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an anoikis-associated gene
signature to predict clinical
character, stemness, IDH
mutation, and immune filtration
in glioblastoma
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Chenyang Tan1 and Chengwei Wang1*

1Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China,
2Department of Neurosurgery, Dongying City District People’s Hospital, Dongying, China,
3Department of Neurology, The Second Hospital of Shandong University, Jinan, China
Background: Glioblastoma (GBM) is the most prominent and aggressive

primary brain tumor in adults. Anoikis is a specific form of programmed cell

death that plays a key role in tumor invasion and metastasis. The presence of

anti-anoikis factors is associated with tumor aggressiveness and drug

resistance.

Methods: The non-negative matrix factorization algorithm was used for

effective dimension reduction for integrated datasets. Differences in the

tumor microenvironment (TME), stemness indices, and clinical characteristics

between the two clusters were analyzed. Difference analysis, weighted gene

coexpression network analysis (WGCNA), univariate Cox regression, and least

absolute shrinkage and selection operator regression were leveraged to screen

prognos i s- re la ted genes and cons t ruc t a r i sk score mode l .

Immunohistochemistry was performed to evaluate the expression of

representative genes in clinical specimens. The relationship between the risk

score and the TME, stemness, clinical traits, and immunotherapy response was

assessed in GBM and pancancer.

Results: Two definite clusters were identified on the basis of anoikis-related

gene expression. Patients with GBM assigned to C1 were characterized by

shortened overall survival, higher suppressive immune infiltration levels, and

lower stemness indices. We further constructed a risk scoring model to

quantify the regulatory patterns of anoikis-related genes. The higher risk

score group was characterized by a poor prognosis, the infiltration of

suppressive immune cells and a differentiated phenotype, whereas the lower

risk score group exhibited the opposite effects. In addition, patients in the lower

risk score group exhibited a higher frequency of isocitrate dehydrogenase (IDH)

mutations and a more sensitive response to immunotherapy. Drug sensitivity
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analysis was performed, revealing that the higher risk group may benefit more

from drugs targeting the PI3K/mTOR signaling pathway.

Conclusion: We revealed potential relationships between anoikis-related

genes and clinical features, TME, stemness, IDH mutation, and

immunotherapy and elucidated their therapeutic value.
KEYWORDS

glioblastoma, anoikis, tumor microenvironment, stemness index, immunotherapy,
pan-cancer analysis
Introduction

Glioblastoma (GBM), which is classified as a grade IV

glioma, is the most prominent primary brain tumor in adults

(1). The median survival of patients with GBM is approximately

12.6 months with a 5-year survival rate of less than 10% (2). The

highly aggressive nature of GBM makes it impossible to

completely remove by surgery, leading to its high recurrence

rate and treatment failure (3, 4).

Cell‒cell adherence and interaction with the extracellular

matrix (ECM) are implicated in several mandatory cellular

processes, including migration and proliferation (5). Anoikis is

due to the rupture of cell‒cell or cell-ECM attachment, leading to

this specific form of programmed apoptosis, which helps

maintain tissue homeostasis by eliminating misplaced or

dislodged cells (6). The triggering of anoikis occurs mainly

through the interaction of two apoptotic pathways, i.e.,

interference with mitochondria or activation of cell surface

death receptors (7, 8). Anoikis was first described in epithelial

and endothelial cells and was found to be an important

mechanism of cancer invasion and metastasis (9). The onset of

anoikis resistance can help detached cells circumvent death

signaling pathways, allowing cells to survive under unfavorable

conditions (10, 11). Numerous studies have found that PDK4

upregulation is directly implicated in the acquisition of

chemoresistance in lung cancer and promotes tumor cell

proliferation in vivo and in vitro (12). In addition, it was

confirmed that the Nm23-ITGA5 pathway plays a key role in

breast cancer cell invasion, and regulation of this pathway could

potentially be utilized to prevent the establishment of breast

cancer cell metastasis (13). However, few studies have

systematically evaluated the implications of anoikis in GBM,

although these anoikis genes play a non-negligible role in

tumorigenesis tumor invasion and tumor infiltration.

Immunotherapy is of great interest in cancer-related

treatment, which fights tumors by boosting the patient’s

immune system. Under normal circumstances, it is now

wide ly accepted that immune ce l l s in the tumor
02
microenvironment (TME) can distinguish and eradicate cancer

cells, which is referred to as immunosurveillance (12, 14).

However, cancer cells can modulate the host immune system

to evade immune surveillance by recruiting immunosuppressive

cell populations and downregulating tumor immunogenicity

(15, 16). Stemness is used to evaluate the similarity of tumor

cells to stem cells (17). This feature is mainly assessed using the

mRNA expression–based stemness index (mRNAsi) as well as

the epigenetic regulation-based index (EREG-mRNAsi).

Stemness indices range from 0 to 1, where a value of 0 means

low similarity to stem cells, whereas a value of 1 indicates high

similarity to stem cells (18–20). Malta et al. found that tumor

development was related to the progressive loss of the

differentiated phenotype and the acquisition of progenitor-like,

stem cell characteristics (21). Undifferentiated tumors of

primary origin are more likely to undergo aggressive migration

or form distant metastasis, ultimately leading to tumor

progression (22, 23). It is essential to explore the alteration of

the tumor microenvironment and infiltration of immune cells

for immunotherapy and stemness index-based studies.

The classification of central nervous system tumors marks a

shift in tumor diagnosis by incorporating molecular and

phenotypic features into the tumor classification, thereby

narrowing the defined subgroups (24). On the basis of genetic

transcription characteristics, GBM can be divided into five

subtypes [mesenchymal (MES), classical (CL), proneural (PN),

neural, and proliferative]. Among others, the EMT facilitates

radiochemotherapy resistance (25, 26). MES subtype patients

exhibit aggressive and poor prognosis, whereas PN subtype

patients exhibit a better prognosis (27–29). Different subtypes

of GBM have different epigenomic markers. Several epigenomic

markers have also shown prognostic and/or predictive values.

Further typing of GBM will help to understand the differences

between subtypes of GBM, which is important for developing

more personalized and accurate treatment plans for GBM.

In this research, we first explored the differential expression

of anoikis-related genes in GBM and potential subtypes in GBM.

Second, the association between the differential expression of
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anoikis-related genes and the TME as well as different GBM

subtypes was analyzed. Then, we constructed a risk score model

based on the differential expression of anoikis-related genes to

predict patient prognosis as well as response to immunotherapy.

Finally, pancancer analysis further validated the reasonableness

and credibility of the risk score model. Exploring anoikis-

associated gene expression patterns not only expands our

understanding of the aggressiveness of GBM but also

contributes to the development of more personalized and

precise therapy strategies.
Materials and methods

Data collection

The RNA-seq transcriptome data and clinical information

[including gender, age, subtype, IDH status, survival, and CpG

island methylator phenotype (CIMP) status] of GBM were

downloaded from The Cancer Genome Atlas (TCGA)-GBM

(https://portal.gdc.cancer.gov/) and GlioVis [GlioVis -

Visualization Tools for Glioma Datasets (cnio.es)]. Somatic

mutation counts and copy number variation (CNV) also were

downloaded from the TCGA database. Twenty-seven anoikis-

related genes were acquired from the gene set enrichment

analysis (GSEA) (http://www.gsea-msigdb.org/gsea/index.jsp).
Characteristics of the anoikis-
related genes

First, we researched the interaction relationship between

different anoikis-related genes. Meanwhile, the somatic

mutation prevalence, the genetic locus, and CNV of anoikis-

related genes were analyzed. We also analyzed the profile of 27

anoikis-related genes expression in different subtypes of GBM

(including MES, CL, and PN). Merging the GlioVis datasets, we

performed a univariate Cox regression analysis of 27 anoikis-

related genes and forest plots were drawn.
Immunohistochemistry

We collected section from paraffin-embedded tissues of

human glioma and peritumor. We dewaxed and dissociated

the sections and rehydrated sections. After heating in tris-EDTA

buffer, we blocked slides using 5% gout serum and incubated

slides with primary antibody (PTK2, 1:800, #3285; Cell Signaling

Technology) (ITGA5, 1:100, #ab150361; Abcam) at 4°C

overnight. Then, the slides were incubated with secondary

antibody, and the images were captured using a Leica DM

2500 microscope.
Frontiers in Immunology 03
Non-negative matrix
factorization clustering

Non-negative matrix factorization (NMF) is an effective

dimensionality reduction method that is widely used to

distinguish molecular patterns in high-dimensional genomic

data (30, 31). Patients with GBM were divided into cluster 1

(C1) and cluster 2 (C2) based on the expression of anoikis-

related genes using “NMF” R package.
Characteristic differences of C1 and
C2 subtypes

Single-sample GSEA (ssGSEA), ESTIMATE, and

CIBERSORT were leveraged to quantify the TME. To further

understand the differences between C1 and C2 subtypes, we

investigated the difference of GBM tumor stemness index in the

C1 and C2. The mutual relationships regarding the 2 potential

subgroups, clinical typing of GBM, and the presence or absence

of G-CIMP were demonstrated by the Sankey diagram. In

addition, the differences of immune checkpoints, immune

inhibitors, and immune stimulators in different subgroups of

patients with GBM were also analyzed.
One-class logistic regression

We trained a predictive model to quantify the tumor stemness

using one-class logistic regression (OCLR). Briefly, we downloaded

mRNA expression data from Progenitor cell biology

consortium (PCBC) dataset (https://progenitorcells.org/). The

transcriptomic signature was generated, and OCLR-based models

are trained to evaluate the resemblance among stem cells and

tumor cells. The obtained signature was used to score integrated

GEO cohort using spearman correlation.
Construction of risk score model

The differential expression genes (DEGs) between cluster1

and cluster2 were screened by differential analysis using R

“limma” package. Weighted gene coexpression network

analysis (WGCNA) was leveraged to identify DEGs implicated

in TME, stemness, and prognosis of GBM. Then, we performed

univariate COX regression analysis and least absolute shrinkage

and selection operator (LASSO) regression to gain the anoikis-

related genes for predicting survival and prognosis of GBM. The

calculation formula of risk score is shown below:

Risk Score o
n

j=1
Coe genej� Exp of genejThe Coe (genej) was

the short form of the coefficient of genes included in this study,

and Exp (genej) was the expression of genes.
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We systematically randomize the risk score model based on

GlioVies datasets in a 7:3 ratio to distinguish the train set and the

test set. We assessed the reliability of the risk score model with

within-group validation through survival curves of the train set

and test set. The survival rates at 1, 2, 3, and 5 years of patients

with GBM were also predicted on the basis of the train set and

the test set. Clinical information related to GBM survival and

prognosis was obtained through the combination of risk score

and clinical traits and drew clinical prognostic factors

forest charts.
Nomogram construction and
characteristic of risk score model

Combining prognostic characteristics and clinical

characteristics, the R package “RMS” was leveraged to perform

nomogram. Calibration curves and time-dependent ROC curves

were used to evaluate the risk score model as well as nomogram.

We then analyzed the differences in TME and stemness between

high- and low-risk groups, as well as potential associations

between different subtypes of GBM.
Pan-cancer analysis of the risk
score model

We analyzed the differences between tumor mutational

burden (TMB), microsatellite instability (MSI), and CD274 in

33 cancer species and clarified their upregulation and

downregulation. In addition, the correlation analysis between

risk score and TME as well as stemness indices were performed

in pan-cancer.
Correlation of drug sensitivity and
risk score

First, we explored the percent weight of binary response and

immune phenotype in high- and low-risk scores. Tumor

neoantigens are antigens that are not expressed in normal

tissues but only in tumor tissues, which are not only highly

specific but also strongly immunogenic (32, 33). Combining risk

scores and tumor neoantigens to predict prognosis of patients

with GBM and plotting the survival curve. The expression

information of different cell lines was obtained from Cancer

Cell Line Encyclopedia. We collected drug response information

and drug targeting pathways form Genomics of Drug Sensitivity

in Cancer (GDSC). Then, we performed spearman correlation

analysis to obtain drugs related to risk score.
Frontiers in Immunology 04
Statistical analysis

In the present experiment, all statistical analysis was

conducted by R 4.1.1. The Wilcoxon test and the Kruskal–

Wallis test were used for comparisons between two independent

samples and comparisons among multiple samples for non-

parametric data, respectively. The t-tests and one-way ANOVA

were used for parametric data. P-value< 0.05 was considered

statistically significant (*p-value< 0.05; **p-value< 0.01; ***p-

value< 0.001). Related R packages including “ggplot2”, “ggpubr”,

“survival”, and “survminer” and other related R packages were

downloaded from Bioconductor packages or R packages. For

each analysis, statistical significance was set at P< 0.05.
Results

Genetic variations and expression of
anoikis-related genes in GBM

A total of 27 anoikis-related genes were included in this

study. The comprehensive landscape of the intricate relationship

between anoikis-related genes and the prognostic value for

GBMs was visualized using a network plot (Figure 1A). We

researched the somatic mutation prevalence of 27 anoikis-

related genes among GBM. Among them, PIK3CA exhibited

the highest mutation rate (up to 8%), whereas the mutation rates

of other genes were relatively low (Figure 1B). CNV alterations

in anoikis-related genes are visualized on chromosomes in

Figure 1C. In addition, the investigation of 27 anoikis-related

genes showed that CNV-related mutations were prevalent.

PIK3CA, NOTCH1, STK11, MCL1, and PTRH2 exhibited

widespread CNV amplification, whereas ITGA5, MTOR,

CEACAM5, CHEK2, CAV1, TLE1, BRMS, CEACAM6,

MAP3K7, and BCL2 exhibited CNV deletions (Figure 1D).

Most anoikis-related genes were significantly upregulated in

GBM tissues compared with normal tissues. In addition, we

found that the expression of 27 anoikis-related genes

significantly varied among CL, MES, and PN subtypes of GBM

(Figure 1E). In our exploration of the effect of 27 anoikis-related

genes on the overall survival (OS) of an integrated GEO dataset,

we found that the expression of PTK2, PIK3CA, PDK4, NTRK2,

and ITGA5 was statistically associated with the OS of patients

with GBM (Figure 1F).
Validation of PTK2 and ITGA5 expression
in clinical tumor tissues

Given that the results of univariate Cox regression analysis

demonstrated that PTK2 and ITGA5 were favorable and risk

factors for the prognosis of patients with GBM, respectively, we
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A B

D

E
F

C

FIGURE 1

Genetic variations and expression of anoikis-related genes in GBM. (A) Network diagram showing the interaction of 27 anoikis-related genes in
GBM. The size of the circles indicates the p-value of each gene on survival prognosis. Red represents risk factors, and green dots represent
favorable factors. The thickness of the lines indicates the correlation values between genes. The red and blue lines represent positive and
negative correlations of gene regulation, respectively. (B) Mutation prevalence of 27 anoikis-related genes in GBM. (C) The localization of the 27
anoikis-related genes on TCGA-GBM 23 chromosomes. (D) CNV variation frequency of 27 anoikis-related genes in TCGA-GBM. (E) Differences
in expression of 27 anoikis-related genes between normal and GBM tumors and in different TCGA GBM subtypes. * means P< 0.05; ** means P<
0.01; *** means P< 0.001; ns means P > 0.05. (F) The effect of 27 anoikis-related genes on the overall survival of merged GEO datasets. Green
represents gene downregulation and red is gene upregulation.
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further performed GSEA on PTK2 and ITGA5 to validate their

gene functions. GSEA based on the merged GEO dataset showed

that the APOPTOSIS, JAK STAT SIGNALING, EPITHELIAL

MESENCHYMAL TRANSITION, and ANGIOGENESIS

functional pathways were enriched in the ITGA5 high

expression and PTK2 low expression groups, respectively

(Figures S2A, B). Similar GSEA results were obtained on the

basis of TCGA dataset (Figures S3A, B).

Immunohistochemistry (IHC) staining was performed to

detect the representative PTK2 and ITGA5 protein levels in

gliomas and peritumor tissues (16 cases) obtained from patients

treated at The Second Hospital of Shandong University.

Consistent with the previous results, ITGA5 protein levels

were significantly increased in glioma compared to peritumor

tissue, whereas PTK2 levels were decreased in tumors

(Figures 2A, B).
Correlation of anoikis pattern with TME,
stemness, and clinical traits

We used the NMF algorithm to classify 650 patients with

GBM into two clusters, termed C1 and C2 (Figure 3A). The

heatmap visualized the detailed expression of anoikis-related

genes in the C1 and C2 clusters (Figure 3B). The result of the

Kaplan–Meier (KM) analysis showed the difference in patient

survival between the C1 and C2 clusters (p = 0.026, log-rank)

(Figure 3C). Regarding TME differences between the two

clusters, we observed that C1 was remarkably abundant in

several immune cell infiltrates, such as regulatory T cells, CD8

T cells, activated NK cells, dendritic cells, and others

(Figure 3D). In addition, the regulatory role of anoikis-related

genes on immune-related cell expression in GBM tumors was

analyzed and is displayed in Figure S4A. In the stemness index

analysis, the mRNAsi and EREG-mRNAsi of C2 were much

closer to 1, suggesting that GBM in C2 has a high similarity to

stem cells (Figure 3E). However, some studies have shown that

higher indices seem to be directly related to the degree of

progression of many types of cancer and poor prognosis, so

further research is needed. In the Sankey diagram, we identified

the interrelationship between the C1 and C2 subtypes and

clinical typing, and the patients with GBM with the cytosine-

phosphate-guanine (CpG) island methylator phenotype (G-

CIMP) were mainly concentrated in C2 (Figure 3F). We

assessed the TME in GBM tumor tissues. Chemokines,

immune inhibitors, and immune stimulators were more

significantly expressed in C1 (Figure S3B). Kyoto Encyclopedia

of Genes and Genomes (KEGG) analysis revealed that the

following pathways were significantly activated in C2: cancer,

apoptosis, the T-cell receptor signaling pathway, the B-cell

receptor signaling pathway, and others. Interestingly, the Wnt

signaling pathway was much more active in C1 (Figure 3G). In

addition, Gene Ontology (GO) biopathway analysis revealed
Frontiers in Immunology 06
that anoikis-related genes in C1 were significantly enriched in

the following functional sets: toll-like receptor 3 signaling

pathway, response to tumor necrosis factor, T-cell–mediated

immunity, and others (Figure 3H).
Construction and validation of the
risk score

To obtain the key module most implicated in clinical

characteristics, we performed WGCNA on the merged GBM

datasets (Figure 4A). We obtained a total of 897 differential

genes associated with anoikis, and coexpression modules were

eventually identified. According to the heatmap of module-trait

relationships, the MEblue and MEturquoise modules

demonstrated the highest correlations with clinical traits

(Figure 4B). A univariate Cox regression algorithm was

performed to preliminarily acquire 524 genes relevant to GBM

prognosis and calculate the HR and P-values for the anoikis-

related genes. The results are shown in Figure 4C. Next, we

sought to identify prognostic gene sets for GBM using the

LASSO algorithm and ultimately found nine gene sets

(Figures 4D, E). Finally, nine anoikis-related genes for

predicting the survival and prognosis of patients with GBM

were used to construct the risk score (Figure 4F).

We systematically randomized the cohort of GlioVies-GBM

patients to distinguish the training set (n = 411) and the test set

(n = 174). KM analyses revealed that a higher risk score in the

training set and the test set corresponded with poorer survival

(P< 0.0001) (Figure 4G). Time-dependent receiver operating

characteristics (ROCs) and decision curve analysis (DCA) were

utilized to assess the sensitivity and specificity of the model for

prognosis. The outcomes were assessed on the basis of the area

under the ROC curve (AUC). The 1-, 2-, 3-, and 5-year AUCs of

the training set were 0.661, 0.773, 0.780, and 0.845, respectively,

and those of the test set were 0.691, 0.728, 0.694, and 0.636,

respectively (Figure 4H). We also validated the accuracy of the

ROC to predict the prognosis of patients with GBM (Figure 4I).

Multivariate Cox regression analyses were used to assess whether

clinical characteristics (gender, CIMP status, and subtype) and

risk score were independent prognostic factors for patients with

GBM. We found that age and risk score were independent

prognostic factors for patients with GBM in the training set

and the test set (Figure S4D).
The nomogram based on risk score
in GBM

The hybrid nomogram was stable and accurate and may be

applied in the clinical management of patients with GBM. We

built a nomogram capable of predicting the survival probabilities

of GBM at 1, 2, 3, and 5 years based on the high- and low-risk
frontiersin.org
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score models (Figure 5A). The nomogram was also incorporated

into time-dependent ROCs to predict the survival time of

patients with GBM. The 1-, 2-, 3-, and 5-year AUCs of the

training set were 0.685, 0.806, 0.800, and 0.833, respectively, and
Frontiers in Immunology 07
those of the test set were 0.723, 0.787, 0.784, and 0.761,

respectively (Figure 5B). Validation and evaluation of the ROC

are shown in Figure 5C, and the DCAs of the risk factors are

displayed in Figure 5D.
A

B

FIGURE 2

Validation of PTK2 and ITGA5 expression in clinical tumor tissues. (A) Representative images of specific clinical specimens of tumor and
peritumor tissue. Tumor fluorescence was used to preliminarily identify the tumor. (B) Representative images of IHC staining for PTK2 and
ITGA5 in tumor and peritumor tissue (scale bar: 50 mm).
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Regarding differences in TME infiltration between high and

low risk scores, we observed that several immune-related factors

in the lower risk score group were remarkably abundant

(Figure 5E). Regarding the immune checkpoint, CD40LG,

CD8A, JKA1, LDHB, and others were more pronouncedly

highly expressed in patients with lower risk scores, and IL12A,

LDHA, LDHC, TNFRSF4, and YTHDF1 were significantly

expressed in patients with higher risk score (Figure 5F). The

mRNAsi and EREG-mRNAsi in patients with a lower risk score

were much closer to 1, suggesting that that patients with GBM

with lower risk score were less differentiated compared with

patients with GBM with higher risk score (Figure 5G); this

finding requires more research. When analyzing the relationship

between the risk score model and different subgroups of patients
Frontiers in Immunology 08
with GBM, the Wilcoxon test revealed an obvious difference in

the risk score between C1 and C2. Moreover, C2 showed a lower

median risk score than C1. In addition, we found an obvious

difference in the risk score between the G-CIMP and non-G-

CIMP groups and between the PN and MES GBM

subtypes (Figure 5H).
Validation of the risk score based on
TCGA dataset

We have constructed risk score based on integrated GEO

cohort and analyzed the correlation between risk score and

clinical characteristics (Figure 6A). We further validated the
A B

D E F

G H

C

FIGURE 3

Correlation of anoikis pattern with TME, stemness, and clinical traits. (A) The patients with GBM were divided into two distinct gene clusters (C1
and C2) by using non-negative matrix factorization (NMF). (B) The sample annotation of 27 anoikis-related genes in gender, age, platform, IDH
status, CIMP_status, and cluster. (C) Survival analyses for the C1 (242 cases) and C2 (343 cases) cohorts (p = 0.026, log-rank test). (D) The
abundance of each TME-infiltrating cell, stromal scores, and immune scores in C1 and C2 clusters. (E) The stemness index difference of the two
gene clusters. (F) The Sankey diagram is about the relationship between C1 and C2 clusters, clinical typing, and cytosine-phosphate-guanine
(CpG) island methylator phenotype (G-CIMP). (G, H) KEGG analyses and GO analyses for anoikis-related genes of the two gene clusters. (*p-
value < 0.05; **p-value < 0.01; ***p-value < 0.001).
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risk scoring model based on the same algorithm generated using

samples obtained from TCGA datasets. We validated the risk

score based on differentially expressed anoikis-related genes

based on survival analysis, and we also found that KM

analyses revealed that the expression of high-risk genes

corresponded with poorer survival (Figure 6B). The percent

weight of different clinical prognostic factors in patients with

GBM of the high- and low-risk groups is shown in Figure 6C. In

addition, we compare the risk score between men and women,

and the results exhibited that there was no significant difference

of risk score between men and women (Figure S5B). However,

patients with GBM aged >60 years had significantly higher risk

scores than those aged<60 years (Figure S5C). We illustrated the

outcomes of ROC with the AUC. The 0.5-, 1-, and 2-year AUCs

of the risk scores were 0.560, 0.617, and 0.651, respectively,

exhibiting superior performance than the traditional

clinicopathological features in predicting the prognosis of

GBM. We also validated the accuracy of the ROC based on

the risk score to predict the prognosis of patients with GBM
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(Figure 6D). Then, the AUC and the accuracy of the ROC, for

which we developed a nomogram based on the risk score, were

analyzed (Figure 6E). Furthermore, we evaluated the tumor

somatic mutations presented in high- and low-risk patients

separately using the map tools package. The results showed

that the low score group presented a more extensive TMB than

the high score group (Figure S5A). In addition, somatic

mutations in several genes, such as TP53, are rarely observed

in the low-risk group but are frequently observed in the high-risk

group. TP53, which regulates cell division and proliferation, is a

tumor suppressor gene. Many studies have shown that

mutations in the TP53 gene are associated with the

development of a variety of human tumors (34, 35). We

further validated the risk scoring model based on CGGA

cohort. The outcomes were similar to the previous analysis.

Higher risk score group patients with GBM exhibited shorter

survival time (Figure S5D). In addition, the time–ROC and

calibration curves for CGGA GBM were also visualized in

Figures S5E, F.
A B
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FIGURE 4

Construction and validation of the risk score. (A) Weighted gene coexpression network analysis (WGCNA) based on gene expression data
identified gene modules with highly synergistic changes. (B) The heatmap of module-trait relationships. (C) Univariate Cox regression analysis of
524 genes relevant to GBM prognosis. (D, E) The least absolute shrinkage and selection operator (LASSO) method of anoikis-related genes
associated with prognosis. (F) The risk score for predicting the survival and prognosis of patients with GBM. (G) Kaplan–Meier curves of the train
set (p< 0.001, log-rank test) and test set (p< 0.001, log-rank test). (H) Time-dependent receiver operating characteristics (ROC) of the train set
and the test set. (I) Calibration curves for risk score model in the train set and the test set.
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The pan-cancer analysis of risk
score model

We performed pancancer analysis to evaluate the similarity

and difference of the risk score model between different cancers

(Figure S6A) (36). We systematically analyzed TMB (37, 38),

MSI (39, 40), and the expression of CD274 across cancers (41–

43). The risk score was positively correlated with TMB in BRCA,
Frontiers in Immunology 10
CESC, COAB, ESCA, HNSC, LGG, LUAD, PRAD, STAD, and

THCA (P< 0.05) but negatively correlated with TMB in KIRC

and LAML (P< 0.05). For MSI, a positive association in COAD,

DLBC, ESCA, HNSC, SARC, STAD, UCEC, and THCA, as well

as a negative association in TGCT, was identified. In addition,

the risk score was positively correlated with CD274 expression in

ACC, LGG, PCPG, PRAD, SKCM, TGCT, and THCA and

negatively associated with CD274 content in BRCA, ESCA,
A B
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FIGURE 5

The nomogram based on risk score in GBM. (A) Nomogram integrated the age, gender, CIMP_status, subtype, and risk score. (B) The ROC of
the train set and the test set containing nomogram. (C) Validation of the ROC of the train set and the test set containing nomogram. (D) The
decision curve analysis (DCA) of the train set and the test set containing nomogram. (E) The correlation of risk score and TME infiltration cells.
(F) Expression of immune checkpoints among high– and low–GBM risk groups. (G) The stemness index difference of high- and low-risk score
groups. (H) The relationship between the risk score model and two clusters, GBM subtypes, and G-CIMP subtypes. (*p-value < 0.05; **p-value <
0.01; ***p-value < 0.001).
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KIRP, LAML, LUAD, and PAAD (Figure S6B). In addition, we

calculated the correlation between the risk score and 22 immune

cell infiltration and stemness indices. The results are displayed in

Figures 7A–C.
Correlation of risk score with
immunotherapy response and
drug sensitivity

To evaluate the effect of the risk score on predicting the

sensitivity of immunotherapy, we included an immunotherapy

cohort of advanced urothelial cancer (IMvigor210 cohort). The

log-rank test shows that patients with higher risk scores are

associated with poorer survival time (Figure 8A). Immune

checkpoint blockade (ICB) works by blocking the interaction

between tumor cells expressing immune checkpoints and

immune cells, thereby relieving the suppressive effect of tumor

cells on immune cells (44–46). We evaluated the value of the risk

score in predicting the response to immunotherapy. We
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observed that patients who had lower risk scores exhibited

better treatment results in the ICB therapy research and

concluded that the proportion of patients in the response

groups (CR and PR) was significantly lower in the high-risk

score group compared with the low-risk score group. However,

the proportion of patients in the no/limited response groups (SD

and PD) showed the opposite trend, indicating that the risk score

could reveal the response of patients to ICB therapy (Figure 8B).

Regarding the relationship between high- and low-risk groups

and immune phenotypes, the desert phenomenon was more

pronounced in the high-risk group, whereas more inflammation

was observed in the low-risk group (Figure 8C). By analyzing the

relationship between the risk score with tumor neoantigen

burden, we observed that patients with lower risk score

together with a high neoantigen burden exhibited the most

prolonged survival time. In addition, patients with higher risk

score and a low neoantigen burden had the shortest survival

time (Figure 8D).

The value of the risk score to predict drug sensitivity in

multiple cancer types was evaluated. According to Spearman

correlation analysis, we selected 31 drugs for which the risk score
A

B

D E

C

FIGURE 6

The risk score based on TCGA datasets. (A) The relationship between risk scores and clinical characteristics. (B) Kaplan–Meier curves of the risk
score based on TCGA datasets (p = 0.012, log-rank test). (C) The proportion of clinical characteristics in high- and low-risk scores. (D) The AUC
of the 1-, 2-, and 3-year survival rate of GBM and validation of the ROC of the risk score. (E) The AUC and validation of the ROC of the
nomogram model.
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and drug sensitivity were significantly correlated in the GDSC

database. The risk score was negatively sensitive to five drugs,

including sepantronium bromide, rapamycin, AZD5991,

sabutoclax, and AGI-6780, and positively correlated with

sensitivity to 26 drugs, including CZC24832, 5-fluorouracil,

AZD8186, GSK343, and others (Figure 8E). Among them,

CZC24832 exhibited the strongest drug sensitivity. The study

showed that pharmaceutical PI3Kg inhibition with CZC24832

significantly impaired CLL cell migration (47). Furthermore, we

explored the signaling pathways targeted by the selected drugs.

We uncovered that the relationship between drug sensitivity and

risk scores based on PI3K/mTOR, IGF1R, genome integrity, and

EGFR signaling was positive. In contrast, drugs with a sensitivity

that was negatively related to the risk score targeted the

metabolism and apoptosis regulation signaling pathways

(Figure 8F). In conclusion, the establishment of the risk score

will facilitate the exploration of the correct and effective

treatment strategy.
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Discussion

Anoikis is an important defense of the organism, preventing

the readhesion of shed cells to a new substrate in an incorrect

location and preventing their stunted growth (9). Some studies

have demonstrated that the occurrence of anoikis apoptosis

depends on the intrinsic pathway and the extrinsic pathway

(48). Anoikis can be triggered in response to several intracellular

signals, including DNA damage and endoplasmic reticulum

stress, whereas mitochondria play a central role in controlling

apoptosis (49). This disorder in the execution of anoikis

potentially represents a hallmark of cancer cells and

contributes tumor invasion and migration, the formation of

distant organ metastasis and the development of drug resistance

(50–52). However, there are few studies on the effects of anoikis-

related genes on invasive mobility and drug resistance in GBM

and their role in predicting the prognosis of GBM.
A

B

C

FIGURE 7

The pan-cancer analysis of risk score model. (A) Tumor purity, ESTIMATES score, immune score, and the stromal score of 32 types of tumors.
(B) The TME-infiltrating cell of 32 types of tumors. (C) The stemness index difference of 32 types of tumors. (*p-value < 0.05; **p-value < 0.01;
***p-value < 0.001).
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In our research, we provide a full view of the differential

expression of hallmark gene sets in GBM between tumor tissues

and normal tissues and the effect on altered immune activity.

The unsupervised consistency clustering algorithm was used to

classify patients with GBM, and we eventually obtained two

potential subgroups. We analyzed and evaluated the potential

subgroups, and the results showed a difference in the survival

time of patients with GBM between the two subgroups. In

addition, immune cell infiltration and immune targets were

analyzed to identify differences between subgroups. Next, we

constructed risk models based on differences in gene expression

and predicted patient survival and prognosis based on the risk
Frontiers in Immunology 13
models. A risk score model was constructed according to gene

expression to analyze and verify the role of the risk scoring

model in predicting the prognosis of patients with GBM. In

addition, the possibility of immunotherapy in GBM was

discussed on the basis of the risk scoring model. Currently,

there is increasing evidence that the presence of anti-anoikis-

related genes is closely related to the ability of tumors to migrate

aggressively and drug resistance in a variety of tumors. A study

showed that androgen-dependent prostate cancer cells become

resistant due to roadblocks in anoikis and, depending on

interactions with the tumor microenvironment, acquire

invasive and metastatic properties (53). The emergence of both
A B D
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C

FIGURE 8

The relationship between risk score and response to immunotherapy and drug sensitivity. (A) Survival analysis of the low and high-risk score
patient groups in an immune checkpoint blockade (ICB) therapy cohort. (B) The immunotherapy response and immune phenotypes of patients
with GBM in high- and low-risk scores. (C, D) Survival analyses of patients with GBM receiving ICB therapy by risk score combining tumor
neoantigen burden. (E) Assessing drug sensitivity of GBM tumor based on the risk score. (F) Signal paths targeted by drug sensitivity with the risk
score. Blue (positive correlation) or red (negative correlation).
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anti-apoptotic and pro-metastatic signaling mechanisms was

also identified in LKB1-deficient lung cancer. The mechanism

involves the enhancement of its substrate AMPK binding by the

GDH1 product a-KG that activates CamKK2 to generate energy,

resulting in anti-anoikis and ultimately promoting metastasis of

lung cancer (54). Here, we revealed global anoikis-related gene

alterations at the genetic and transcriptional levels and showed

mutual correlations in GBMs. Interestingly, the anoikis-related

genes interacted and influenced each other. Specifically, PDK4

gene downregulation exhibited a positive effect on patient

survival, and ITGA5 gene upregulation yielded a negative

effect on the survival of patients with GBM. We constructed a

risk score model to predict patient prognosis and the response to

immunotherapy and targeted therapy. Exploring the differential

expression of anoikis-associated genes in GBM not only

improves our knowledge of the aggressiveness of GBM but

also contributes to the development of more personalized and

precise immunotherapy regimens.

Evidence is now avai lable to demonstrate that

immunotherapy can benefit patients with GBM; however, the

lack of understanding of the tumor microenvironment and

immune cell infiltration in GBM has resulted in patients

receiving immunotherapy without obtaining effective results

(55–57). In addition, many immunotherapy strategies that

have yielded successful results in preclinical studies have failed

to produce convincing results in clinical trials, revealing the

limitations and inadequacies of current preclinical models of

GBM (58–60). Therefore, we constructed a risk score model for

GBM prognosis based on the difference in anoikis-related gene

expression in this experiment. We examined the value of the risk

score in predicting the response of GBM to immunotherapy and

analyzed the differences in the expression of immune-related

cells tumors with high and low risk scores. We also observed that

patients who had lower risk scores exhibited obviously

prolonged OS in ICB therapy research. This finding

demonstrates the reliability of using this risk score model to

predict the efficacy of immunotherapy in patients. When

investigating the treatment outcome based on the risk score in

patients with GBM, we found an interactive relationship

between drug sensitivity and risk score. Apoptosis regulation

signaling and metabolism play an active role in the treatment of

GBM. In contrast, drugs with sensitivity that was negatively

related to the risk score targeted PI3K/mTOR, IGF1R, genome

integrity, and the EGFR signaling pathway. These findings

indicated that patients with higher risk scores might be more

suitable for drugs targeting metabolism and apoptosis regulation

signaling instead of the PI3K/mTOR, IGF1R, genome integrity,

and EGFR signaling pathways.
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Conclusion

In this research, we systematically generated and assessed the

risk score of GBMs based on 27 anoikis-related genes and linked

these patterns with the TME. The risk score model was utilized

to predict patient prognosis and response to immunotherapy.

The systematic assessment of the risk score could expand our

understanding of invasion and contribute to the development of

more personalized and precise therapy strategies.
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