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INTRODUCTION

In April 2009, influenza A(H1N1)pdm09 virus 
(pH1N1v) emerged in North and South America 
as human infections (Centers for Disease Control 
and Prevention, 2009) before it became established 
in pig populations worldwide, including in Norway 
(Hofshagen et al., 2009; Torremorell et al., 2012; Van 
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ABSTRACT: Newly emerged influenza A(H1N1)
pdm09 virus infection in Norwegian pigs, although 
often observed in a subclinical form, can lower the 
pig’s growth performance by reducing feed efficiency 
in terms of a poorer feed conversion ratio. Infected 
pigs would consume more feed and require pro-
tracted production time to reach market weight. In 
our observational longitudinal study, growth perfor-
mance data from 728 control pigs and 193 infected 
pigs with known viral shedding time points were ana-
lyzed using mixed linear regression models to give 
estimates of the marginal effects of infection. Gauss-
ian curves describing the variability of the estimates 
at the individual pig level formed the fundamental 
inputs to our stochastic models. The models were 
constructed to simulate the summed negative effects 
of the infection at the batch level of 150 fattening pigs 
growing from 33 to 100 kg. Other inputs of variabil-
ity and uncertainty were 1) batch transmission points, 
2) pig infection points to reflect the disease transmis-
sion dynamics of the virus, and 3) final prevalence of 
infected pigs in the batch. Monte Carlo random sam-
pling gave 5,000 estimates on the outputs of the mar-
ginal effects for each pig. These results were summed 

up to provide estimates for a batch size of 150 pigs. 
This figure was adjusted by our final prevalence dis-
tribution function, which was also derived from the 
longitudinal study with 12 cohorts of infected pigs. 
For a 150-fattening-pig herd randomly selected from 
the population, the marginal effects of the infection 
were 1) 835 kg (fifth percentile) to 1,350 kg (95th 
percentile) increased feed intake and 2) 194 (fifth per-
centile) to 334 (95th percentile) pig days in excess 
of expected figures for an uninfected batch. A batch 
infected during growth phase 3 (81 to 100 kg BW) 
gave the worst results since the longitudinal study 
showed that a pig infected during growth phase 3 
required more feed and a greater protracted produc-
tion time compared to younger infected pigs. Sensi-
tivity analysis showed that final prevalence had the 
greatest impact on the conditional mean and variation 
of the marginal effects of infections. Batch transmis-
sion point was the next most influential factor. Low-
ering the final prevalence and preventing older fat-
tening pigs from being infected will have the greatest 
benefit in saving feed cost and reducing delay in get-
ting the pigs to the market.
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Reeth et al., 2012). It was Norway’s first influenza A 
virus infection in its pig population since the active 
national serosurveillance started in 1997 (Lium et al., 
2014). A case control study (Grontvedt et al., 2013) 
revealed that the outbreak in pigs was likely caused 
by cross-species transmission from human to pigs. Al-
though pH1N1v appeared highly contagious in naïve 
pigs like other swine influenza viruses (SIV; Brookes 
et al., 2010; Er et al., 2014), the virus appeared to be of 
low virulence since infection manifested itself mostly 
in the subclinical form in naïve Norwegian pig herds 
(Grontvedt et al., 2011; Lium et al., 2014). Despite the 
subclinical state, a longitudinal study at the Norwegian 
boar testing station (Er et al., 2014) showed that infect-
ed growing pigs had reduced feed efficiency because of 
a poorer feed conversion ratio. Consequently, infected 
pigs required additional feed and protracted production 
time compared to their uninfected counterparts. These 
findings, when considered at the batch level, are use-
ful for economic analysis of a farm’s profitability and 
for decision making with regard to disease control and 
biosecurity measures. However, to consider the sum 
total effects at the batch level, an understanding of fac-
tors that will vary the outcome is important for realistic 
estimations. It is therefore the aim of this paper to pres-
ent a stochastic model for assessment of the produc-
tion impact of pH1N1v infection in Norwegian pigs at 
the batch level. The stochastic model, based on a field 
observational study, will account for the variabilities 
and uncertainties that influence the individual impact 
of each pig for the summation at the batch level.

MATERIALS AND METHODS

The field study at the commercial boar testing sta-
tion was purely observational. No pig was harmed 
during the process of taking blood samples from the 
jugular vein or taking nasal swabs. 

Data

We conducted an observational longitudinal study 
on pigs that were performance tested at the Norwegian 
boar testing station between 2009 and 2012. The boar 
testing station (Wetten et al., 2012) had a capacity of 
testing 1,152 pigs in 16 separate rooms at the same 
time. Each room housed a cohort of 72 pigs grouped 
by breed (Landrace or Duroc) into 6 pens (14 m2 in 
size) of 12 pigs each. Weekly, the station received 72 
growing pigs (12 to 14 wk old with a mean BW of 
33 kg) from 46 breeding herds in Norway to monitor 
their growth performances until they reached a BW of 
100 kg. Electronic feeding stations in all pig pens used 
FIRE (Feed Intake Recording Equipment, Osbourne 

Ltd., Newcastle, UK) to record daily feed intake and 
daily weight gain for each pig individually. Pigs fed 1 
at a time ad libitum from 1 electronic feed dispenser 
in each pen on conventional concentrate containing 
161 and 136 g digestible protein, 9.68 and 9.50 MJ net 
energy/kg, before and after 50-kg live weight, respec-
tively, with 1 mo of mixing of the 2 feeds to facilitate 
the feed change. Blood samples for pH1N1v antibod-
ies testing were routinely taken from pigs at the end of 
their stay at the boar testing station. Most of these pigs 
were at least 100 kg BW or more.

Study Sample

The study sample consisted of 921 pigs (53% 
Landrace, 47% Duroc) from 43 breeding herds that 
were performance tested at the testing station between 
2009 and 2012. The control group of seronegative pigs 
(n = 728) included pigs tested by cELISA to be nega-
tive for antibodies against pH1N1v when they were at 
100 kg or greater BW before leaving the station. 

During an acute onset of clinical influenza 
pH1N1v infection at the station in April 2011, we in-
vestigated the pattern of disease occurrence in 12 co-
horts of pigs housed in separate rooms at the station by 
using serology and PCR testing of nasal swabs taken 
from 375 pigs over a period of 4 mo. Real-time PCR 
(RT-PCR) identified 193 virus-positive pigs of vary-
ing ages (or BW). This group of viruspositive pigs (n = 
193) was stratified into 3 subgroups according to their 
age (or BW) at moment of infection. Virus-positive 
group 1 (VIR 1, n = 122) included pigs that tested 
positive for pH1N1v by RT-PCR when they weighed 
between 33 and 60 kg (growth phase 1 [GF 1]). Virus-
positive group 2 (VIR 2, n = 34) included pigs that 
tested positive for pH1N1v by RT-PCR when they 
weighed between 61 and 80 kg (growth phase 2 [GF 
2]). Virus-positive group 3 (VIR 3, n = 37) included 
pigs that tested positive for pH1N1v by RT-PCR when 
they weighed between 81 and 100 kg (growth phase 3 
[GF 3]).

Impact Measures for Reduced Feed Efficiency  
in Infected Pigs

Our impact measures for reduced feed efficiency 
due to the infection were the increased feed require-
ment and increased production time of an infected pig 
to grow from 33 to 100 kg BW compared to an unin-
fected pig. We used STATA version 14.0 (StataCorp 
LP, College Station, TX) to execute the mixed linear 
regression analysis on the hierarchical data (Nherds = 
43, Npigs = 921). The marginal effects attributed to the 
infection were represented by the coefficients of virus 
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infection status in the mixed-model regression analy-
sis. Besides the infection status being the predictor of 
interest, variance component analysis identified breed, 
birthdate (BD), and ADFI for the regression model. 
Birthdate was an important covariate in the model be-
cause a pig born in 2012 performed better than a pig 
born in 2009 because of production improvement over 
time. Average feed intake was also an important co-
variate because it accounted for the effects of appetite 
on the outcomes.

Likelihood ratio tests and the Akaike information 
criterion (AIC) were used for model selection. We se-
lected the model with the lowest AIC value and with 
the greatest likelihood in fitting the data. To determine 
the significance of additional predictors for the 2 mod-
els, a difference of ±2 of the AIC value was regarded 
as nonsignificant, and the most parsimonious model 
was chosen (Burnham and Anderson, 2002). Scat-
terplots, postmodel residual analysis, and graphical 
methods were used to check the continuous variables 
for linearity and for influential outliers. One very in-
fluential outlier was detected and removed from the 
final analyses. The continuous variables BD and ADFI 
were centered to focus on the average pigs in the study 
sample. Modifying effects by covariates on the pre-
dictor of interest (infection status group) were inves-
tigated by testing interactions between them in the 
regression analyses.

Mixed Random-Intercept Regression Models. 
Our mixed linear regression was represented by the 
following equation:

Y[ijk] =  β0 + β1X1[ij] +…  

+ βhXh [ij] +u[j] + ε[ij]

where Yijk is the observation for the ith pig (ni = 921) 
nested within the jth (nj = 43) herd for the kth outcome 
(nk = 2, where 1 = age of pig at 100 kg and  2 = overall 
feed intake of pig (33 to 100 kg BW), β is a vector of 
coefficients for predictors and their interactions, X[ij] 
is the vector of explanatory variables for the ith ob-
servation of the ith pig and jth herd, uj is a vector of 
random intercepts unique to each herd, where uj ~ N 
(0, σ2

herd), and εij is the vector of error terms, where 
εij ~ N(µ, σ 2).

Predictors. Apart from BD and ADFI, which are 
continuous predictors, the following are categorical 
predictors: 1) Infection status group includes sero-
negative, VIR 1, VIR 2, and VIR 3. Seronegative pigs 
are negative for antibodies against pH1N1v at 100-kg 
BW, VIR 1 pigs are positive for pH1N1v between 33 
and 60 kg BW, VIR 2 pigs are positive for pH1N1v 

between 61 and 80 kg BW, and VIR 3 pigs are posi-
tive for pH1N1v between BW 81 and 100 kg. 2) Breed 
includes Landrace and Duroc.

Stochastic Modeling

Variability and Uncertainty Inputs. To construct 
our stochastic models, we considered the variabilities 
and uncertainty of 1) uncertainty point of transmission 
to batch (batch transmission point) with respect to the 
growth phase, 2) age-dependent variability between pigs 
at moment of infection (pig infection point) revealed by 
the regression analysis, 3) transmission dynamics of a 
contagious pH1N1v with a short infective cycle (5 d) in 
a batch of immunologically naive pigs, and 4) the final 
animal prevalence in the batch when pigs have reached 
100 kg in BW. Variabilities 3 and 4 were based on obser-
vations during the clinical outbreak at the testing station 
from April 2012 to July 2012.

Batch level stochastic summation. To give the 
batch level production effects caused by the infection, 
150 infected pigs were sampled and summed up by a 
Monte Carlo sampling of 5,000 times per pig in relation 
to the variabilities and uncertainty mentioned.  Model-
Risk (version 5.3, Vosesoftware, Gent, Belgium) was 
used to perform the stochastic simulations.

Infection dynamics determine the patterns of 
infection within the batch. Given that the regression 
analyses (Tables 1 and 2) revealed that the marginal 
effects of the infection varied with the pig infection 
point (GF 1, GF 2, or GF 3), it is important to include 
variabilities related to the infectious disease dynamics 
in the stochastic model. Our observational data based 
on serology and PCR testing of nasal swabs taken from 
375 pigs over a period of 4 mo revealed a steep spike in 
the epidemic curve near the beginning of the outbreak 
of pH1N1v infection, indicating a very contagious in-
fection with a very short incubation period. This re-
sult was consistent with influenza A virus infections 
in a batch of immunologically naive pigs (Rose et al., 
2013). One hundred and twenty-two pigs, or 63% of 
our 193 virus-positive pigs belonged to VIR 1. The re-
maining virus-positive pigs belonged to VIR 2 (n = 34, 
or 18%) and VIR 3 (n = 37, or 19%). Reflecting these 
3 proportions of each of the pig infection points,  Mod-
elRisk fitted a discrete probability distribution for the 
pig’s infection point to be ZTPoly(41563.8, 0.000027). 
This discrete probability distribution was input into our 
stochastic model to describe the infection dynamics of 
an infection such that when a virus enters a batch of 
susceptible pigs, the bulk (63%) of the pigs would in-
fected within a short time (<d). 
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Comparisons between Batches with 3 Different  
Time Points of Virus Transmission

With the simulated batch level results from 5,000 
iterations for each of the 150 pigs sampled, we used 
ModelRisk to plot cumulative probability plots to 
compare the batch level production impacts for the 
three possible batch transmission points at GFs1, 2 or 
3). An additional plot was constructed for a batch in-
fected during GF 3 with 100% animal prevalence to 
investigate the extent of overestimation if variability 
of animal prevalence was excluded.

Sensitivity Analysis to Rank Influence  
of the Variabilities

Tornado charts generated by ModelRisk were used 
to rank the variability inputs for the stochastic models 
in terms of their impact on the conditional means and 
variance of the outputs.

RESULTS

Batch Transmission Point

The time point at which the virus came into con-
tact with a susceptible batch of pigs was treated as an 
uncertainty since we had no information on the prob-

abilities of batch transmission points on a national 
basis. We assumed all three batch transmission points 
of GFs 1, 2 and 3 had equal probabilities of taking 
place and therefore used the discrete probability dis-
tribution function ZTBinomial (3, 0.42) generated by 
ModelRisk to match our assumption. 

Individual Pig Variability

The linear regression analysis in Tables 1 and 2 
showed that besides infection status as the main pre-
dictor, covariates breed, BD, and daily feed intake 
were significant in predicting the outcomes of total 
feed intake and age of pig at 100 kg BW. The absence 
of significant interactions between the covariates and 
the main predictor suggested that the covariates did 
not modify the effects of the virus infection. For ex-
ample, the negative effects of the infection were equal 
between the Landrace and Duroc given that interac-
tion between breed and infection was absent. The 
coefficients and SE of the 3 infection groups of pigs 
(VIR 1, VIR 3, VIR 3) were the parameters for Gauss-
ian distributions describing the variability between 
individual pigs. 

Table 2. Mixed linear regression for age (days) of a 
100-kg pig infected with influenza A(H1N1)pdm09 
virus1

Age of pig at 100 kg

SE P-value

95%  
Confidence  

intervalPredictors Coefficients
Infection groups

Seronegative 0 — — — —
V irus positive 

(33–60 kg)
1.65 0.70 0.02 0.27 3.02

V irus positive 
(61–80 kg)

1.89 1.23 0.13 0.52 4.30

V irus positive 
(81–100 kg)

2.49 1.19 0.04 0.17 4.82

Breed
Landrace 0 — — — —
Duroc 6.15 0.98  <0.001 4.24 8.07

ADFI (centered) −31.81 1.34  <0.001 −34.44 −29.18
Birthdate (centered) −0.006 0.0006  <0.001 −0.008 −0.005
Constant β0

2 144.54 0.55  <0.001 143.47 145.61

1The coefficients and standard errors of virus positive pigs were the 
parameters for Gaussian curves describing the variability between pigs on 
the marginal effects of infection at each of the three pig infection points:  
Virus positive during growth phase 1 (33 kg to 60 kg), growth phase 2 (61 
kg to 80 kg) and growth phase 3(81 kg to 100 kg).

2Constant represents the age (days) at 100 kg of a seronegative Land-
race pig born on 3 October 2008 with an ADFI of 2.04 kg/d.

Table 1. Mixed linear regression of overall feed intake 
(kg) in pigs infected with influenza A(H1N1)pdm09 
virus1

Overall feed intake of a pig  
  growing from 33to 100 kg

SE P-value

95%  
Confidence  

intervalPredictors Coefficients
Infection groups

Seronegative 0 — — — —
V irus positive 

(33–60 kg)
8.98 1.15  <0.001 6.72 11.23

V irus positive 
(61–80 kg)

7.63 2.02  <0.001 3.66 11.59

V irus positive 
(81–100 kg)

9.38 1.95  <0.001 5.57 13.19

Breed
Landrace 0 — — — —
Duroc 5.42 1.35  <0.001 2.77 8.06

ADFI (centered) 6.81 2.20 0.002 2.49 11.13
Birthdate (centered) −0.02 0.00  <0.001 −00.023 −00.019
Constant β0

2 134.41 0.80  <0.001 132.85 135.97

1The coefficients and standard errors of the virus positive pigs were the 
parameters for Gaussian curves describing the variability between pigs on 
the marginal effects of infection at each of the three pig infection points:  
Virus positive during growth phase 1 (33 kg to 60 kg), growth phase 2 (61 
kg to 80 kg) and growth phase 3 (81 kg to 100 kg). 

2Constant represents the overall feed intake of a seronegative Landrace 
pig born on 3 October 2008 with an ADFI of 2.04 kg/d.
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Increased Feed Requirement: Batch Level 
Stochastic Simulations

Cumulative probability plots based on the sto-
chastic model in Fig. 1 show that an infected batch of 
150 pigs required additional feed ranging from 770 to 
1,470 kg. A batch infected during GF 3 required the 
greatest amount of additional feed, whereas a batch 
infected during GF 2 required the least. The plots cor-
responded with the regression models in Tables 1 and 
2. A majority of pigs infected during GF 2 would give 
the lowest marginal effect for the infection. A batch in-
fected during GF 3 would cause only VIR 3 pigs to be 
infected, which would give the worst marginal effects 
of the infection compared with having younger infect-
ed pigs. Assuming a 100% prevalence of infection in 
the batch of pigs could overestimate the increase in 
feed requirement by as much as half a ton of feed in 
the case of batches infected during GF 3.

Increased Production Time: Batch Level

Infection Dynamics of Virus in a Cohort of 
Naïve Pigs. Cumulative probability plots in Fig. 2 
show that infection by pH1N1v in a batch of 150 fat-
tening pigs can prolong production time by as much as 
430 d in a batch of pigs with transmission point at GF 
3. This was no surprise since a VIR 3 pig performed 
worst in prolonging production time by 2.5 d (Table 2). 
Assuming a 100% prevalence of infection in the batch 

of 150 pigs could overestimate the protracted produc-
tion time by as much as 120 d in the case of batches 
infected during GF 3. 

Final Prevalence. The longitudinal study at the 
boar testing station revealed a highly contagious infec-
tion with the final animal prevalence of 12 cohorts of 
pigs housed in close proximity in 12 separate rooms 
ranged from 62% to 100% (Table 3). ModelRisk fit-

Figure 1. Cumulative probability plots of the additional feed requirement (kg) for a batch (n = 150) of fattening pigs infected with influenza A(H1N1)
pdm09 virus growing from 33 to 100 kg. Based on the stochastic model, Monte Carlo of 5,000 sampling for each pig summed up to 150 pigs for batch level 
effects were executed for each of the 3 batch transmission points (GF 1, 2, and 3). In addition, variabilities in the stochastic model were 1) individual pig 
variability, 2) infection dynamics of a short cycled contagious pathogen, and 3) final animal prevalence. To show the extent of overestimation of the effects 
if variability of final animal prevalence was ignored, the right most s-curve (purple s-curve) represents a cumulative probability plot of batches infected 
during GF 3 with 100% animal prevalence.

Table 3. Final prevalence based on infectious status of 
12 cohorts of pigs housed in 12 separate rooms when 
the pigs reached a BW of 100 kg1

Room

Seronega-
tive at  
100 kg

Virus  
positive

Seroposi-
tive at  
100 kg Infected Total

Final  
prevalence

1 2 21 24 45 47 96%
2 4 11 12 23 27 85%
3 1 21 8 29 30 97%
4 1 11 15 26 27 96%
5 2 28 50 78 80 98%
6 6 25 45 70 76 92%
7 2 18 48 66 68 97%
8 25 10 31 41 66 62%
9 20 12 27 39 59 66%

10 10 15 33 48 58 83%
11 0 14 7 21 21 100%
12 9 6 14 20 29 69%

1By using ModelRisk (version 5.3, Vosesoftware, Gent, Belgium), a 
probability distribution of Beta4 (0.96,0.56,0.62,1) was fitted to the twelve 
final animal prevalence figures for the 12 cohorts of pigs.
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Figure 3. Sensitivity analysis ranking the variability and uncertainty contribution to the conditional means of additional feed intake in infected batches 
of 150 fattening pigs growing from 33 to 100 kg. For final prevalence in infected batch, the prevalence of infection when a batch of pigs has reached 100 
kg BW is a variability input in the stochastic model and is described by a discrete probability distribution of Beta(0.96, 0.56, 0.62, 1) derived from data 
in Table 1. For batch infection point, 3 batch infection points (GF 1: 33 to 60 kg; GF 2: 61 to 80 kg; and GF 3: 81 to 100 kg) were assumed to have equal 
probability and were described by the discrete probability function ZTBinomial(3, 0.42). VIR 1 pigs are pigs infected when BW were between 33 and 60 
kg, VIR 2 pigs are pigs infected when BW were between 61 and 80 kg, and VIR 3 pigs are pigs infected when BW were between 81 and 100 kg.

Figure 2. Cumulative probability plots of the increased production time (days) for a batch (n = 150) of fattening pigs infected with influenza A(H1N1)
pdm09 virus growing from 33 to 100 kg. Based on the stochastic model, Monte Carlo of 5,000 samplings for each pig summed up to 150 pigs for batch 
level effects were executed for each of the 3 batch transmission points (GF 1, 2, and 3). In addition, variabilities in the stochastic model were 1) individual 
pig variability, 2) infection dynamics of a short cycled contagious pathogen, and 3) final animal prevalence. To show the extent of overestimation of the 
effects if variability of final animal prevalence was ignored, the right most s-curve (purple s-curve) represents a cumulative probability plot of batches 
infected during GF 3 with 100% animal prevalence.
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ted the bounded continuous probability distribution to 
these 12 values with Beta4(0.96, 0.56, 0.62, 1) to de-
scribed the likelihood of the final animal prevalence in 
an infected batch of pigs.

Sensitivity Analysis of Infected Batches Randomly 
Sampled from the Population

The Tornado charts in Fig. 3 and 4 show that the 
final prevalence contributed most to the conditional 
mean and variance. Batch transmission point with a 
lower magnitude was the other important uncertainty 
input that had a considerable impact on the conditional 
mean and variance.

DISCUSSION

Growth performance indicators such as feed con-
version ratio and feed intake are important parameters 
when studying the economic effects of endemic dis-
ease in finishing pig production (Losinger, 1998; Jen-
sen et al., 2008). Keeping pigs longer than necessary 
also requires additional costs for fuel, electricity, labor, 
etc., and can affect the number of fattening rounds in 
a year. Although many papers have stated that respira-
tory disease infection in pigs can reduce feed efficien-
cy and lead to lower growth rates and hence delays 
in the pigs getting to market weight (Kothalawala et 
al., 2006; Van Alstine, 2012; Van Reeth et al., 2012), 
the negative impacts on growth performance have not 

been properly quantified and published. Conversely, 
by using stochastic models in our study, we have quan-
titatively estimated the impact of the newly emerged 
influenza A(H1N1)pdm09 virus infection on growth 
performance in pigs in terms of increased feed and 
protracted production time. The models accounted for 
the heterogeneities between pigs and between batches 
to predict the likely variation between herds in Nor-
way. The production impact of a subclinical disease 
like influenza A(H1N1)pdm09 virus for a batch of 150 
naïve Norwegian pigs growing from 33 to 100 kg can 
be as much as 1.5 t of extra feed and 420 pig days of 
longer production time if most of the pigs are infected 
as older pigs during GF 3. This would occur if the 
batch transmission point was at GF 3, which explains 
why sensitivity analysis in Figs. 3 and 4 identified 
batch transmission point as an influential uncertainty. 
Overall, the upshot of protracted production time of 
infected pigs means that the number of possible cycles 
of fattening pigs would be reduced if farmers choose 
to keep their pigs until they reach the desired market 
weight. However, in all-in–all-out operations like fat-
tening pig herds, farmers do not have the option to 
keep pigs longer than the designated market day and 
must sell their pigs at lighter BW than desired to clear 
the farm for the next batch.

Our stochastic models were built to reflect the in-
fluenza A(H1N1)pdm09 virus as a short-cycle patho-
gen with a short incubation period. This is consistent 
with other studies that have showed that the influenza 

Figure 4. Sensitivity analysis ranking of the variability and uncertainty contribution to the conditional mean of the increase in production time in an 
infected batch of 150 fattening pigs growing from 33 to 100 kg. For final prevalence in infected batch, the prevalence of infection when batch of pigs has 
reached 100 kg BW is a variability input in the stochastic model. It is described by a discrete probability distribution of Beta(0.96, 0.56, 0.62, 1) derived 
from data in Table 1. For batch infection point, 3 batch infection points (GF 1: 33 to 60 kg; GF 2: 61 to 80 kg; and GF 3: 81 to 100 kg) were assumed to 
have equal probability and were described by the discrete probability function ZTBinomial(3, 0.42). VIR 1 pigs are pigs infected when BW were between 
33 and 60 kg, VIR 2 pigs are pigs infected when BW were between 61 and 80 kg, and VIR 3 pigs are pigs infected when BW were between 81 and 100 kg.
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A(H1N1)pdm09 virus is transmitted efficiently be-
tween pigs, including subclinical pigs, by aerosol or 
direct contact with secretions of infected individuals 
or contaminated fomites (Brookes and Brown, 2011). 
It is highly possible that all pigs within a batch could 
eventually be infected in the worst-case scenario. This 
is also true for other SIV (H1N1, H1N2, and H3N2) 
currently circulating in most pig-producing countries, 
where all susceptible pigs in a herd are likely able to 
become infected and transmit the virus (Tellier, 2006, 
2009; Torremorell et al., 2012). The sensitivity analy-
sis of our stochastic models showed that reducing the 
final prevalence and keeping the proportion of pigs 
infected during GF 3 the smallest (or avoiding batch 
transmission point at GF 3) would have the greatest 
impact in reducing the negative effects of the infection.

The final prevalence and infection dynamics prob-
ability distributions in our model were dependent on 
and reflected the indoor environmental conditions 
such as temperature, humidity, air quality, and stock-
ing density at the boar testing station. Although such 
environmental conditions may not vary much for fat-
tening herds in Norway given that most, if not all, pigs 
are kept indoors under the Nordic conditions, they 
could be different in other pig production countries. 
Hence, it would be interesting for further studies to 
correlate the effect of housing and husbandry condi-
tions on the final prevalence of this disease within a 
batch of pigs. Such studies could elucidate nonvaccine 
types of interventions such as altering the pig’s envi-
ronment with the aim of reducing the final prevalence 
of the infection or helping older pigs avoid infection. 
The ultimate goal is clearly to reduce the negative im-
pact of the virus infection on production without re-
sorting to vaccination.

We have chosen a batch size of 150 pigs to reflect 
the average batch size of fattening pig herds in Norway, 
which is small by international standards. However, 
extrapolation to other batch sizes is possible because 
the production impact is directly proportional to batch 
size assuming identical epidemiological patterns and 
similar production conditions in extrapolated herds.

Although influenza A viruses are ubiquitous in an-
imals and endemic in most pig populations worldwide 
(Brown, 2000, 2013; Kothalawala et al., 2006; Van 
Reeth et al., 2012; Valls and Luque, 2015), a produc-
tion impact such as the one we have presented from less 
virulent diseases like influenza A(H1N1)pdm09 virus 
infection in pigs could easily be overlooked, especially 
in countries where swine influenzas are classed under 
passive surveillance systems (Bowman et al., 2012). 
Norway is a rare exception in that it has ongoing active 
national serological surveillance for influenza A virus 
infection in its population of unvaccinated pigs. In the 

last 5 yr from 2010 to 2014, Norway’s herd prevalence 
for influenza A(H1N1)pdm09 virus infection has sta-
bilized in the range of 41% to 50%, thus indicating 
that the infection has established itself in the pig popu-
lation. Even though infection would confer long-term 
active immunity to a pig that recovered from infec-
tion, the quick turnover of fattening pigs whose lifes-
pan is less than 7 mo ensures that large populations of 
immunologically naïve pigs are constantly produced, 
making the continuous propagation of influenza infec-
tion possible (Van Reeth et al., 2012). In addition, any 
maternal antibodies a fattening pig may have would 
decrease by the time the pig reaches 12 to 14 wk, or 
about 33 kg in BW (Loeffen et al., 2003), making them 
susceptible to infection. Hence, fattening pig herds in 
Norway constantly present themselves as susceptible 
for influenza virus infection and reduced growth per-
formance from lower feed efficiency.

The Norwegian model may be too simplistic to 
estimate the impact of swine influenza on growth per-
formance in pigs for other countries because it reflects 
Norway’s production system and unique pig disease 
profile (Lium et al., 2014). The situation in other coun-
tries is different because they have various strains of 
SIV, including the influenza A(H1N1)pdm09 virus, 
that exist as coinfections (Maes et al., 2000; Song et 
al., 2010; Simon et al., 2014) and respiratory patho-
gens, such as the porcine reproductive and respiratory 
syndrome virus, the porcine respiratory coronavirus, 
and Mycoplasma hyopneumoniae (Crisci et al., 2013), 
which would undoubtedly complicate the picture.

In any case, given that the influenza A(H1N1)
pdm09 virus is established in the Norwegian pig popu-
lation, a Norwegian farmer or the national food safety 
authority may find our production impact model useful 
in estimating the burden of the infection at the farm and 
at the national level for economic analyses. Eco nom-
ic analyses to estimate producer surplus can help the 
farmer in making decisions on whether to implement 
biosecurity measures with regard to keeping a herd 
from getting infected during the next production cycle 
or keeping the prevalence in the batch as low as pos-
sible if infection occurs, assuming an all-in and all-out 
production system. It would make sense to implement 
effective biosecurity measures if the costs of these mea-
sures do not exceed the cost of the negative effects of 
the disease, thus giving a motivating producer surplus.
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