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Abstract: Prostate cancer (PCa) is the second most frequently diagnosed cancer for men and is
viewed as the fifth leading cause of death worldwide. The body mass index (BMI) is taken as
a vital criterion to elucidate the association between obesity and PCa. In this study, systematic
methods are employed to investigate how obesity influences the noncutaneous malignancies of
PCa. By comparing the core signaling pathways of lean and obese patients with PCa, we are able to
investigate the relationships between obesity and pathogenic mechanisms and identify significant
biomarkers as drug targets for drug discovery. Regarding drug design specifications, we take
drug–target interaction, drug regulation ability, and drug toxicity into account. One deep neural
network (DNN)-based drug–target interaction (DTI) model is trained in advance for predicting
drug candidates based on the identified biomarkers. In terms of the application of the DNN-based
DTI model and the consideration of drug design specifications, we suggest two potential multiple-
molecule drugs to prevent PCa (covering lean and obese PCa) and obesity-specific PCa, respectively.
The proposed multiple-molecule drugs (apigenin, digoxin, and orlistat) not only help to prevent PCa,
suppressing malignant metastasis, but also result in lower production of fatty acids and cholesterol,
especially for obesity-specific PCa.

Keywords: prostate cancer (PCa); lean PCa; obese PCa; multiple-molecule drug; carcinogenic mecha-
nism; deep neural network (DNN)-based DTI model; drug design specifications

1. Introduction

Over the past twelve years, the prevalence of obesity in populations has grown by up to
10.3%. This situation has been even more dramatic in the past five years, with growth of up
to approximately 20% [1]. Although there are declining mortality rates from prostate cancer
(PCa) in high-income countries, the cancer incidence and death rates are increasing due to
excess body weight in developing countries [2]. Following the definition of overweight
and obesity based on the investigation of the WHO, we find that abnormal or excessive
fat accumulation may influence every aspect of human life. As well as increasing the
risk of chronic diseases and cardiovascular diseases, obesity is also a decisive factor in
causing a large number of cancer categories [3]. Especially for PCa, obesity has an impact
on higher cancer incidence, mortality, and poor prognosis. Bearing in mind the association
between obesity and PCa, we took the body mass index (BMI) into consideration as a critical
criterion for distinguishing the formation of PCa from that of normal prostate cells [4].
Several studies have shown that a higher BMI is associated with a higher risk of lethal
PCa, leading to higher mortality rates in the groups of middle-aged and older men [5–7].
Therefore, we explored several aspects of PCa, such as multifactorial aberrations of genetic,
epigenetic, microenvironment, and biological signaling cascades, and also the obesity factor,
for the purpose of preventing the occurrence of PCa.
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According to the previous statistics on noncutaneous malignancies in men [8], PCa is
the most common heterogeneous disease, and it presents a complex combination of the
deregulation of the insulin growth factor (IGF) and genetic, epigenetic, and microenvi-
ronmental factors. One biological mechanism corresponding to obesity and PCa involves
alterations in sex-hormone secretion and variation of adipokine signaling [9], which fa-
cilitate the progression of PCa on the basis of their interactions with IGF [10]. As the
relationship between the level of insulin and the concentration of sex hormones has op-
posite interactive influence [11], we could propose a hypothesis that the development of
poorly differentiated PCa is indirectly promoted to aggressive PCa via the driving force
of obesity [12]. Moreover. It is reported that hyperinsulinemia, lowering testosterone
and dihydrotestosterone levels, demonstrates a vital connection between obesity and the
development of poorly differentiated PCa [11]. It is noted that patients suffering from
invasive PCa have the characteristics of higher recurrence and poorer survival rate com-
pared with normal PCa. Many studies have shown that the PCa aggressiveness is related
to testosterone level [13–16], which could help in further investigating the mechanisms for
the development of benign prostate hyperplasia (BPH) and PCa. In addition, participating
in the interference with adjacent tumor cells, adipocytes are also affected by the PCa cells
at the same time as stimulating migration [17,18]. From the above speculation, we could
obtain a deep insight into several aspects of carcinogenic mechanisms including endocrine
status alteration, intra-abdominal pressure ascension, insulin resistance, and adipokine
secretion alteration, which favor the realization of the effects of inflammation on causing
high-grade PCa [19]. As a result, based on the carcinogenic molecular mechanism analysis,
we were able to identify significant biomarkers for systems drug design.

For analyzing the molecular mechanisms of prostate cancer and identifying essen-
tial biomarkers, we needed to fully compare four core genome-wide genetic and epige-
netic networks (GWGENs) of normal prostate cells in in the lean group, normal prostate
cells in the obese group, lean PCa cells, and obese PCa cells, respectively. Furthermore,
a BMI of 25 is considered as the obesity threshold, used for splitting the data into two groups:
one for lean people and the other for obese people. The flowchart of the systems biology
approach for PCa shown in Figure 1 can be divided into five steps as follows: (1) the con-
struction of a candidate GWGEN; (2) performing system identification and using the
system order detection scheme to obtain real GWGENs of normal prostate cells (lean and
obese groups), and lean and obese PCa cells, as shown in Figures S1–S4; (3) the extraction
of core GWGENs for normal prostate cells (lean and obese groups), and lean and obese
PCa cells, as shown in in Figures S5–S8 using the principal network projection (PNP)
approach; (4) the comparison of core signaling pathways, as shown in Figures S9–S12,
and the investigation of carcinogenic mechanisms for identifying significant biomarkers as
drug targets for PCa (covering lean and obese) and obesity-specific PCa; and (5) multiple-
molecule drug discovery via drug design specifications including drug–target interaction,
drug regulation ability, and drug toxicity toward identified biomarkers. Consequently,
we suggested two multiple-molecule drugs, one with apigenin and digoxin for PCa (cover-
ing lean and obese) and the other with apigenin, digoxin, and orlistat for obesity-specific PCa.
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Figure 1. The flowchart for the systems biology approach. The proposed systems biology approach is
used to construct the candidate GWGEN, real GWGENs, core GWGENs, and core signaling pathways
of two groups of normal (lean and obese) prostate cells, and lean PCa and obese PCa, for finding
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multiple-molecule drugs targeting identified biomarkers. The yellow hexagonal blocks indicate the
candidate protein–protein interaction network (PPIN) constructed by databases DIP, IntAct, BioGRID,
and MINT and the candidate gene regulatory network (GRN) built by databases HTRIdb, ITFP,
CircuitDB2, TargetScanHuman, and TRANSFAC; the white rectangular blocks indicate the methods
of building real GWGENs and extracting the core GWGENs; the grey rectangular block show the
databases; the light-blue rounded rectangular blocks are for real GWGENs and core GWGENs in
normal prostate cells (including lean and obese groups), and lean and obese PCa, respectively; the red
rounded rectangular blocks are core signaling pathways of normal prostate cells (including lean and
obese groups), and lean and obese PCa; the yellow rounded rectangular blocks represent potential
biomarkers; the orange rectangular blocks denote drug design specifications; the purple blocks are
the suggested multiple-molecule drugs for PCa and obesity-specific PCa, respectively.

2. Results
2.1. Overview of Systems Biology Approaches and Drug Design Specification

For the purpose of understanding the effect of obesity on prostate cancer (PCa) com-
prehensively, we used a systems biology approach. The related flowchart is shown in
Figure 1. Firstly, via big database mining, we constructed a candidate GWGEN. It consisted
of a protein–protein interaction network (PPIN) and a gene regulatory network (GRN).
We then performed system modeling for proteins, genes, miRNAs, and lncRNAs. In this
study, we separated our microarray data into four groups: lean normal, obese normal,
lean PCa, and obese PCa. With the help of the microarray data, we performed system
identification and used the system order detection scheme to obtain real GWGENs for
two groups of normal cells (lean and obese), lean PCa, and obese PCa. The overall statis-
tics for nodes and edges for the candidate GWGEN and the real GWGENs are given in
Table S1. Compared to the total number edges in the candidate GWGEN. It is noted that
the total number of edges decreased considerably in real GWGENs, since the false posi-
tives were removed by the system order detection scheme. However, the real GWGENs
(Figures S1–S4) were still too complex to analyze. Hence, the PNP method was used to
extract their core GWGENs (Figures S5–S8) by choosing the top 3000 nodes based on their
2-norm projection values in the 85%-significant network energy structure, to narrow down
the real GWGENs. In order to investigate carcinogenic mechanisms, the core signaling
pathways were delineated with the annotation of the KEGG pathway. The core signaling
pathways of the two groups of normal cells (lean and obese), lean PCa, and obese PCa are
shown in Figures S9–S12. Their corresponding gene enrichment analysis results are shown
in Tables S2–S5. After comparing the core signaling pathways of lean PCa in Figure S11 and
normal prostate cells (lean) in Figure S9, we could investigate the carcinogenic mechanisms
of lean PCa (Figure S13). In the same way, the carcinogenic mechanisms of obese PCa could
be found (Figure S14) by comparing the core signaling pathways of obese PCa (Figure S12)
and normal prostate cells (obese) in Figure S10. After summarizing, we could illustrate the
common and specific core signaling pathways for lean and obese PCa (Figure 2). The com-
mon and obesity-specific biomarkers of PCa were then identified based on the carcinogenic
mechanism analyses. Utilizing the database for annotation, visualization, and integrated
discovery (DAVID), we performed a gene enrichment analysis in the core GWGEN for
normal PCa in the lean group, normal PCa in the obese group, lean PCa, and obese PCa
(Tables S2–S5, respectively). Moreover, the drug discovery targeting the identified biomark-
ers is based on the drug design specifications. It considers drug–target interaction, drug
regulation ability, and drug toxicity. One DNN-based DTI model was constructed in ad-
vance for predicting the candidate drugs with higher interaction ability with identified
biomarkers. The number of predicted candidate drugs decreased after passing through
drug regulation ability and drug toxicity filters. Consequently, two multiple-molecule
drugs were suggested for preventing PCa (covering lean and obese) and obesity-specific
PCa, respectively. Details are discussed in the following sections.
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Figure 2. The common and specific core signaling pathways for lean and obese PCa. This figure
summarizes the genetic and epigenetic carcinogenic mechanisms of lean and obese PCa. The signaling
pathways in the deep blue region are the common core signaling pathways of lean and obese PCa.
The light green region represents specific core signaling pathways of lean PCa. The brown region
denotes specific core signaling pathways of obese PCa. The black arrow heads of solid lines denote
activation of TF, miRNA, target genes, and cellular functions; the black circle heads of solid lines refer
to inhibition of TF, miRNA, target genes, and cellular functions; the black up arrows signify high
expression of protein, receptor, TF, and target genes; the black down arrows indicate low expression
of protein, receptor, TF, and target genes.

2.2. The Common Carcinogenic Molecular Mechanism between Lean and Obese PCa

The core signaling pathway, which is related to the immune response, is induced
by receptor NOD1, gradually weakening immunity. Immune microenvironment factor
IE-DAP is received by receptor NOD1, resulting in the phosphorylation of downstream
molecules, which initiates chronic inflammation [20]. From the perspective of the carcino-
genic mechanism for inhibiting immune response triggered by the activation of receptor
NOD1 (see Figure 2), the sequential phosphorylation of proteins KLK4 [21] and COX2 are
found. This gives the protein COX2 an intermediate role in PCa. Overexpression of protein
COX2 could promote tumor progression, e.g., cell proliferation, angiogenesis, suppression
of immune response, and enhanced metastasis [22]. Owing to the upstream phosphoryla-
tion, protein FOXB1 is activated with attenuated E-cadherin [23], which strengthens the
overexpression of the downstream target gene NANOG in a metastasis-related pathway
triggered by the receptor SORT1. Furthermore, we find that the immune response has
a strong correlation with driving migration and invasion in obese PCa. Subsequently,
the protein MYB is promoted, exhibiting a strong malignant phenotype. It indirectly causes
cell cycle arrest in tumor cells. Once moving towards the worsening direction of cell prolif-
eration, this aggressive feature not only plays a role of strong resistance in the treatment
of drug resistance but also improves the motility of cancer cells, leading to EMT effects.
Consequently, the mechanism of castration resistance, affected continuously by activation
of the protein MYB, could enhance the invasive capability of both lean and obese PCa.
In addition, the activation of the NOD1 receptor induced by IE-DAP could upregulate
TF STAT1, acting as an active transcription factor to boost tumor metastasis in PCa and
upregulate the target gene CD3G [24]. Eventually, under the overexpression of target gene
CD3G, this indirectly results in the chronic inflammation of prostate tumors. Moreover,
PCa cells could proliferate in the immunosuppressed microenvironment [25].

The most relevant pathway of cell proliferation is the invasive signaling pathway
triggered by receptor FZD10, which is activated by ligand SS18–SSX2 in order to trans-
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duce the Wnt-11 signal [26]. In Figure 2, the microenvironment factor SS18–SSX2, related
to the invasive signaling pathway, is received by receptor FZD10. It could upregulate
TF SNW1 by signaling transduction proteins RBM25 and MYB, and by the activation
of TF ESF1. Its target gene TMPRSS2 is upregulated, giving rise to cell proliferation,
differentiation, angiogenesis, and indirectly causing an excessive inflammatory response.
Consequently, the overexpression of target gene TMPRSS2 plays an important role in
promoting the progression of metastatic prostate cancer. On the other hand, ATF2 protein
is activated through the same signaling transduction proteins RBM25 and MYB to inhibit
TF RBMX. Moreover, with the low expression of TF RBMX. It could upregulate miRNA
MIR222 for the purpose of downregulating the downstream target genes DIRAS3 and
DCTN6, enhancing cancer cell proliferation, cell survival rate, and inducing invasion.
The inhibition of protein RBM25 is also influenced by the strongest induction effect from
both the upstream signal and the downregulation of upstream TP53 suppressor in another
invasive signaling pathway, for the purpose of activating protein MYB [27]. Then, the ac-
tivity of protein MYB demonstrates a strong malignant phenotype in prostate tumors [28].
Most important of all. It could trigger the progression of PCa cell proliferation. Further-
more, TF ESF1 could not only upregulate target gene TMPRSS2, known as the fusion gene,
via the upregulation of TF SNW1 but also specifically upregulate miRNA MIR193A in the
signaling pathway of lean PCa (see Figure 2). The overexpression of TF SNW1 participates
in androgen receptor splicing and transcription control, and is regarded as a co-activator of
nuclear receptors [29]. Finally, influenced by the above effects, the target gene TMPRSS2,
expressing a type of transmembrane protein, is overexpressed, resulting in the carcinogenic
mechanism. This specific androgen response gene TMPRSS2 not only contributes to cell
proliferation, differentiation, angiogenesis, inflammation, and anti-apoptotic effects but
also dysregulates the body’s immune response, which enhances the late invasive ability
of PCa [30]. Therefore, considering the phenomenon mentioned above. It is speculated
that TMPRSS2 is a common target gene for PCa treatment. On the other hand, owing
to the fact that TF RBMX, a kind of tumor suppressor, loses its function, its low expres-
sion is related to a high fructose diet and the synthesis of cholesterol [31]. Subsequently,
MIR222 is upregulated through the inhibition of TF RBMX and increases the possibility of
PCa recurrence, proving that MIR222 plays a significant role in obese prostate tissue [32].
Furthermore, the upregulated MIR222 induces fat formation, having a positive correlation
with BMI value. Therefore. It is referred to as a key indicator for the impact of obesity on
the progression of advanced PCa. Eventually, low expression of target genes DCTN6 and
DIRAS3 enhance cancer cell proliferation and cell survival rate, and accelerate cancer cell
invasion [32]. Overall, the upregulation of MIR222 could not only inhibit the expression of
tumor suppressors such as target genes DIRAS3 and DCTN6 in prostate cancer but also
prove that obesity has a strong correlation with cancer metastasis.

The most relevant pathway for EMT and metastasis is driven by the metabolic signal-
ing pathway stimulated by receptor GALR2, as shown in Figure 2. In the obese prostate
tumor, when receptor GALR2 receives a high concentration of galanin ligand, the galanin
activates receptor GALR2 to increase human food intake and indirectly promote fat in-
take [33]. Furthermore, galanin is capable of regulating the related nerve conduction;
a high concentration could trigger the absorption of fat. Through signaling transduction
proteins ENPP5 and AMMECR1, transmitted into the nucleus, the signal not only sup-
presses miRNA MIR130B but also promotes miRNA MIR217, leading to the low expression
of target gene FOXF2 [34]. FOXF2, known as a tumor suppressor, is downregulated in the
epithelial mesenchyme to destroy the differentiation effect. Moreover, the mesenchymal
transcription factor FOXF2 could make EMT more vigorous. On the other hand, TF SIM2 is
upregulated through sequentially regulated proteins for the purpose of enhancing the
invasive ability of PCa [35]. Finally, the upregulation of target gene FOXM1 resulting from
overexpression of TF SIM2 cooperates with target gene FOXF2 to accelerate the process
of cell proliferation and strengthen EMT [36]. In addition, influenced by the activation of
receptor GALR2, TF MYOCD is upregulated after the signal is transmitted into the nucleus,
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which causes the development and differentiation of smooth muscle, indirectly promoting
the migration of cancer cells [37]. Finally, target gene FOXF2 is inhibited through the
overexpression of miRNA MIR182, also due to the activation of TF MYOCD [38].

The common pathway of metabolism is induced by receptor TMEM123, a kind of
transmembrane protein. When receiving the protein-complex ligand, as shown in Figure 2,
the highly glycosylated TMEM123 receptor could not only lose the capability of triggering
tumor cell apoptosis but also activate downstream protein SYMPK [39,40]. In addition
to influencing the downstream lipid metabolism, this signaling transmission induced by
protein SYMPK could suppress protein SAMD2, in order to make the apoptotic mechanism
abnormal after entering the nucleus. Moreover, the repression of protein SMAD2 could
lead to malignant transformation of tumors owing to abnormal expression of genes re-
lated to cancer cell apoptosis [41]. Then, as a crucial tumor suppression factor of PCa
epithelium, protein SMAD2 is inhibited, resulting in TF ESF1 upregulation and oxidatively
induced DNA damage. As a result of the overexpression of TF ESF1, miRNA MIR133A1 is
downregulated to upregulate the target gene EGFR, responsible for cell proliferation, local
recurrence, and distant-organ metastasis in prostate tumors [34].

In summary, according to our investigation of carcinogenic mechanisms, PCa suffers
not only from the suppression of apoptosis, immune response, and metabolism but also
from the stimulation of proliferation, EMT, and metastasis. Furthermore, in the common
signaling pathway shown in Figure 2, the phosphorylated protein COX2 plays the role of
mediator, and can accept the activation response of phosphorylation of CERK from the
metabolic signaling pathway. It is indicated that the metabolic response is closely related to
the secretion of chemokines and cytokines in the immune response, further influencing the
migration ability of tumor cells. That is, the overall enhancement of ability in cell prolifera-
tion, angiogenesis, and anti-apoptosis proves that COX2 is a key driving gene. Therefore,
overexpression of target gene CD3G could inhibit the immune response and gradually
destroy the immune system in the human body via chronic inflammation, building a bridge
between immune response and metabolism. This phenomenon explains how, in the incuba-
tion period of tumors in the early stage of PCa, tumors can resist the immune system of the
host. Consequently, we took FOXF2, EGFR, MYB, SIM2, STAT1, and SMAD2 as biomarkers.
We aimed to restore them to their normal expression levels via drug discovery and design.
Generally, FOXF2 and EGFR are associated with proliferation and anti-apoptosis in cancer,
showing that the FOXF2 gene plays a critical role in tumor suppression. MYB not only
reduces the motility of cancer cells but also slows down the secretion of cytokines and
chemokines by cancer cells, showing a strong malignant phenotype in prostate tumors.
The upregulation of TF SIM2 stimulates the activity of downstream oncogene FOXM1 to
construct an appropriate microenvironment for cancer cell metastasis through the secre-
tion of exosomes from the malfunction of metabolism. The unphosphorylated state of
TF STAT1 enduring upregulation is responsible for the promotion of cancer growth and
metastasis, and the deterioration of the immune response, leading to drug resistance and
forcing cancer cells to invade and migrate to other organs in advanced PCa. The inhibition
of SMAD2 protein in the highly glycosylated signaling pathway stimulated by receptor
TMEM123 can regulate the anti-apoptosis ability of cancer cells.

2.3. The Specific Molecular Mechanism in Lean PCa

In the specific core signaling pathway of apoptosis in Figure 2, with high concentration
of growth hormone (GH) in the microenvironment of lean PCa, receptor GHR receives GH
ligands to repress the downstream AKT signaling pathway, stimulating GHR itself. Due
to the high concentration of GH in lean PCa cells. It will regulate somatic cell growth and
substrate metabolism, preventing the cancer cells from being prone to local autocrine and
paracrine effects [42]. Additionally. It will also inhibit the capability of interacting with
androgens or growth factors, leading to the downstream suppression of proliferation and
the promotion of apoptosis in tumors. Then, through the signaling transmission of cascade
proteins DNAH14 and CPSF4. It could enter the nucleus to downregulate TF MED17,



Molecules 2022, 27, 900 8 of 24

resulting in an androgen-dependent reduction of cancer cells [43]. Inhibited by TF MED17,
target gene DNMT1 undergoes a DNA demethylation reaction, not only weakening its
carcinogenicity but also contributing to a gradual slowdown of the cell proliferation rate
and a promotion of apoptosis, which plays a crucial role prior to tumor cell metastasis [44].

In another specific core signaling pathway related to the immune response (see Figure 2),
the ligand WNT5A in the lean PCa microenvironment is relevant to the signal transduction
of lipid modification and the glycoprotein. Moreover, WNT5A plays a different kind of
role in normal cells (lean) and lean PCa, depending on its concentration. When receptor
ROR2 binds to a small amount of WNT5A. It could slow down the secretion of cytokines
and chemokines from cancer cells [45], regulating the mutated LRSAM1. Influenced by the
secreted signal of lipid-modified glycoprotein, the dysregulation of protein LRSAM1 could
inhibit downstream protein MYB, indirectly reducing the motility of cancer cells. Further-
more, the inhibition of protein HOXB13 downregulates TF ESF1, to stabilize the ability
to repair oxidatively induced DNA damage [46]. It is noted that miRNA MIRLET7A1 is
upregulated to inhibit the expression of target gene IGF1R [47]. Once target gene IGF1R is
downregulated. It could trigger the metabolism for the purpose of accelerating cancer cell
apoptosis and inhibiting cancer cell proliferation. At the same time, the inhibition of target
gene EZH2 plays a role as a cell cycle regulator, inhibiting cancer cell proliferation [34].
Therefore, we infer that this immune-like signaling pathway plays a significant role in
inducing downstream metabolism.

2.4. The Specific Carcinogenic Molecular Mechanism in Obese PCa

In one specific core signaling pathway related to metabolism shown in Figure 2, receptor
OSBPL2 combines with sterols and a microenvironment factor PI4P to regulate cell prolif-
eration signals [48]. Obesity will trigger PI4P ligands to inhibit the expression of receptor
OSBPL2, resulting in the accumulation of fat and cholesterol in the downstream signaling
pathway. Then, the activation of protein VCAM1 induced by receptor OSBPL2 could result
in PCa easily acquiring aggressive characteristics. In other words, distant metastasis is more
likely to occur [49]. It is speculated that obesity is a critical factor in the advanced malignant
phenotype of PCa. Subsequently, protein CERK is phosphorylated to induce the synthesis
of ceramide, including the main components of lipids, cholesterol, and fatty acids, which
form a lipid bilayer structure [50]. The activation of conduction factor CERK indirectly
triggers dysregulation of the immune response, cancer cell proliferation, and metastasis by
upregulating TF MYBL2 to overexpress. When enhancing the adhesion ability of the extra-
cellular matrix (including laminin, collagen, and fibronectin), TF MYBL2 is upregulated
to promote the activity of epithelial–mesenchymal transition (EMT), enabling tumor cells
to acquire the characteristics of migration and invasion [51]. As a result of the decreased
expression of cadherin E, TF MYBL2 upregulates target gene IRS2 to be phosphorylated and
overexpressed, which stimulates IRS2 to interact with membrane insulin tyrosine kinase
receptors resulting in activating the downstream Ras/mitogen-activated protein kinase
(MAPK) pathway [52]. Consequently, the overexpression of target gene IRS2 may disrupt
the secretion of insulin, promote cell growth, and repress the normal metabolism of the
human body.

In the specific core signaling pathway concerning immune response shown in Figure 2,
receptor TLR4 generally stimulates its own anti-tumor immune signaling pathway without
binding the IL1B ligand, triggering immune surveillance in the tumor microenvironment
with the mechanism of allowing macrophages to play a pro-apoptotic role [53]. Then.
It could promote DNA hypomethylation of protein TOLLIP, negatively stimulating its
expression. Nevertheless, there is an opposite effect in the same signaling pathway in obese
PCa, as shown in Figure 2. The anti-tumor immune signaling pathway is inhibited when
receptor TLR4 is bound by the IL1B ligand in the microenvironment. Furthermore, because
of the negative correlation between expression of the protein TOLLIP and DNA methy-
lation, sex steroid hormones could stimulate an inflammatory response by the inhibition
of the protein TOLLIP [54], that is, the hypermethylation of these hormones activates the
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expression of proinflammatory cytokines, which gives rise to downstream phosphorylation
of protein STAT3 [55] (see Figure 2). Subsequently, TF MYC is overexpressed through high
expression of protein STAT3. As well as driving the formation of prostate intraepithelial
neoplasia [56], overexpression of TF MYC could further suppress target gene HSH2D. Since
target gene HSH2D plays an important role in T cell activation, its low expression could
reduce the activity of anti-tumor T cells [57]. It is speculated that this immune-like pathway
occurs particularly in obese patients of PCa, and the metabolism-related pathway induced
by receptor OSBPL2 plays a significant role in interacting with it.

In the specific core signaling pathway concerning metastasis shown in Figure 2, once
the microenvironment factor PCSK9 binds to receptor SORT1 to drive itself to be acti-
vated [58]. It could not only stimulate protein CERK, makin. It phosphorylated, but also
induce downstream mutation of protein TP53. Through the activation of protein CERK.
It could stimulate the neurotensin signal to produce excessive fatty acid, resulting in
obesity. Therefore. It is proved that this invasive signaling pathway indirectly leads to
an accumulation of excess fatty acids and the production of cholesterol, making obese
PCa capable of malignant metastasis. Then, when protein TP53 is mutated and further
suppressed to a low-expression state. It could play an indispensable role in EMT before
activating metastasis procedures [27]. It is reported that this suppressive gene is particularly
common in advanced PCa. Subsequently, the inhibition of protein TP53 could promote
protein OSR2 for the purpose of strengthening the ability for castration resistance and
increasing the treatment difficulty of androgen deprivation [59]. After protein OSR2 is acti-
vated. It could trigger downstream TF NKX2-5 to be highly methylated and overexpressed,
resulting in a methylation frequency higher than the mutation rate [33]. Apart from being a
characteristic of advanced PCa, methylation of NKX2-5 upregulates target gene NANOG
to influence the regulatory function of androgen receptors, disrupting the secretion sys-
tem [60]. Finally, the overexpression of target gene NANOG is a significant indicator of
castration-resistant prostate, contributing to cell proliferation, cancer cell regeneration,
induction of the shortened cell cycle, severe invasiveness, and cancer metastasis. Addition-
ally, the metastasis-related signaling pathway induced by receptor FZD10 is enhanced by
the mutation of upstream protein TP53 and the capability for tumor metastasis is strength-
ened through the signaling pathway of chronic inflammation triggered by receptor NOD1.

To summarize, according to the cooperative reaction of two pathways induced by
activation of receptors SORT1 and OSBPL2 (see Figure 2), obesity can drive malignant
obese PCa. The overall carcinogenic mechanisms of obese PCa include the promotion of
metabolism and metastasis, and the inhibition of the immune response. Finally, STAT1,
FOXF2, SIM2, SMAD2, CERK, STAT3, and TP53 were selected as essential biomarkers
(drug targets) for obese PCa.

2.5. The Application of Deep Neural Network to Drug–Target Interaction Prediction and the Drug
Design Specifications Considering Drug Regulation Ability and Drug Toxicity

In order to predict the drug–target interaction probability for our identified biomark-
ers, we trained a DNN-based DTI model in advance for drug–target interaction prediction.
Subsequently, we introduced drug regulation ability and drug toxicity into our drug design
specifications. The whole drug design flowchart, including one DNN-based DTI model,
can be seen in Figure 3. The interaction dataset used for training was from BindingDB [61].
In total, there are 80291 known drug–target interactions between 38015 drugs and 7292 pro-
teins. The number of unknown drug–target interactions is 19966109. To avoid the class
imbalance issue, we randomly chose a set of unknown interactions to be the same size
as the known interactions. We trained the model using 70% of the data, including 10%
of the data as a validation set. The remaining 30% of the data were used as the testing
set. Before training the DNN-based DTI model, we performed feature scaling by stan-
dardization. Then, PCA was adopted to perform the dimension reduction, giving 694 out
of 1359 features. For the architecture of the DNN-based DTI model, we used Adam as
an optimizer (learning rate = 0.0001) with binary cross-entropy loss. The input layer had
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694 nodes followed by 512, 256, 128, and 64 nodes in the four hidden layers, respectively.
The output layer had one node. We used the sigmoid function in the output layer and
set the nonlinear activation function ReLU for each hidden layer. Furthermore, dropout
was added to each hidden layer for reducing overfitting. Meanwhile, early stopping was
used to terminate the model training once the model performance stopped improving
on the validation set. Here, we applied 10-fold cross validation to evaluate the model
performance, as shown in Table S6. The learning curve for the 10-fold cross validation is
shown in Figure S16a,b. Finally, the average accuracy for the 10-fold cross validation was
94.89% (standard deviation: 0.131). It is noted that the model with the best testing accuracy
was reserved for making drug–target interaction predictions for our identified biomarkers.
The area under the receiver operating characteristic curve (AUC) is useful for organizing
binary classifiers and visualizing their performance. The AUC of the reserved model was
0.99, as shown in Figure S17.

Figure 3. Flowchart of drug discovery method for multiple-molecule drug design.
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In order to narrow down the range of candidate drugs predicted by the DNN-based
DTI model, we took drug regulation ability and drug toxicity into account in our drug
design specifications. Furthermore, we aimed to find compounds that had the ability to
target multiple identified drug targets. For drug regulation ability, we referred to the
library of integrated network-based cellular signatures (LINCS) L1000 level 5 dataset [62].
We could identify whether a gene expression was up or downregulated after treatment with
the small-molecule compound. Our goal here was to reverse the abnormal gene expression
for our identified biomarkers. For drug toxicity, we looked up the median lethal dose
(LD50) in DrugBank for our candidate drugs. We aimed to find drugs that not only could
reverse the abnormal gene expression but also had higher LD50 values. In addition, drugs
with lower toxicity have fewer side effects.

3. Discussion
3.1. Systems Biology Approaches and Traditional Treatments for PCa

By leveraging systems biology approaches, we investigated differential core signal-
ing pathways with carcinogenic molecule mechanisms for PCa. Compared with normal
PCa (lean and obese groups), for lean PCa and obese PCa we focused on the common
and specific core signaling pathways induced by microenvironmental factors, which
further trigger downstream target genes to exert effects on cellular functions includ-
ing metabolism, immune response, metastasis, epithelial–mesenchymal transition (EMT),
apoptosis, and cell proliferation. The common and specific core signaling pathways
(Figure 2) have been discussed in detail, based on their corresponding cellular functions.
Moreover, the supervised learning method was employed to construct a DNN-based DTI
model. In terms of the application, we used this to help us predict potential candidate drugs
that had a higher interaction probability with our identified biomarkers. Following the
drug design specification, we further considered drug regulation ability and drug toxicity.
Finally, we suggested two multiple-molecule drugs for PCa (covering lean and obese PCa)
and obesity-specific PCa after filtering the candidate drugs shown in Table S7 based on the
drug design specifications.

Nowadays, there are few drawbacks in traditional treatments including active surveil-
lance, surgery, and radiation therapy in patients with PCa. For low-risk PCa, active surveil-
lance methods such as monitoring PSA level, repeat biopsies, or determining the Gleason
grade are not suitable for men with other low-risk diseases that cause side effects [63].
If patients have other organ problems, active surveillance could not only potentially
result in general health changes but also cause severe discomfort or pain to patients.
In addition, after radical prostatectomy surgery. It may increase the chance of erectile dys-
function and a large number of complications such as blood clots, a reaction to the medicine,
or an infection [64]. If surgery is conducted after radiation therapy. It could elevate the
incidence of wound complications and poor healing. Without killing all the cancer cells in
tumors, radiation therapy leads to damage to surrounding tissues, according to the distance
between the area of interest and the prostate tumor, resulting in further patient fatigue
due to the energy consumption used to kill normal cells in the procedure [65]. Moreover,
from the point of view of using molecular drugs, there are some obstacles to treatments
using a single drug for a single target in a single disease. For example, bicalutamide is
commonly known as a selective antagonist towards the androgen receptor (AR), which
plays a role in targeting androgens such as DHT and testosterone. Althoug. It was found to
accelerate the degradation of AR. It has estrogenic effects, inducing gynecomastia for men
with monotherapy, paradoxically stimulating the occurrence of late-stage PCa. Therefore,
in this study, we attempted to find multiple-molecule drugs that could influence multi-
ple identified biomarkers. Additionally. It is noted that drug repositioning methods are
gradually becoming spotlighted due to the short time frame for drug development and
low cost. The systems biology approach provides an alternative method for exploring new
therapeutics for PCa and obesity-specific PCa.
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3.2. Multiple-Molecule Drugs for PCa and Obesity-Specific PCa

We have taken advantage of systems biology methods to recognize significant biomark-
ers as indispensable drug targets (see Table 1) for PCa (covering lean and obese) and
obesity-specific PCa, individually. Moreover, these drug targets were chosen based on
the carcinogenic molecular mechanisms. The systems drug discovery method involves
designing multiple-molecule drugs to restore the abnormal expression of drug-targeted
genes to their normal expression, with higher drug–target interaction probability and
lower drug toxicity. According to the results predicted by the DNN-based DTI model,
we firstly obtained candidate drugs with higher interaction probability with our identified
biomarkers. Subsequently, the range of candidate drugs was narrowed down by consid-
ering drug regulation ability using CMap and drug toxicity using a median lethal dose
(LD50) filter. Generally, LD50 is used as reference during drug discovery, since lower
drug toxicity is associated with reduced side effects. A drug with a lower LD50 value is
more toxic. Gathering the results of the drug design specifications, including drug–target
interaction, drug regulation ability, and drug toxicity for the identified biomarkers shown
in Table S7, we suggested two multiple-molecule drugs for PCa (covering lean and obese)
and obesity-specific PCa, respectively.

Table 1. The identified biomarkers (drug targets) for PCa and obesity-specific PCa.

Disease Drug Targets

PCa
(covering lean and obese) STAT1, FOXF2, SIM2, SMAD2, MYB, EGFR

Obesity-specific PCa STAT1, FOXF2, SIM2, SMAD2, CERK, STAT3, TP53

In Tables 2 and 3, we observe that apigenin has six drug targets, including STAT1,
SIM2, EGFR, MYB, CERK, and STAT3. Apigenin, a nutraceutical drug, plays a significant
role in tumor suppression efficacy and in preventing a large number of chronic diseases,
especially diabetes. More and more evidence has demonstrated that apigenin functions
as a promising therapeutic anti-inflammatory, presenting properties with anti-tumor ef-
ficacy against various types of tumors. In PCa. It has been reported in clinical trials that
apigenin could target STAT1 as an inhibitor to stimulate the activity of T cells and immune
surveillance, further recovering the patient’s own immune-system-associated cell-death
genes [66]. As a natural bioactive flavone-type molecule. It has been claimed that apigenin
shows pro-health properties, including stimulating immune-like pathways, inhibiting cell
proliferation by inducing apoptosis, and suppressing metastasis. Therefore, we considered
apigenin as one of the constituents of our potential multiple-molecule drug, to slow down
cancer cell motility and decrease the occurrence of severe invasion in obese PCa [67]. This
result provides a novel perspective for cancer immunotherapy in preventive healthcare.
Interestingly, digoxin, a cardiac glycoside, was chosen as a constituent in our potential
multiple-molecule drug, for drug targets containing FOXF2, SMAD2, CERK, and TP53.
Digoxin can influence the properties of the sodium potassium channel on the plasma mem-
brane to alter the calcium ion concentration, enhancing apoptosis of cancer cells. Moreover,
for patients not receiving androgen deprivation therapy (ADT) as the primary treatment
for PCa, digoxin is a promising therapeutic agent exerting protective effects on anti-tumor
characteristics [68]. It was also reported that digoxin could significantly suppress MYC
expression and elevate SMAD2 expression to induce apoptosis, revealing its vigorous
cytotoxic effects in regulating apoptosis-related signaling pathways, with the benefit of
low drug toxicity in tumors [69]. Additionally, there is a significant anti-obesity drug,
orlistat, that has a tremendous drug effect on inhibiting fatty acid synthase. With fewer side
effects, moderate toxicity, and exceptional regulation ability, orlistat, combined with other
anti-proliferative drugs, could exert its influence on the vital increase in apoptosis and the
suppression of tumor cell viability and proliferation. Through blocking the synthesis of the
vast majority of fatty acids in the tumor microenvironment, orlistat favors the boosting of
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the metabolism to impede the efforts of the cell energy machinery to stimulate proliferation,
demonstrating tha. It is a promising therapeutic agent for obese PCa [70].

Table 2. Potential multiple-molecule drug and the corresponding target genes for PCa.

Drugs Targets STAT1 FOXF2 SIM2 SMAD2 MYB EGFR

Apigenin • • • •
Digoxin • •

Table 3. Potential multiple-molecule drug and the corresponding target genes for obese PCa.

Drugs
Targets STAT1 FOXF2 SIM2 SMAD2 CERK STAT3 TP53

Apigenin • • • •
Digoxin • • • •
Orlistat • • • •

In summary, two multiple-molecule drugs for PCa (covering lean and obese) and
obesity-specific PCa are suggested, as shown in Tables 2 and 3, respectively. Apigenin has
the ability to inhibit MYC in obese PCa by downregulating STAT3. It is noted that apigenin
does not drive the formation of prostate intraepithelial neoplasia and suppresses MYB to
indirectly reduce the mobility of cancer cells, to avoid metastasis and cell proliferation for
lean PCa. Most important of all, apigenin plays a role in triggering the immune response
by activating T cells. Digoxin is beneficial in resisting the malignant transformation of
tumors through the upregulation of SMAD2, inducing apoptosis for PCa. In addition,
orlistat not only helps in suppressing malignant metastasis procedures but also favors the
strengthening of the human immune response by dephosphorylating CERK to reduce the
synthesis of ceramide, resulting in less fatty acid and cholesterol production.

4. Materials and Methods
4.1. A General Review of Constructing Core Genome-Wide Genetic and Epigenetic Networks
(GWGENs) of Normal Prostate Cells, and Lean and Obese PCa

In order to perform a comprehensive analysis of molecular mechanisms in PCa and
discover the common and specific molecular mechanisms, we needed to fully compare
four core genome-wide genetic and epigenetic networks (GWGENs). Adopting a BMI
of 25 as the obesity threshold, the data were split into two groups: one for lean people
and the other for obese people. With the benefit of systems biology [71], we can further
extract the four core signaling pathways of normal prostate cells (including lean and obese
groups), and lean and obese PCa from their core GWGENs. The methods for finding
the core signaling pathways from the candidate GWGEN can be seen in the flowchart in
Figure 1. Here, we split the process into five steps as follows:

(1) Constructing the candidate GWGEN. Using big database mining, we constructed a
candidate PPIN and a candidate GRN, including genes, miRNA, and lncRNA, as the
first step. It is noted that the candidate GWGEN consists of a candidate PPIN and a
candidate GRN.

(2) Identifying real GWGENs. After performing system modeling for proteins, genes,
miRNA, and lenRNA, we performed system identification by solving the constrained
linear least squares estimation problem with the help of the microarray data for
normal prostate cells (including lean and obese groups), and lean and obese PCa.
We then used the system order detection scheme for computing the AIC, to prune the
false-positive interactions in the candidate GWGEN.

(3) Extracting the core GWGENs. To extract the core GWGENs, we applied the PNP
approach. By doing so, we could compute a projection value for each node in the real
GWGENs. The top 3000 elements with highest projection values remained.
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(4) Building and comparing the core pathways. The core signaling pathways for normal
prostate cells (including lean and obese groups), and lean and obese PCa in the anno-
tation of KEGG pathways could be found by referring to the projection values and the
literature survey. We investigated the molecular mechanisms of carcinogenesis consid-
ering the microenvironmental factors of lean and obese PCa and their corresponding
downstream core signaling pathways.

(5) Identifying biomarkers (drug targets) for the design of multiple-molecule drugs.
Based on the analysis of carcinogenic molecular mechanisms, we identified essential
biomarkers for PCa (covering lean and obese) and obesity-specific PCa. Following
the proposed drug design specifications, we considered drug–target interaction prob-
ability, drug regulation ability, and drug toxicity. One DNN-based DTI model was
trained in advance for predicting candidate drugs targeting identified biomarkers.
The aim of the drug regulation ability filter was to reverse the abnormal expression of
biomarkers. The drug toxicity filter helped to find drugs with light toxicity. Conse-
quently, we suggested two multiple-molecule drugs for PCa (covering lean and obese)
and obesity-specific PCa.

4.2. Data Preprocessing for Constructing the Candidate GWGEN

In this study, we downloaded the dataset with accession number GSE79021 from the
National Center for Biotechnology Information (NCBI). The samples in the dataset were
divided into four groups, containing normal prostate cells (lean and obese groups), and lean
and obese PCa. We only used samples that had BMI information. Hence, we had 49 samples
for normal prostate cells and 153 samples for PCa. Subsequently, we individually classified
the normal prostate cells and PCa cells into two categories using the body mass index (BMI,
threshold: 25) for investigating the influence of obesity on PCa. In this way, 25, 24, 70,
and 83 samples were obtained for normal prostate cells in the lean group, normal prostate
cells in the obese group, PCa in the lean group, and PCa in the obese group, respectively.
It is noted that the candidate GWGEN comprised a candidate PPIN and a candidate GRN.
Therefore. It was a binary matrix. If two nodes have an interaction, we assigned a value of
one, otherwise we assigned a value of zero. For building the candidate PPIN, we referred
to the following databases: DIP [72], IntAct [73], BioGRID [74], and MINT [75]. Moreover,
to construct the candidate GRN, we considered the following databases: HTRIdb [76],
ITFP [77], TRANSFAC [78], CircuitDB2 [79], TargetScanHuman [80], and starBase 2.0 [81].

4.3. System Modeling for Normal Prostate Cells and PCa

After constructing the candidate GWGEN, we performed system modeling for pro-
teins, genes, miRNA, and lncRNA [82]. We can describe the i-th protein in the candidate
PPIN by the following equation:

pi[n] =
Hi
∑

h = 1
h 6= i

αih pi[n]ph[n] +λi,PPI + φi,PPIs[n],

for i = 1, . . . , I , n = 1, . . . , N

(1)

where pi[n] and ph[n], respectively, denote the expression level of the i-th and h-th protein
for the n-th sample; αih denotes the interaction ability between the i-th protein and the
h-th protein; Hi indicates the total number of proteins interacting with the i-th protein;
I indicates the total number of proteins in the candidate PPIN; N represents the total
number of data samples; and λi,PPI expresses the basal level of the i-th protein. The change
in basal level is related to post-translational modification, including phosphorylation,
acetylation, and methylation. In addition, φi,PPIs[n] shows the stochastic data noise of the
i-th protein.
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Similarly, the j-th gene in the candidate GRN, which is part of the candidate GWGEN
for sample n is given as shown below:

gj[n] =
Rj

∑
r = 1
r 6= j

ajrTr[n] +
Sj

∑
s=1

bjsLs[n] −
Uj

∑
u=1

cju Mu[n]gj[n] + λj + φj[n],

for j = 1, . . . , J , n = 1, . . . , N

(2)

where gj[n] indicates the expression level of the j-th gene; ajr and bjs individually represent
the transcription regulatory ability from the r-th TF and the s-th lncRNA to the j-th gene;
−cju ≤ 0 denotes the post-transcription regulatory ability by which the u-th miRNA
restrains the j-th gene; Rj and Sj, respectively, denote the total number of TFs and lncRNAs
binding to the j-th gene; Uj indicates the total number of miRNAs inhibiting the j-th gene;
and Tr[n], Ls[n], and Mu[n] individually denote the expression of the r-th TF, the s-th
lncRNA, and the u-th miRNA. N and J are respectively the total number of data samples
and genes; λj indicates the basal level of the j-th gene expression; and φj[n] represents the
stochastic data noise of the gene expression in the j-th gene for the sample n. The system
modeling for miRNA and lncRNA is described in the Supplementary Materials.

4.4. Utilizing System Identification and System Order Detection Methods to Identify Real GWGENs
from the Candidate GWGEN

So far, we have formulated each protein, gene, lncRNA, and miRNA in the candidate
GWGEN. Further, with the help of the microarray data, we estimate the regulation param-
eters shown in Equations (1) and (2). Hence, firstly, we can rewrite Equations (1) and (2)
as follows:

pi[n] =
[
pi[n]p1[n] · · · pi[n]pHi [n] 1

]
×


αi1
...

αiHi
λi

+ φi[n] (3)

gj[n] =
[

T1[n] · · · TRj [n] L1[n] · · · LSj [n] gj[n]M1[n] · · · gj[n]MUj [n] 1
]
×



aj1
...

ajRj

bj1
...

bjSj

−cj1
...

−cjUj

λj



+ φj[n]

(4)
For simplicity, Equations (3) and (4) can be represented by the following linear regres-

sion forms, respectively:

pi[n] = βi,P[n] · γi,P + φi[n], for i = 1, . . . , I, n = 1, . . . , N (5)

gj[n] = β j,G[n] · γj,G + φj[n], for j = 1, . . . , J, n = 1, . . . , N (6)

where γi,P indicates the parameter vector related to the protein–protein interaction abilities;
γj,G represents the parameter vectors, including the regulation abilities of TFs and the
post-transcriptional regulatory abilities of lncRNAs and miRNAs; and βi,P[n] and β j,G[n]
separately denote the expression vectors of the protein and gene for sample n.
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Since we have N samples, Equations (5) and (6) can be augmented into the follow-
ing equations: 

pi[1]
pi[2]

...
pi[N]

 =


βi,P[1]
βi,P[2]

...
βi,P[N]

 · γi,P +


φi[1]
φi[2]

...
φi[N]

 (7)


gj[1]
gj[2]

...
gj[N]

 =


β j,G[1]
β j,G[2]

...
β j,G[N]

 · γj,G +


φj[1]
φj[2]

...
φj[N]

 (8)

In addition, the above equations can be represented as follows:

Pi = εi,P · γi,P + ϕi (9)

Gj = ε j,G · γj,G + ϕj (10)

To estimate the regulatory parameters in Equations (9) and (10), we transform them
into linear least squares estimation or constrained linear least squares estimation problems
as below:

γ̂i,P = min
γi ,P

1
2
‖εi,P · γi,P − Pi‖2

2 (11)

γ̂j,G = min
γj ,G

1
2

∥∥ε j,G · γj,G − Gj
∥∥2

2 (12)

subject to


0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 0

0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 0

1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 1

0
...
...
0

γj,G ≤


0
...
...
0


Rj Sj Uj

It is noted that (12) represents a constrained linear least squares estimation problem.
By adding a matrix inequality in (12), we can guarantee that the estimated post-transcriptional
regulatory abilities from miRNA are negative. Moreover, Equations (11) and (12) can be
solved via the MATLAB optimization toolbox.

The candidate GWGEN is built from various databases. False-positive interactions
may exist within the candidate GWGEN. Therefore, we performed system order selection
by computing the AIC. According to AIC theory, the real system order would lead to the
smallest AIC value [83]. The AICs for the i-th protein and the j-th gene are as given below:

AIC(Hi) = log(}̂2
i,P) +

2(li,P)
N

where }̂i,P =

√
(Pi−(εi,P ·γ̂i,P))

T(Pi−(εi,P ·γ̂i,P))
N , li,P = Hi + 1

(13)

AIC(Rj, Sj, Uj) = log(}̂2
j,G) +

2(lj,G)
N

where }̂j,G =

√
(Gj−(ε j,G ·γ̂j,G))

T(Gj−(ε j,G ·γ̂j,G))
N , lj,G = Rj + Sj + Uj + 1

(14)

where }̂2
i,P and }̂2

j,G individually denote the estimated residual error of the i-th protein and
the j-th gene; li,P and lj,G are the number (order) of parameters for the i-th protein in the
parameter estimation problem in (11) and the number (order) of parameters for the j-th gene
in the parameter estimation problem in (12), respectively; and γ̂i,P and γ̂j,G individually
indicate the estimated parameters of the i-th protein in (11) and the estimated parameters of
the j-th gene in (12). The real system order Hi

∗ for the i-th protein and Rj
∗, Sj

∗, Uj
∗ for the

j-th gene would give the smallest AIC value. In other words, all the insignificant interactions
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and regulations outside the real system order are pruned for each protein, gene, lncRNA,
and miRNA in the candidate GWGEN. The method of performing system identification
and utilizing the system order detection scheme for lncRNA and miRNA is given in the
Supplementary Materials. The real GWGENs of normal prostate cells (including lean and
obese groups), and lean and obese PCa are shown in Figures S1–S4, respectively.

4.5. Extracting Core GWGENs from the Real GWGENs Using the Principal Network Projection Method

The real GWGEN is too complex for investigating the discrepancies in genetic and
epigenetic mechanisms between normal prostate cells (including lean and obese), and lean
and obese PCa. Therefore, we employed the PNP method on the real GWGEN to extract the
relevant core GWGEN. Firstly, we constructed a system matrix K, including all estimated
parameters of the real GWGEN. The system matrix K is:

K =


kprotein↔protein 0 0

kTF→gene kln cRNA→gene kmiRNA→gene
kTF→ln cRNA kln cRNA→ln cRNA kmiRNA→ln cRNA
kTF→miRNA kln cRNA→miRNA kmiRNA→miRNA

 (15)

where the sub-network matrix kprotein↔protein denotes the system matrix of interactive
abilities of proteins; the sub-network matrices kTF→gene, kTF→ln cRNA and kTF→miRNA indi-
cate the relevant system matrices associated with TFs transcriptional regulatory abilities
for genes, lncRNAs, and miRNA, respectively; the sub-network matrices kln cRNA→gene,
kln cRNA→ln cRNA, and kln cRNA→miRNA represent the relevant system matrices associated
with lncRNAs post-transcriptional regulatory abilities for genes, lncRNAs, and miRNA,
respectively; and the sub-network matrices kmiRNA→gene, kmiRNA→ln cRNA, and kmiRNA→miRNA
show the relevant system matrices associated with miRNAs post-transcriptional regulatory
abilities for genes, lncRNAs, and miRNA, respectively. The detailed elements of system
matrix K are shown in the following:

K =



α̂11 · · · α̂1h · · · α̂1I

...
. . .

...
. . .

...
α̂i1 · · · α̂ih · · · α̂iI

...
. . .

...
. . .

...
α̂I1 · · · α̂Ih · · · α̂I I

0 · · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · 0

0 · · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · 0

α̂11 · · · α̂1r · · · α̂1R

...
. . .

...
. . .

...
α̂j1 · · · α̂jr · · · α̂jR

...
. . .

...
. . .

...
α̂J1 · · · α̂Jr · · · α̂JR

b̂11 · · · b̂1s · · · b̂1S

...
. . .

...
. . .

...
b̂j1 · · · b̂js · · · b̂jS

...
. . .

...
. . .

...
b̂J1 · · · b̂Js · · · b̂JS

−ĉ11 · · · −ĉ1u · · · −ĉ1U

...
. . .

...
. . .

...
−ĉj1 · · · −ĉju · · · −ĉjU

...
. . .

...
. . .

...
−ĉJ1 · · · −ĉJu · · · −ĉJU

d̂11 · · · d̂1r · · · d̂1R

...
. . .

...
. . .

...
d̂x1 · · · d̂xr · · · d̂xR

...
. . .

...
. . .

...
d̂X1 · · · d̂Xr · · · d̂XR

f̂11 · · · f̂1s · · · f̂1S

...
. . .

...
. . .

...
f̂x1 · · · f̂xs · · · f̂xS

...
. . .

...
. . .

...
f̂X1 · · · f̂Xs · · · f̂XS

−q̂11 · · · −q̂1u · · · −q̂1U

...
. . .

...
. . .

...
−q̂x1 · · · −q̂xu · · · −q̂xU

...
. . .

...
. . .

...
−q̂X1 · · · −q̂Xu · · · −q̂XU

η̂11 · · · η̂1r · · · η̂1R

...
. . .

...
. . .

...
η̂y1 · · · η̂yr · · · η̂yR

...
. . .

...
. . .

...
η̂Y1 · · · η̂Yr · · · η̂YR

µ̂11 · · · µ̂1s · · · µ̂1S

...
. . .

...
. . .

...
µ̂y1 · · · µ̂ys · · · µ̂yS

...
. . .

...
. . .

...
µ̂Y1 · · · µ̂Ys · · · µ̂YS

−ν̂11 · · · −ν̂1u · · · −ν̂1U

...
. . .

...
. . .

...
−ν̂y1 · · · −ν̂yu · · · −ν̂yU

...
. . .

...
. . .

...
−ν̂Y1 · · · −ν̂Yu · · · −ν̂YU



∈ <(I∗+J∗+X∗+Y∗ )×(R∗+S∗+U∗ ) (16)

where α̂ih is the estimated interactive ability between the i-th protein and the h-th protein;
âjr, b̂js, and ĉju individually represent the estimated regulation abilities of the r-th TF on the
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j-th gene, the s-th lncRNA on the j-th gene, and the u-th miRNA on the j-th gene; d̂xr, f̂xs,
and q̂xu are separately the r-th TF on the x-th lncRNA, the s-th lncRNA on the x-th lncRNA,
and the u-th miRNA on the x-th lncRNA; and η̂yr, µ̂ys, and ν̂yu indicate the r-th TF on the
y-th miRNA, the s-th lncRNA on the y-th miRNA, and the u-th miRNA on the y-th miRNA.

Subsequently, we performed singular value decomposition (SVD) on the system matrix K.
The SVD of K is described as follows:

K = BDZT (17)

where B ∈ <(I∗+J∗+X∗+Y∗)×(I∗+J∗+X∗+Y∗) and ZT ∈ <(R∗+S∗+U∗)×(R∗+S∗+U∗) denote the
unitarysingularmatrixand D = diag(d1, . . . , di, . . . , dR∗+S∗+U∗) ∈ <(I∗+J∗+X∗+Y∗)×(R∗+S∗+U∗)

indicates the diagonal matrix composed of R∗ + S∗ + U∗ singular values in descending
order (i.e., d1 ≥ · · · ≥ di ≥ · · · ≥ dR∗+S∗+U∗). Then, we normalize the singular values
as below:

Pi =
d2

i
R∗+S∗+U∗

∑
i=1

d2
i

(18)

From the viewpoint of energy, the top r singular values represent 85% of the principal

network (i.e.,
I

∑
i=1

Pi ≥ 0.85). Subsequently, we project each node in the system matrix K to

the r-th singular vector. The corresponding equation is:

Z(t, r) = kt,: · zT
:,r, f or t = 1, . . . I ∗+J ∗+X ∗+Y∗, r = 1, . . . I (19)

where kt,: denotes the t-th row vector of K and zT
:,r is the r-th singular vector. We define

the 2-norm projection value for each node, including protein, gene, lncRNA, and miRNA,
on the 85% principal structure of the real GWGEN as below:

R(t) =

√√√√ I

∑
r=1

Z2(t, r), for t = 1, . . . I ∗+J ∗+X ∗+Y∗, r = 1, . . . , I (20)

If the value of R(t) is larger, the t-th node is more important to the principal structure.
On the other hand, if the projection value of R(t) is close to zero, the relevant node is
insignificant and practically independent of the principal structure of the real GWGEN.
According to the projection value, we chose the top 3000 nodes to construct the core
GWGENs of normal prostate cells (including lean and obese groups), and lean and obese
PCa, as shown in Figures S5–S8. Combining this with the literature survey, we can obtain
core signaling pathways in the annotation of KEGG pathways. The core signaling pathways
of normal prostate cells (including lean and obese groups), and lean and obese PCa refer to
Figures S9–S12, respectively.

4.6. Deep-Neural-Network-Based Drug–Target Interaction Prediction Model

Investigating the core signaling pathways, we identified essential biomarkers based
on carcinogenic molecular mechanisms for PCa (covering lean and obese groups) and
obesity-specific PCa. The corresponding biomarkers (drug-targets) are shown in Table 1.
The systems drug discovery method was proposed to design multiple-molecule drugs
targeting these biomarkers. With the help of the DNN-based DTI model, we considered the
drug–target interaction probability, which was one of the drug design specifications.

As shown in the flowchart for system drug discovery and design in Figure 3, the drug–
target interaction dataset was from BindingDB [61]. In order to delineate the drug–target
interactions in a numerical vector, we transformed them into a feature vector using the
PyBioMed Python package in a Python 2.7 environment [84]. We used the PyMolecule mod-
ule in PyBioMed to transform the drug descriptors. The drug features contain commonly
used structural and physicochemical information. The PyProtein module in PyBioMed was
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applied to transform the target descriptors. The target features were computed based on
the widely used structural and physicochemical properties of proteins and peptides from
amino acid sequences. The total numbers of drug and target features were 363 and 996,
respectively. More details about descriptor transformation are given in the PyBioMed doc-
umentation. In this way, we could use a united vector to describe a drug–target interaction
pair, as shown below:

υdrug−target = [W, F] = [w1, w2, . . . , wx, f1, f2, . . . , fy] (21)

where υdrug−target denotes the feature vector of a drug–target pair; x and y are the total
number of drug features and target features, respectively; W and F individually represent
the feature vector of the relevant drug and relevant target; wx is the x-th drug feature;
and fy is the y-th target feature. Moreover, before training the DNN-based DTI model,
we scaled the data via standardization, since the drug and target features are measured
on different scales. Lastly, to remove noisy features and reduce memory consumption,
we applied principal component analysis (PCA), to decrease the feature size from 1359 to 618 [85].

For the DNN-based DTI model, each output layer could be described as follows:

kn = δ(wTxn + b), where w =


w1
w2
...

wh

, b =


b1
b2
...

bh

 (22)

where kn represents the output of each layer when input vector xn is the n-th drug–target
vector; δ denotes the activation function (ReLU for the hidden layers and sigmoid for the
output layer); w represents the weighting parameters; and b signifies bias parameters.
The drug–target interaction prediction is a binary classification problem. Hence, the binary
cross-entropy is selected to be the cost function:

Cn(w, b)= − 1
N

N
∑

n=1
(sn log(ŝn) + (1− sn) log(1− ŝn))

L(w, b) = 1
N

N
∑

n=1
Cn(sn, ŝn)

(23)

where L(w, b) denotes the average total loss; sn is the n-th true positive instance (1) or true
negative instance (0) of drug–target binding; and ŝn denotes the n-th predicted probability
of a positive instance (1) or predicted probability of a negative instance (0) of drug–target
binding. For obtaining the optimal network parameter set φ∗, the cost function is used in
the following:

φ∗ = argmin
φ

L(φ) (24)

The above equation could be achieved using the backpropagation algorithm [86].
The updated weight and bias parameters for the j-th epoch are shown below:

φj = φj−1 − η∇L(φj−1),

where ∇L(φj−1) =



∂L(φj−1)
∂w1

...
∂L(φj−1)

∂wh
∂L(φj−1)

∂b1
...

∂L(φj−1)
∂bh


.

(25)

where η is the learning rate, which is 0.001 and ∇L(φj−1) denotes the gradient of L(φj−1).



Molecules 2022, 27, 900 20 of 24

5. Conclusions

In this study, we proposed a systems biology approach to investigating the role of
obesity in PCa and identifying essential biomarkers as drug targets for PCa (covering lean
and obese) and obesity-specific PCa. In addition, we provided drug design specifications,
including drug–target interaction, drug regulation ability, and drug toxicity. For considering
the drug–target interactions, we trained a DNN-based DTI model in advance. Utilizing this,
we could obtain predicted drug candidates based on the identified biomarkers. These drug
candidates then passed through filters for drug regulation ability and drug toxicity. Finally,
we suggested two potential multiple-molecule drugs (drug combinations) to prevent PCa
(covering lean and obese) and obesity-specific PCa. Nonetheless, there is still room for
improvement, especially in the case of leveraging more genomics data and applying
advanced DNN-based DTI models that consider the compounds’ chemical structures in
graphs to enhance the pipeline. Moreover. It is noted that the process of developing a novel
drug is time-consuming, risky, and costly. By combining the proposed systems biology
approach with computational drug discovery, the steps of target identification and target
validation in drug discovery might be accelerated and optimized before the drug enters
clinical trials.
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prostate cells in the obese group, Figure S3: The real genome-wide genetic and epigenetic network
(GWGEN) of lean PCa, Figure S4: The real genome-wide genetic and epigenetic network (GWGEN)
of obese PCa, Figure S5: The core genome-wide genetic and epigenetic network (GWGEN) of normal
prostate cells in the lean group, Figure S6: The core genome-wide genetic and epigenetic network
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epigenetic network (GWGEN) of obese PCa, Figure S9: The core signaling pathways to investigate
the healthy mechanism of normal prostate cells in the lean group, Figure S10: The core signaling
pathways to investigate the healthy mechanism of normal prostate cells in the obese group, Figure S11:
The core signaling pathways to investigate the carcinogenic mechanism of lean PCa, Figure S12:
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Figure S12, Figure S15: The structure of DTI model, Figure S16: The accuracy and loss for training
and validation sets by 10-fold cross validation, Figure S17: The ROC curves of different models
for the drug-target interaction prediction, Table S1: The overall statistical table of nodes and edges
in the candidate GWGEN and real GWGENs of normal prostate cells (including lean and obese
groups), lean, and obese PCa after system identification, Table S2: Enrichment analysis in core
GWGEN of normal prostate cells (lean group) by the DAVID, Table S3: Enrichment analysis in core
GWGEN of normal prostate cells (obese group) by the DAVID, Table S4: Enrichment analysis in core
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