, such as ROS1 (c-ros
oncogene 1) and RET (rearranged during transfection), and
has revealed that patients with nonsmall cell lung cancer
(NSCLC) that is ROS1 or RET fusion-positive are also highly
sensitive to crizotinib treatment.3,7–9 Subsequently, tumors that
are ROS1/RET fusion-positive have become of clinical interest
in patients with lung cancer. Thus, the specific characteristics of
fusion-positive tumors must be adequately defined in order to
effectively screen and identify patients with fusion-positive
NSCLC.

Accordingly, studies have recently been conducted to find
certain clinicopathologic characteristics of fusion-positive lung
adenocarcinoma, and have evaluated the relationship with some
particular clinicopathologic features.8,10–16Meanwhile, ima-
ation of fusion-positive tumors to opti-
ion is becoming of paramount clinical
istologic and molecular examination
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information through invasive biopsy is often derived from only
a portion of a generally heterogeneous tumor, and therefore, the
characterization does not provide a complete representation of
the lesion’s functional and physiologic properties.17 Although
some investigations have characterized the morphology of
tumors on computed tomography (CT) images, these charac-
teristics are typically described subjectively and qualitat-
ively.18,19 On the other hand, noninvasive predictive
biomarkers have recently been identified for using accurate
quantitative imaging descriptors in line with advances in image-
processing technique. We hypothesize that these imaging fea-
tures could help seize the distinct phenotypic differences of
tumors and may have predictive power for certain phenotypes
attributed to genetic mutation.

Thus, we conducted a study to find not only the qualitative
but also the quantitative CT and positron emission tomography
(PET) features allowing us to discriminate fusion-positive
tumors by adopting a radiomics approach. Our main purpose
was to explore the potential of multifunctional imaging in
providing predictors for fusion-positive tumors while using
quantitative CT and PET radiomics approach in patients with
lung adenocarcinoma. Our ultimate goal was to identify useful
predictive characteristics of fusion status and to further develop
treatment strategies.

PATIENTS AND METHODS

Patients
We acquired patient data from a single-tube assay study,20

conducted from January 2008 to January 2013. This retro-
spective study conducted at a single tertiary center was
approved by the Institutional Review Board of the Samsung
Medical Center (IRB File No. 2014-09-064). Informed con-
sent was waived. We included 759 subjects with lung adeno-
carcinoma, irrespective of gender, or smoking history. The
criteria used for patient selection included: availability of
tumor tissue, genetic data (ALK, ROS1, or RET fusion-
positive), CT available for initial diagnosis and quantitative
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image analysis and 18F-fluorodeoxyglucose (FDG) PET/CT
for initial diagnosis. Ultimately, a total of 539 patients were
included in this study.

FIGURE 1. Extracting quantitative imaging features from CT images. Tu
tumor; next, resampled images of voxel-based CT numbers were coll
were then obtained. CT ¼ computed tomography.
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Data Collection, Histopathologic Classification,
and Mutational Analyses

Study data were collected using electronic medical
records. Clinical characteristics evaluated at the time of diag-
nostic work-up.

Histologic subtypes and the differentiation status of the
lung adenocarcinomas were classified according to the new
International Association for the Study of Lung Cancer/Amer-
ican Thoracic Society/European Respiratory Society (IASLC/
ATS/ERS) multidisciplinary classification of lung adenocarci-
noma.21

For molecular analysis, genomic DNA or RNAwas extracted
from lung tumors using standard protocols (RNeasy Mini Kit and
QiAamp DNA Mini Kit, Qiagen, Hilden, Germany). ALK, ROS1,
and RET fusion assay using nCounterTM gene expression assays
were custom-designed and synthesized by NanoString Technol-
ogies (Seattle, WA), as previously described.20

Image Acquisition
PET—See Appendix S1, http://links.lww.com/MD/A460.
CT—Helical CT images were all obtained with a 64-

detector row (LightSpeed VCT, GE Healthcare, Waukesha,
WI) CT scanner (125 mA, 120 kVp, beam width of 10–
20 mm, beam pitch of 1.375–1.500). The image data were
reconstructed with a section thickness of 2.5 mm. Details are
described in Appendix S2, http://links.lww.com/MD/A460.

Image Analysis
A qualitative analysis of solidity was recorded for each

patient. Tumor size and location were also recorded. Addition-
ally, the presence of lymphangitic metastasis, pleural effusion,
and central or peripheral location were evaluated. Examples of
CT images showing typical qualitative features of lung adeno-
carcinomas are shown in Figure S1, http://links.lww.com/MD/
A460

In the quantitative analysis, regions of interest (ROIs) were
delineated on the axial images to generate a volume of interest

Medicine � Volume 94, Number 41, October 2015
which included the entire target lesion (Fig. 1). Initially, we
evaluated the stability of various quantitative CT features with
intra-observer reliability, which were calculated by intra-class

mors were segmented by drawing regions of interest for the whole
ected. The physical, histogram-based, regional, and local features
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(EGFR�) (see Figure S2, http://links.lww.com/MD/A460). The
ICC showed ‘‘perfect’’ agreement (0.916–0.999) on all quan-
titative CT features in 25 patients.

TABLE 1. Fifty Quantitative CT Features Used to Differentiate
Fusion-Positive From Fusion-Negative Lung Adenocarcinomas

Type Lesion Feature

Physical features Volume

Mass

Density

Histogram-based and
regional features

Skewness
Kurtosis
HU at the 2.5th percentile on histogram

HU at the 25th percentile on histogram

HU at the 50th percentile on histogram

HU at the 75th percentile on histogram

HU at the 97.5th percentile on histogram

Uniformity

Entropy

Intensity variability

Size-zone variability

Local features D1, D2, D3
�

Energy
Entropy

Correlation

Contrast

Variance

Sum mean

Inertia

Cluster shade

Cluster tendency

Homogeneity

Maximum probability

Inverse variance
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correlation coefficients (ICC) in 25 randomly selected patients.
Quantitative CT analysis was performed based on physical,
histogram-based, regional, and local features from the manually
derived ROI. Details are described in Appendix S3, http://
links.lww.com/MD/A460. A total of 50 quantitative CT features
were analyzed and the categorization of all features is presented
in Table 1. As for PET analysis, SUVmax was extracted from the
primary tumor in the PET images for each patient.

Data Management and Statistical Analysis
Patients were divided into the following 2 groups: the

fusion-positive group and the fusion-negative group. The pre-
sence or absence of concurrent epidermal growth factor receptor
(EGFR) mutation was assessed. These 2 groups were compared
with respect to clinicopathologic characteristics. A Chi-squared
test and Student t test were used to compare categorical and
continuous variables among the 2 groups, respectively.

The derivation and validation of the fusion-positive ima-
ging biomarker are described below. In order to maximize our
ability to discriminate between fusion-positive or negative
status, we intentionally designed the dataset to contain equal
numbers of patients with fusion-positive and fusion-negative
lung adenocarcinomas using random sampling (64 patients with
fusion-positive lung adenocarcinomas vs 64 patients with
fusion-negative lung adenocarcinomas).

D¼ distance, HU¼ hounsfield unit.�
Computed by a 1-voxel distance (D1), 2-voxel distance (D2), and 3-

voxel distance (D3) relationship between consecutive voxels.
Clinical qualitative/quantitative image feature data were
used to establish a discriminator of fusion-positive status. We
utilized 4 clinical features and 57 image features (SUVmax, 6

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.
qualitative features and 50 quantitative variables consisting of
physical, histogram-based, regional, and local features) as the
input to define potential associations with the underlying fusion
status (Table 1). The P value of 61 features was calculated using
a t test or Chi-squared test. Features with a P value< 0.1 were
selected as significant features for fusion-positive status (non-
categorical selection). Then, to remove redundancy within the
radiomic information as in Hugo et al,22 we selected a more
significant feature from each of the 6 categories, which con-
sisted of the 4 image feature categories (qualitative, physical,
histogram-based, regional, and local features), clinical features
and SUVmax for categorical selection. Tenfold cross-validation
was used to evaluate the performance of the prediction model23

based on sensitivity, specificity, and positive and negative
predictive values (Fig. 2).

Overall survival (OS) and recurrence-free survival (RFS)
were calculated for patients who underwent curative operations
for lung adenocarcinoma (see Appendix S4, http://links.lww.-
com/MD/A460).

Internal Validation
The tenfold cross-validation method randomly divided the

samples into 10 subsets of roughly equal size.24 At each of 10
iterations, 9 subsets were used as a training set and the remain-
ing set was used as a test set. A logistic regression model was
applied to help the training set fit to the prediction model.
Performance measures were calculated by applying the fitted
prediction model to the test set.

RESULTS
Of the 539 lung adenocarcinoma patients, 47 patients had

ALK fusion (8.7%) and 17 patients had ROS1/RET fusion
(3.2%); therefore, 64 patients were in the fusion-positive group
(11.9%). The ALK/ROS1/RET fusions were mutually exclusive.
In the fusion-positive group, 2 patients had concurrent EGFR
mutations (EGFRþ) and 42 patients had no EGFR mutation

Radiomics for Fusion-Positive Lung Adenocarcinoma
FIGURE 2. Development of the fusion-positive tumor prediction
model.
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Clinicopathologic Characteristics of ALK/ROS1/
RET Fusion-Positive Lung Adenocarcinomas

A comparison of the clinicopathological and histologic
characteristics of patients with ALK/ROS1/RET fusion is pro-
vided in Table 2. Patients in the fusion-positive group were
significantly younger and more likely to have been never-smo-
kers than patients in the fusion-negative group (P< 0.001 and
P¼ 0.042). The gender of patients in the fusion-negative group
with EGFR� (fusion-EGFR�) was significantly different com-
pared to the fusion-positive group (P¼ 0.001).

Pathologically, acinar predominant adenocarcinoma was
the most frequent tumor subtype in both fusion-positive and -

Yoon et al
negative groups (29.0% and 52.6%, respectively). The predo-
minant subtype was significantly different between the fusion-
positive and -negative groups (P¼ 0.003). Compared with

TABLE 2. Comparison of Clinicopathologic and Histologic Chara
carcinomas

Total
(n¼ 539)

Fusionþ
(n¼ 64)

Fusion�
(n¼ 475)

Fusi
EGF

Number 537 62
�

475 16
Age, median (range) 61 (25–87) 53 (25–77) 63 (34–87) 62 (4
Gender

Male 274 (51.0) 27 (43.5) 247 (52.0) 60 (3
Female 263 (49.0) 35 (56.5) 228 (48.0) 107 (

Smoking history (yes) 238 (44.3) 20 (32.3) 218 (45.9) 47 (2
Stagey

I–II 305 (56.8) 28 (45.2) 277 (58.3) 78 (4
III–IV 232 (43.2) 34 (54.8) 198 (41.7) 89 (5
Adenocarcinoma

predominant subtype
Lepidic 9 (1.7) 0 (0) 9 (1.9) 1 (0
Acinar 268 (49.9) 18 (29.0) 250 (52.6) 99 (5
Papillary 46 (8.6) 5 (8.1) 41 (8.6) 15 (
Micropapillary 5 (0.9) 0 (0) 5 (1.1) 1 (0
Solid 56 (10.4) 14 (22.6) 42 (8.8) 11 (
Mucinous 12 (2.2) 2 (3.2) 10 (2.1) 2 (1
AIS/MIA 3 (0.6) 0 (0) 3 (0.6) 1 (0
Not available 138 (25.7) 23 (37.1) 115 (24.2) 37 (2

Adenocarcinoma
differentiation

Well 61 (11.4) 3 (4.8) 58 (12.2) 20 (1
Moderate 269 (50.1) 25 (40.3) 244 (51.4) 91 (5
Poor 83 (15.5) 13 (21.0) 70 (14.7) 16 (
Not available 124 (23.1) 21 (33.9) 103 (21.7) 40 (2

Presence of signet
ring cell

18 (3.4) 9 (14.5) 9 (1.9) 1 (0

Presence of mucin
production

6 (1.1) 3 (4.8) 3 (0.6) 1 (0

Mean tumor
size�SD, mm

34.7� 19.5 36.5� 19.9 34.0� 19.4 33.0�

Location
Upper/middle 313 (58.3) 28 (45.2) 285 (60) 99 (5
Lower 224 (41.7) 34 (54.8) 190 (40) 68 (4

Bold represents statistically significant, P< 0.05. AIS¼ adenocarcinom
deviation.�

Two patients with concurrent EGFR mutation were excluded.
yTumor stage was defined according to the seventh edition of the Amer
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fusion-negative tumors, fusion-positive tumors were more
likely to be advanced stage (P¼ 0.005). Signet ring cells were
observed in 14.5% of fusion-positive tumors (9 of 64), whereas
only 1.9% (9 or 475) of tumors in the fusion-negative group had
observable signet ring cells; this resulted in a significant
difference in signet ring cells between the fusion-positive
and -negative groups (P< 0.00). Cells with mucin production
were observed in 3 fusion-positive patients (4.8% of 64) and 3
fusion-negative patients (0.6% of 475), which was significantly
different (P¼ 0.003).

Building the Fusion-Positive Prediction Model

Medicine � Volume 94, Number 41, October 2015
Of the 61 total features evaluated, 16 features with a P
value <0.1 were selected. Fourteen were qualitative and quan-
titative CT image features: solidity, central tumor location,

cteristics of Fusion-Positive and Fusion-Negative Lung Adeno-

on�,
Rþ

Fusion�,
EGFR-

P Value
(Fusion�

vs Fusionþ)

P Value
(EGFRþ
Fusion�

vs Fusionþ)

P Value
(EGFR�
Fusion�

vs Fusionþ)

7 117
0–85) 63 (34–84) <0.001 <0.001 <0.001

0.211 0.291 0.001
5.9) 82 (70.1)

64.1) 35 (29.9)
8.1) 72 (61.5) 0.042 0.543 <0.001

0.005 0.008 0.238
6.7) 39 (33.3)
3.3) 78 (66.7)

0.003 0.001 0.092

.6) 2 (1.7)
9.3) 42 (35.9)

9.0) 8 (6.8)
.6) 2 (1.7)

6.6) 9 (7.7)
.2) 2 (1.7)
.6) 0 (0.0)
2.2) 52 (44.4)

0.087 0.013 0.594

2.0) 10 (8.5)
4.5) 41 (35.0)

9.6) 23 (19.7)
4.0) 43 (36.8)
.6) 3 (2.6) <0.001 <0.001 0.002

.6) 0 (0.0) 0.003 0.03 0.016

14.5 39.0� 20.4 0.432 0.215 0.442

0.026 0.056 0.036
9.3) 72 (61.5)
0.7) 45 (38.5)

a in situ, MIA¼minimally invasive adenocarcinoma, SD¼ standard

ican Joint Committee on Cancer (AJCC 7th edition).
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TABLE 4. Sensitivity, Specificity, and Positive and Negative
Predictive Values of Models

Noncategorical
Selection

�
Categorical

Selectiony

Sensitivity 0.7344 0.7344
Specificity 0.7031 0.7031
Positive predictive value 0.7121 0.7121
Negative predictive value 0.6923 0.6923

�
Calculated P value for 61 features using a t test or Chi-squared test

from the dataset and selected the features with P value <0.1.
yThe most significant features were selected from each of 6 categories

which included the 4 image feature categories, clinical features and

Radiomics for Fusion-Positive Lung Adenocarcinoma
SUVmax, kurtosis, CT numbers, or HU at the 97.5th percentile
on histogram, homogeneity on 1-voxel distance, contrast and
cluster shade on 1-, 2-, and 3-voxel distances, and inverse
variance on 2- and 3-voxel distances. The other 2 features
selected were patient age and tumor stage (Table 3). When
we select more significant features from each of the 6
categories, consisting of the 4 image feature categories, clinical
features, and SUVmax, 7 features were ultimately identified as
having the strongest predictive ability for fusion-positive status.
In this model, 5 features were qualitative and quantitative CT
image features: solidity, SUVmax, mass, kurtosis, and inverse
variance on 3-voxel distance. The remaining 2 selected features
were patient age and tumor stage (Table 3). The sensitivity,
specificity, and positive and negative predictive values of the
tenfold cross-validation of noncategorical and categorical fea-
ture selection are shown in Table 4. The sensitivity and speci-
ficity of the fusion-positive prediction model were 0.73 and
0.70, respectively, for the noncategorical and categorical
selection.

Overall, the tumors in the fusion-positive group tended to
be solid, with a central location, and a higher value for SUVmax

than those in the fusion-negative group. In addition, in the
fusion-positive group, the values for kurtosis and inverse var-
iance on 2- and 3-voxel distances were lower, whereas the mass,
CT numbers or HU at the 97.5th percentile on histogram,
homogeneity on 1-voxel distance, contrast and cluster shade
on 1-, 2-, and 3-voxel distances were higher than in the fusion-
negative group (see Table S1, http://links.lww.com/MD/A460).

Clinicoradiologic Comparison Task Between ALK

Medicine � Volume 94, Number 41, October 2015
vs ROS1/RET Fusion-Positive Tumors
A comparison of the clinicoradiological characteristics

between the patients with ALK and ROS1/RET fusions is

TABLE 3. Selected Features for the Fusion-Positive Prediction
Models

Noncategorical
Selection

Categorical
Selection

�

Clinical feature Age Age
Tumor stage Tumor stage

Qualitative CT feature Solidity Solidity
Central tumor locationy

Quantitative CT
feature (physical)

Mass

Quantitative CT feature
(histogram-based
and regional)

Kurtosis Kurtosis

HU at the 97.5th percentile
on histogram

Quantitative CT
feature (local)

Homogeneity on 1-voxel D

Contrast on 1-, 2-, and
3-voxel D

Cluster shade on 1-, 2-, and
3-voxel D

Inverse variance on 2- and
3-voxel D

Inverse variance
on 3-voxel D

PET feature SUVmax SUVmax

D¼ distance, HU¼ hounsfield unit.�
For ALK fusion-positive tumors, all qualitative CT imaging vari-

ables were included.
yCentral¼medial to midclavicular line.

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.
provided in Table 5. Tumor stage, central location, SUVmax,
homogeneity on 1-, 2-, and 3-voxel distances, and sum mean on
2-voxel distance were significantly different between the 2
groups (P¼ 0.042, 0.017, 0.005, 0.030, 0.023, 0.028, and
0.049, respectively).

Survival Analysis
See Appendix S5, http://links.lww.com/MD/A460

DISCUSSION
Profiling various predictive biomarkers for cancer cells

may further improve clinical outcomes and reduce the toxicity
levels of antineoplastic drugs.25 However, most histologic
approaches only involve small biopsies or cytological speci-
mens and are therefore limiting due to the heterogeneity and
invasiveness of the tumor. Furthermore, fusion molecular test-
ing is not currently cost effective.6 The linkage of genetic
information and clinical and imaging data is crucial to under-
standing the interplay between all of the relevant parameters
and necessary to establish effective patient stratification and
reliable treatment strategies in limited tissue settings. In this
study, we identified clinical and imaging predictors for ALK/
ROS1/RET fusion-positive lung adenocarcinoma and found that
a combination of imaging parameters and clinical features has
the potential to improve the differentiation of fusion-positive
tumors from fusion-negative lung adenocarcinomas.

It is now known that ALK and ROS1/RET fusion-positive
lung adenocarcinomas represent up to 5% and 1% to 2% of all
primary NSCLCs, respectively. Due to the relatively recent
discovery and low prevalence of fusion-positive lung adeno-
carcinomas,8,11,12,26,27 little is known regarding the tumors’
imaging characteristics and their relationship to the fusion-
positive molecular phenotype. A few studies regarding ima-
ging-based identification of ALK fusion-positive tumors using
CT or PET in lung adenocarcinoma have been reported to
date18,19,28,29; however, these studies were relatively subjective
studies in that they only included qualitative CT variables.
Moreover, imaging-based identification of ROS1/RET fusion-
positive tumors in NSCLC has yet to receive much attention.

Radiomics is an emerging field that converts imaging data
into a high-dimensional mineable feature space using a great

SUVmax.
number of automatically extracted data-characterization algor-
ithms.30,31 The present study found significant radiomics-based
predictors for fusion-positive tumors. These parameters are

www.md-journal.com | 5
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TABLE 5. Clinicoradiologic Comparison Task Between ALK vs ROS1/RET Fusion-Positive Tumors

ALKþ (n¼ 47) ROS1/RETþ (n¼ 17) P Value

Clinical features Age (median, yr) 52 57 0.185
Gender (male:female) 22:25 6:11 0.412

Smoking history (never:ever, n) 31:16 12:5 0.728

Tumor Stage (I/II:III/IV, n) 16:31 11:6 0.042

Qualitative CT features Size, mm 37 35.2 0.099
Location (upper/middle lobe:lower lobe, n) 22:25 6:11 0.412

Solidity (solid: part-/nonsolid, n) 46:1 14:3 0.054

Central tumor location (centraly:peripheral, n) 27:20 4:13 0.017

Lymphangitic metastasis, n 4 0 0.566

Pleural effusion, n 6 0 0.826

Quantitative CT features (physical) Volume, cm3 26.09 60.81 0.349
Mass 11.81 21.01 0.507

Density, g 0.44 0.41 0.407

Quantitative CT features
(histogram-based and regional)

Skewness 1.56 1.85 0.527

Kurtosis 8.52 10.01 0.433

HU at the 2.5th percentile on histogram �843.46 �822.82 0.988

HU at the 25th percentile on histogram �727.75 �702.49 0.543

HU at the 50th percentile on histogram �629.37 �644.71 0.466

HU at the 75th percentile on histogram �464.19 �523.37 0.386

HU at the 97.5th percentile on histogram 39.30 �89.18 0.307

Uniformity 0.005 0.007 0.204

Entropy 8.49 8.08 0.173

Intensity variability 4.68 3.53 0.226

Size-zone variability 19.88 24.58 0.133

Quantitative CT features (local) Energy on 1-, 2-, and 3-voxel D 0.13, 0.12, 0.12 0.14, 0.12, 0.12 0.707, 0.729, 0.763
Entropy on 1-, 2-, and 3-voxel D 1.30, 1.34, 1.33 1.28, 1.31, 1.31 0.838, 0.751, 0.753

Correlation on 1-, 2-, and 3-voxel D 0.13, 0.08, 0.07 0.15, 0.09, 0.07 0.630, 0.810, 0.892

Contrast on 1-, 2-, and 3-voxel D 3.81, 7.32, 9.95 4.43, 7.17, 10.01 0.821, 0.684, 0.707

Variance on 1-, 2-, and 3-voxel D 0.40, 0.40, 0.40 0.43, 0.44, 0.44 0.473, 0.472, 0.446

Sum mean on 1-, 2-, and 3-voxel D 8.35, 7.93, 7.39 5.22, 4.84, 4.54 0.059, 0.049, 0.068

Inertia on 1-, 2-, and 3-voxel D 4.73, 4.71, 4.71 4.36, 4.36, 4.41 0.232, 0.226, 0.283

Cluster shade on 1-, 2-, and 3-voxel D 3.81, 7.32, 9.95 4.43, 7.17, 10.01 0.821, 0.684, 0.707

Cluster tendency on 1-, 2-, and 3-voxel D 115.51, 84.24, 67.21 62.06, 48.10, 43.37 0.168, 0.154, 0.270

Homogeneity on 1-, 2-, and 3-voxel D 4812.26, 3650.28, 2843.78 2024.45, 1378.13, 1052.48 0.030, 0.023, 0.028

Maximum probability on 1-, 2-, and 3-voxel D 0.27, 0.25, 0.24 0.26, 0.24, 0.24 0.740, 0.641, 0.630

Inverse variance on 1-, 2-, and 3-D 0.39, 0.38, 0.37 0.38, 0.38, 0.36 0.916, 0.964, 0.857

PET feature SUVmax 11.7 7.74 0.005

the
sig
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mainly quantitative; add to prior established clinical and
morphologic characteristics such as gender, age, history of
smoking and solidity on CT scan.11,26,29,32,33 Solidity and
central tumor location, which were validated in a prior study,
were also selected as fusion-positive predictors.19,29 Our results
suggest the possible value of a combination of clinical and
imaging parameters for genetic status prediction beyond visual
assessment. A key goal of imaging is ‘‘personalized medicine,’’
where treatment is increasingly tailored to the specific charac-
teristics of each patient, and may be based on molecular
characterization using genomic technologies.34 In addition,
the increasing desire for personalized and optimized therapy
requires an advanced diagnostic tool, such as radiomics as used
in our study, to predict treatment response more accurately.

Several investigations had shown that ROS1/RET fusion-

All values for quantitative CT features and SUVmax are presented as
yCentral¼medial to midclavicular line. Bold represents statistically
positive lung adenocarcinoma has clinicopathologic similarities
to ALK fusion-positive lung cancers, including young age at
onset, nonsmoking history, and pathological exhibition of a
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‘‘mucinous cribriform pattern’’ and a ‘‘solid signet-ring cell
pattern.’’8,10–15 In addition, several recent studies have found
structural similarities at the molecular level between ALK and
ROS1, and ALK and RET, particular in the kinase domains.35–37

Consequently, lung adenocarcinoma patients harboring the
ROS1 or RET fusions benefit from crizotinib, similar to patients
harboring ALK fusion.3,7 Thus, the basic molecular structural
similarity may influence clinicopathologic similarity and sub-
sequent similarity in imaging. With these clinicopathologic and
molecular similarities between ALK, ROS1, and RET fusion-
positive lung cancers, we additionally assessed whether there
are common clinical and imaging features between the ALK and
ROS1/RET fusion-positive groups. We found that ALK, ROS1,
and RET fusion-positive lung cancers shared most clinicora-
diologic features. However, compared to the ALK fusion-

mean. D¼ distance, HU¼ hounsfield unit.
nificant, P< 0.05.
positive group, the ROS1/RET fusion-positive group had a lower
SUVmax, whereas the ALK fusion-positive group had a higher
SUVmax. This result is remarkable considering the pathologic

Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.



similarity between the 2 groups. Also, tumor stage, central
location, homogeneity on 1-, 2-, and 3-voxel distances, and sum
mean on 2-voxel distance were significantly different between
the 2 groups. Further verification of this finding in larger
cohorts is warranted.

Measuring textural heterogeneity on CT or PET has the
advantage of being relatively easy to perform, and the degree of
the textural heterogeneity has been shown to correlate with
patient outcome in esophageal and colorectal cancers, as well as
NSCLC.38–41 These methods assess how grainy or coarse a
tumor appears on imaging. Furthermore, the use of relative
texture analysis allows the effect of variations in acquisition
parameters (between the feasibility and validation data-sets) on
lung tumor texture to be minimized, therefore making this
approach applicable across centers.

Despite the advantages of utilizing a large cohort for
validation, this analysis has several limitations. First, the data
are retrospective and limited to Eastern Asian populations; thus,
the findings may not be applicable to other populations. Second,
owing to the relatively small number of ROS1/RET fusion-
positive cases, our results are limited in their ability to achieve
generalized statistical power. However, we included a com-
paratively large number of cases, given very low frequency of
ROS1/RET fusions. In any case, further studies with a larger
sample of ROS1/RET fusion-positive cases are needed to
ultimately unravel the clinical and imaging relevance of
ROS1/RET rearrangement. We believe our result is meaningful
in terms of building baseline research data for the next relevant
study. Third, we could not perform external validation using an
independent population. However, we believe our findings and
the comprehensive CT imaging approach described herein are
meaningful, because we conducted this study with a large
number of patients and we attempted to perform tenfold
cross-validation as a method of internal validation.

In conclusion, ALK/ROS1/RET fusion-positive lung ade-
nocarcinomas possess certain clinical and imaging features,
enabling good discrimination of fusion-positive from fusion-
negative lung adenocarcinomas. ROS1/RET fusion-positive
tumors share most clinicoradiologic features with ALK
fusion-positive tumors. The combination of imaging parameters
with clinical features may provide added diagnostic benefit in
identifying fusion-positive lung adenocarcinomas by CT ima-
ging. This approach can have a large impact as imaging is
routinely used in clinical practice in all stages of diagnoses and

Medicine � Volume 94, Number 41, October 2015
treatment. The results of this study may help develop treatment
strategies and define categories of gene tests for ALK, ROS1,
and RET fusion-positive lung cancer.
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