
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13599  | https://doi.org/10.1038/s41598-021-92793-w

www.nature.com/scientificreports

The structure‑based cancer‑related 
single amino acid variation 
prediction
Jia‑Jun Liu1, Chin‑Sheng Yu2,3, Hsiao‑Wei Wu4, Yu‑Jen Chang1, Chih‑Peng Lin5 & 
Chih‑Hao Lu1,4,6*

Single amino acid variation (SAV) is an amino acid substitution of the protein sequence that 
can potentially influence the entire protein structure or function, as well as its binding affinity. 
Protein destabilization is related to diseases, including several cancers, although using traditional 
experiments to clarify the relationship between SAVs and cancer uses much time and resources. Some 
SAV prediction methods use computational approaches, with most predicting SAV-induced changes 
in protein stability. In this investigation, all SAV characteristics generated from protein sequences, 
structures and the microenvironment were converted into feature vectors and fed into an integrated 
predicting system using a support vector machine and genetic algorithm. Critical features were used 
to estimate the relationship between their properties and cancers caused by SAVs. We describe 
how we developed a prediction system based on protein sequences and structure that is capable of 
distinguishing if the SAV is related to cancer or not. The five-fold cross-validation performance of our 
system is 89.73% for the accuracy, 0.74 for the Matthews correlation coefficient, and 0.81 for the F1 
score. We have built an online prediction server, CanSavPre (http://​bioin​fo.​cmu.​edu.​tw/​CanSa​vPre/), 
which is expected to become a useful, practical tool for cancer research and precision medicine.

Single amino acid variation (SAV) refers to one amino acid substitution resulting from genetic polymorphisms. 
Nonsynonymous encoding variants alter the protein sequence. In extreme cases, this alteration affects the entire 
protein structure or function. The unique physicochemical properties of each type of amino acid means that the 
occurrence of the mutation in different positions of the sequence affects protein conformation and its function 
to different extents. It is vital to understand how the SAV influences protein and to clarify the links between 
genetic variations and human diseases. Most disease-related SAVs occur in structurally or functionally essential 
positions1–3. Previous research that mapped nonsynonymous SNPs to the structural surfaces of encoded proteins 
found that about 88% of disease mutations are located in the voids or pockets4. These mutation residues may 
affect the protein structure or the aggregation of the complex. Importantly, protein destabilization is a primary 
factor in many Mendelian diseases. Two-thirds of disease-related mutations adversely influence protein–protein 
interactions via loss of interactions, misfolding, or impaired expression5,6.

Structural dynamics are correlated to protein function, with evidence of missense-folding structures resulting 
in protein dysfunction7,8. If missense variants occur at the functional sites, the resulting changes in protein activ-
ity and binding affinity cause disease. SAVs located in the protein surfaces are also related to diseases, because 
these SAVs can destroy protein–protein interactions9,10. Increasing evidence indicates that SAVs are associated 
with several different cancers. Proteins containing harmful amino acid substitutions can affect pathways in 
different cancers11–13. Much evidence has revealed substantial changes in genomic sequences in patients with 
cancer. Ovarian cancer samples from The Cancer Genome Atlas (TCGA) project, for example, have revealed as 
many as 4,128 mutations at 575 genes in a cohort of 590 cases14. The TCGA project has also identified approxi-
mately 9,000 mutations at 575 genes among 564 patients with lung adenocarcinoma15. Recent research has sug-
gested that somatic mutation accumulation is critical in tumorigenesis16. Moreover, while some variations may 
appear to be neutral, they may actually be driver mutations that contribute to cancer progression17. In the era of 
precision medicine, it is still difficult to precisely identify which genetic mutation serves as the trigger point of 

OPEN

1The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, 
Taiwan. 2Department of Information Engineering and Computer Science, Feng Chia University, Taichung, 
Taiwan. 3Master’s Program in Biomedical Informatics and Biomedical Engineering, Feng Chia University, Taichung, 
Taiwan. 4Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. 5Yourgene Health, 
New Taipei City, Taiwan. 6Department of Medical Laboratory Science and Biotechnology, China Medical University, 
Taichung, Taiwan. *email: chlu@mail.cmu.edu.tw

http://bioinfo.cmu.edu.tw/CanSavPre/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-92793-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13599  | https://doi.org/10.1038/s41598-021-92793-w

www.nature.com/scientificreports/

tumorigenesis without a systems network biology framework18,19. At the proteome level, amino acid substitutions 
caused by genetic codon transitions may explain the basis of human cancer20. Amino acid alterations appear to 
follow certain rules. For example, arginine has a positive charge that is important for balancing protein and DNA 
binding; however, arginine is highly mutated in various cancer types. The loss of arginine frequently influences 
the function of cancer-associated proteins, whereas gaining cysteine, an active and reducing agent, may enhance 
the capacity of a protein to neutralize reactive oxygen species (ROS) in the tumor environment21–23. Proteomic 
changes caused by proteins carrying missense mutations may help cancer cells adapt to environmental pressure24. 
While different types of cancers have unique properties that are not shared among all cancers, these different 
cancers may share some substitution patterns25. For instance, the amino acid substitution spectrum is similar in 
breast and digestive tract cancers, and is dominated by the alteration of glutamic acid to lysine25. Clarification 
of the relationship between SAVs and cancers using traditional experiments necessitates much time and many 
resources, so computational prediction methods are sorely needed in cancer biology research.

Machine learning has become a favored tool for data analysis, as this offers the capacity for leveraging big 
data and for analyzing the content of complex problems, clarifying information and content26,27. Many predic-
tors have emerged that use machine learning as algorithms for SAVs. The two most important and commonly 
used categories of development strategies are the genetic-based and protein-based prediction systems. Several 
large-scale sequencing projects such as the TCGA project are widely utilized for genetic analysis28,29, some of 
which follow the American College of Medical Genetics and Genomics (ACMG) guideline30. The multifactorial 
variant prediction (MVP) is a genetic-specific multifactorial model that integrates 16 in silico predictors with 
the available clinical evidence31. However, while the genetic-based system has established a causal relationship 
between genes and cancer, this relationship is limited to cause and outcome. A comprehensive assessment of can-
cer driver mutation prediction models evaluated 33 commonly used prediction tools32, the top three (CHASM, 
CTAT-cancer and DEOGEN2) of which are cancer- or protein-based systems33–35; CHASM and CTAT-cancer 
are designed to incorporate the cancer protein, while DEOGEN2 predicts the deleteriousness of SAV by training 
the mutations in human inherited disease. Since the protein molecule is intimately involved in cellular processes, 
using the protein-based system to build a prediction system might be more informative for complex diseases 
such as cancer. However, although numerous prediction models have been developed, we lack the expertise for 
constructing accurate prediction tools for cancer and knowing which SAV descriptors to incorporate36.

We describe our development of a prediction model, which is capable of recognizing whether a particular SAV 
is cancer-related or is neutral. This model is not only able to discriminate physical changes for each SAV regarding 
protein function and structure, but it can also estimate how these changes contribute to cancer progression. We 
hypothesized that accounting for every kind of SAV might be a vital feature for cancer, so we designed a system 
that incorporates multiple prediction models and enables the user to extract critical features from cancer-related 
proteins. Our model provides a novel way forward for cancer research, not only for clinical outcomes but also 
for recognizing prognostic biomarkers, which we contend is a breakthrough for precision medicine.

Materials and methods
Dataset of SAVs.  All SAV data were collected from CanProVar 2.037,38, a human Cancer Proteome Variation 
database that stores both germline and somatic amino acid variations, including those related to the genesis or 
development of human cancers based on six sources, including the public databases HPI39, COSMIC40, OMIM41, 
and TCGA​42, as well as two large-scale cancer genome resequencing studies43,44. CanProVar 2.0 contains 156,671 
cancer-related SAVs from mutations that have been reported in cancer samples and 967,017 neutral SAVs from 
validated coding SNPs in the dbSNP database. In order to determine the exact protein structure of the SAV 
sequence, CanProVar 2.0 data were mapped to the proteins identified by BLAST45 from the Protein Data Bank. 
The search used six criteria, as follows: 1. The e-value of alignment results should be smaller than 1e−50; 2. The 
sequence identity of alignment results should be greater than 80%; 3. The alignment coverage of the protein 
structure should exceed 95%; 4. The organism of the aligned target protein should be Homo sapiens; 5. The 
experimental method ideally uses X-ray diffraction to extract the protein structure for aligning the target protein 
structures; and 6. The SAV position should be equidistant between the wild-type in the SAV sequence and the 
aligned target protein. After matching a protein with a 3-dimensional structure, CD-HIT46 was used to filter out 
homologous proteins. The CD-HIT cluster algorithm generates sets of protein families and uses the sequence 
identity cut-off of 0.3 to purify redundant proteins. Subsequently, the remaining 2,867 cancer-related SAVs and 
7,562 neutral SAVs were our main training set, which were separated into 20 groups by using the representative 
wild-type amino acid of SAV. The numbers of cancer-related and neutral SAVs for each wild-type amino acid 
in the training set are listed in Table 1; δ is the cancer:neutral SAV ratio, which ranges from 0.2245 to 0.6693.

Two independent sets were built, independent sets 30 and 40, which collected the proteins filtered out by CD-
HIT in the previous step. Any proteins in the independent sets sharing more than 30 or 40% sequence identity 
with another protein in the same wild-type amino acid group of a training set were filtered out. The final analysis 
included 154 cancer-related SAVs and 2,240 neutral SAVs in the independent set 30, and 322 cancer-related 
SAVs and 3,127 neutral SAVs in the independent set 40. Table 1 lists the numbers of cancer-related and neutral 
SAVs for each wild-type amino acid in the independent sets 30 and 40. Typically, the 30% sequence identity 
was usually used as the criteria to remove homologous proteins. However, due to few cancer-related SAVs were 
collected in the independent set 30, we provide the extra independent set 40 for comparison.

Prediction systems.  We used the machine learning method to build two cancer-related SAV prediction 
systems. The first system, CanSavPrew, contained 20 individual prediction models constructed from 20 groups 
according to the SAV wild-type amino acid. Subsequently, the second prediction system, CanSavPrewm, divided 
the 20 groups into several subgroups by SAV mutated type. Those subgroups containing fewer than 30 SAVs 
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were combined with other subgroups that had substitution scores exceeding zero based on BLOSUM62. Any 
subgroups that did not fit these criteria were omitted from the CanSavPrewm, construction and were instead 
included in the CanSavPrew prediction models. The dataset was split into subgroups to determine the character-
istics of specific wild-type amino acid alterations in each of the sequence-based, structure-based and microen-
vironment-based feature sets. As an illustration, a glycine would be built into prediction models containing for 
example acidic (e.g., aspartic or glutamic acid) and basic (e.g., arginine) mutated amino acids with distinct SAV 
features. Thus, our feature selection process effectively detects essential features. The second prediction system 
ultimately yielded 100 prediction models (see Supplementary Table S1).

Each prediction model was a two-level Support Vector Machine (SVM) classifier module. The SVM machine 
learning method is widely used for classifying protein structure or function in computational biology47–52. All 
SVM calculations were performed using LIBSVM (version 3.24)53,54, with the radial basis function (RBF) ker-
nel. The first-level SVM comprised 12 SVM classifiers based on four repeats for three feature sets, which are 
described in the next section. All SAV descriptors in each feature set were fed into the SVM, and a five-fold 
cross-validation was performed during model training. The parameters (penalty and gamma values of the RBF 
kernel) were both trained by exponentially increasing the grid search from 2–15 to 215 incorporating best values 
of informative measures.

The genetic algorithm (GA)55,56 was used to select features and optimize performance. The basic GA pro-
cedures are as follows: N solutions ( Si , i = 1, . . . ,N ) are randomly generated as the starting population. Each 
solution Si is represented as a set of vectors Si =

(

�i
)

 . The feature vector �i is an m-dimensional vector, indicating 
the binary representations of m features: If f ij = 1 , the jth feature is kept; if f ij = 0 , the feature jth is eliminated. 
In order to avoid any imbalance between positives and negatives in performance, four informative measures 
(Eqs. 1–4) for prediction performance were used as the fitness functions, consisting of accuracy (Acc), the Mat-
thews correlation coefficient (MCC), the F1 score (F1), and summation of sensitivity and weighted specificity 
(Hybrid). They were calculated as follows:

(1)Acc =
TP + TN

TP + TN + FP + FN
,

(2)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

(3)F1 =
2× Precision× Sensitivity

Precision+ Sensitivity
,

Table 1.   The numbers of cancer-related and neutral SAVs for each wild-type (WT) residue and the total 
(bolded) in our training and independent datasets.

WT

Training set Independent set 30 Independent set 40

Cancer Neutral Total Ratio (δ) Cancer Neutral Cancer Neutral

ALA 187 657 844 0.2846 12 191 26 268

CYS 45 97 142 0.4639 6 21 9 36

ASP 216 412 628 0.5243 14 121 26 167

GLU 254 408 662 0.6225 11 114 27 174

PHE 85 127 212 0.6693 9 46 14 58

GLY 236 437 673 0.5400 11 129 21 171

HIS 77 188 265 0.4096 6 63 9 85

ILE 116 437 553 0.2654 5 113 9 178

LYS 98 263 361 0.3726 6 98 12 131

LEU 178 321 499 0.5545 6 99 17 141

MET 63 202 265 0.3119 2 56 12 83

ASN 90 340 430 0.2647 5 107 8 153

PRO 200 363 563 0.5510 9 100 24 134

GLN 83 212 295 0.3915 7 55 14 78

ARG​ 328 1,248 1,576 0.2628 14 335 30 459

SER 217 432 649 0.5023 12 131 25 176

THR 150 505 655 0.2970 7 146 13 203

VAL 156 695 851 0.2245 7 236 16 315

TRP 24 42 66 0.5714 1 14 3 22

TYR​ 64 176 240 0.3636 4 65 7 95

TOTAL 2,867 7,562 10,429 0.3791 154 2,240 322 3,127
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where Precision = TP
TP+FP , Sensitivity = TP

TP+FN , Specificity = TN
TN+FP , TP represents true-positives, TN represents 

true-negatives, FP represents false-positives, FN represents false-negatives and δ is the ratio of the number of 
cancer-related SAVs to neutral SAVs, which are listed in Table 1.

In the initial population, N solutions are randomly divided into two halves. α and β have the best fitness in 
each half, and they are defined as α = (�α) = max

{

S1, . . . , SN/2

}

 and β =
(

�β
)

= max

{

SN
2
+1

, . . . , SN

}

 . In 
general, the three basic mechanisms driving the evolutionary processes in one generation consist of the selection, 
mutation and crossover processes.

Selection operator.  In the τ th generation, the selection operators are defined as:

Note that for the special case of τ = 0 , α0 and β0 are defined as 0. A new solution, Sτi  , is equal to ατ if i is odd, 
while Sτi  is equal to βτ if i is even.

Mutation operator.  We apply two types of mutation to the N solutions Si s. In the case of i = 1, . . . ,N/2 , every 
b bit of the vectors is subject to mutation: b =∼ b , if the mutation rate is less than a mutation threshold µ0 = 0.1 . 
In the case of i = N

2
+ 1, . . . ,N , we randomly choose a bit from the vectors. These bits are then subject to muta-

tion without any mutation thresholds.

Crossover operators.  The crossover operations are carried out between S2p−1 and S2p , where p = 1, . . . ,N/2 
and proceed as follows: one-point crossover is performed between �2p−1 and �2p if the crossover rate is less than 
the crossover threshold µ1 = 0.5.

The second level of SVM classifiers is used to process the prediction results generated from 12 classifiers in 
the first level, to produce the final probability distribution of the relationship with cancer-related SAVs or neutral 
SAVs. The relationship with the largest probability is used as the final prediction. The two-level SVM system is 
shown schematically in Fig. 1.

Classification of feature sets.  SAV descriptors for machine learning were classified into three classes: 
sequence-based, structure-based, and microenvironment-based feature sets. For the sequence-based feature set, 
44 descriptors were extracted from the protein sequence and approximately partitioned into three categories. 
The first category contained the most commonly used substitution index of wild-type SAV residues to muta-
tions. Three kinds of substitution indices were used; the BLOSUM6257,58, PAM25059, and the position-specific 
scoring matrix (PSSM), which was derived from PSI-BLAST60. The second category represented the conserva-
tion for each residue compared with homologs. The 15 evolutional entropy values derived from PSI-BLAST were 
used to denote a sliding window containing 7 amino acids on either side of the SAV. The model also calculated 
average entropy values for window lengths 5 and 15, centered on the SAV, representing local- and wide-ranging 
sequence conservation, respectively. In the third category, an amino acid composition (AAC)61, a 15-residue 
peptide (with 7 amino acids on either side of the SAV), represented the composition of the neighboring residues. 
According to the physicochemical properties of residues, we used the following classification schemes62 of amino 
acid compositions: H for polar (RKEDQN), neutral (GASTPHY), and hydrophobic (CVLIMFW); V for small 
(GASCTPD), medium (NVEQIL), and large (MHKFRYW); Z for low (GASDT), medium (CPNVEQIL), and 
high polarizability (KMHFRYW); P for low (LIFWCMVY), neutral (PATGS), and high polarity (HQRKNED); F 
for acidic (DE), basic (HKR), polar (CGNQSTY), and nonpolar (AFILMPVW); E for acidic (DE), basic (HKR), 
aromatic (FWY), amide (NQ), small hydroxyl (ST), sulfur-containing (CM), aliphatic 1 (AGP), and aliphatic 2 
(ILV). For clarity, these sequence-based descriptors are summarized in Table 2.

The structure-based feature sets contained 13 descriptors extracted from PDB and DSSP63,64. The first struc-
ture-based descriptor used the B-factor value of the SAV Cα atom; the B-factor value represents those atoms 
displaced from their mean positions in a crystal structure diminishes the scattered X-ray intensity. This dis-
placement may be the result of temperature-dependent atomic vibrations, or static disorder in a crystal lattice. 
Our model also uses critical DSSP information regarding solvent accessibility and includes eight DSSP-defined 
elements in the secondary structure (i.e., H, B, E, G, I, T, S, and others), energy from the acceptor and donor 
backbone hydrogen bonds, and determines whether or not disulfide bonding exists. These structure-based 
descriptors are summarized in Table 3.

In the third feature set, the weighted contact number (WCN) model65 was used to describe the microenviron-
ment properties of SAVs. This weighted contact number model has a local packing density profile, and research 
has reported a high correlation between the WCN profile and the sequence conservation profile66. The WCN 

value of atom i was calculated by WCNi =
N
∑

j �=i

1
/

r2ij
 , where rij was the distance between the atom i and atom j , 

while N was the number of calculated atoms. In this work, atom i was defined as the Cα atom of SAV, and the 
different microenvironment properties were represented by calculated different atom types, or the source of atom 

(4)Hybrid = Sensitivity + δ × Specificity ,

ατ = max

{

Sτ−1
1 , . . . , Sτ−1

N/2 ,α
τ−1

}

,

βτ = max

{

Sτ−1
N
2
+1

, . . . , Sτ−1
N ,βτ−1

}

.
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j . The atom type of j could be Cα atoms, nitrogen atoms or oxygen atoms of an amino acid. Moreover, the source 
of atom j could be located within the same protein chain as SAV or the whole protein, representative of SAV 
packing density. Alternatively, the source could be derived from another protein chain or molecules such as 
DNA, RNA, ligands, or metal ions representing protein–protein or protein-molecule interactions. The packing 
density of SAV may be divided into different classifications representing the microenvironment properties 
wherein the SAV is located, such as polar, hydrophobic, acidic or basic, according to the physicochemical proper-
ties of residues containing the Cα atom j. The same classification schemes were used as described in the sequence-
based feature set. The microenvironment-based descriptors are listed in Table 4.

Results
Performance evaluation.  Table 5 compares the five-fold cross-validation performances of two prediction 
systems based on three different feature sets with the prediction performance of the second-level SVM, all of 
which are optimized by using MCC as the fitness function in GA. In our experiment, the individual prediction 
model using the sequence-based feature scheme outperformed the other two, while the performance of the 
model using the microenvironment-based feature was superior to that of the structure-based feature scheme. 
The outstanding performance of the combined model obtained in the second-level SVM procedure demon-
strates that further information is very helpful for understanding and determining cancer-related factors.

Figure 1.   The workflow diagram represents the two-level SVM prediction system.
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Critically, CanSavPrewm performed better than CanSavPrew in all three individual feature sets and also in the 
combined set. Specific training and predicting models were built from the specific subgroups according to the 
wild-type and mutated types of SAV. Using a two-level SVM combining sequence-, structure- and microenvi-
ronment-based features, CanSavPrew distinguished between SAVs that were or were not related to cancer, with 
an accuracy of 79.83%, a Matthews correlation coefficient of 0.45, and F1 score of 0.54. CanSavPrewm is more 
effective, with an accuracy of 89.73%, a Matthews correlation coefficient of 0.74, and F1 score of 0.81. The fivefold 
cross-validation performance for each wild-type SAV of the CanSavPrewm system is illustrated in Table 6. Figure 2 
illustrates the ROC curve and compares the AUC values of each wild-type SAV in two systems.

Case study: PI3K.  The phosphatidylinositol-3-kinase (PI3K) signaling pathway contributes to several cellu-
lar processes, including metabolism, proliferation, differentiation and activation. Notably, the PI3K/AKT/mam-
malian target of rapamycin (mTOR) signaling pathway is one of the most important intracellular pathways and 
is also one of the most frequently dysregulated pathways in human cancers67–70. Several catalysis subunits exist 
for PI3K. Those that are encoded by PIK3cδ have been found to induce cell proliferation in colorectal cancer and 
other types of cancers71,72. The amino acid mutation of PI3Kcδ is closely related to oncogenic transformation, 
and numerous SAVs have been recorded as cancer-related in the COSMIC database, including P57S, Q75K, 
K111E, P134L, S361F, N380H, L634F, H677R, E713K, A723V, I776T, G890R, and L977I. Figure 3 illustrates the 
protein structures of PI3K and the p85 α complex (PDB ID: 5DXU)73; 14 amino acids, including one neutral and 
13 cancer-related SAVs, are drawn as spheres. All SAVs, except H677R, are correctly predicted by our prediction 
system. It should be noted that another SAV, R104C, has been marked as a neutral SAV and is also predicted 
correctly. The predicted results of PI3K are listed in Table 7.

Table 2.   List of descriptors in the sequence-based feature set.

# Feature name # Feature name

1 Substitution index: BLOSUM62 23 AAC: H-hydrophobic (CVLIMFW)

2 Substitution index: PAM250 24 AAC: V-small (GASCTPD)

3 Substitution index: PSSM 25 AAC: V-medium (NVEQIL)

4 Entropy: 7th residue before SAV 26 AAC: V-large (MHKFRYW)

5 Entropy: 6th residue before SAV 27 AAC: Z-low polarizability (GASDT)

6 Entropy: 5th residue before SAV 28 AAC: Z-neutral (PATGS)

7 Entropy: 4th residue before SAV 29 AAC: Z-high polarizability (KMHFRYW)

8 Entropy: 3rd residue before SAV 30 AAC: P-low polarity (LIFWCMVY)

9 Entropy: 2nd residue before SAV 31 AAC: P-neutral polarity (PATGS)

10 Entropy: 1st residue before SAV 32 AAC: P-high polarity (HQRKNED)

11 Entropy: SAV 33 AAC: F-acidic (DE)

12 Entropy: 1st residue after SAV 34 AAC: F-basic (HKR)

13 Entropy: 2nd residue after SAV 35 AAC: F-polar (CGNQSTY)

14 Entropy: 3rd residue after SAV 36 AAC: F-nonpolar (AFILMPVW)

15 Entropy: 4th residue after SAV 37 AAC: E-acidic (DE)

16 Entropy: 5th residue after SAV 38 AAC: E-basic (HKR)

17 Entropy: 6th residue after SAV 39 AAC: E-aromatic (FWY)

18 Entropy: 7th residue after SAV 40 AAC: E-amide (NQ)

19 Entropy: Average of 15 residues 41 AAC: E-small hydroxyl (ST)

20 Entropy: Average of 5 residues 42 AAC: E-sulfur-containing (CM)

21 AAC: H-polar (RKEDQN) 43 AAC: E-aliphatic 1 (AGP)

22 AAC: H-neutral (GASTPHY) 44 AAC: E-aliphatic 2 (ILV)

Table 3.   List of descriptors in the structure-based feature set.

# Feature name # Feature name

1 B-factor 8 Secondary structure: T

2 Related solvent accessibility 9 Secondary structure: S

3 Secondary structure: H 10 Secondary structure: Others

4 Secondary structure: B 11 Energy of backbone H-bond: acceptor

5 Secondary structure: E 12 Energy of Backbone H-bond: donor

6 Secondary structure: G 13 Disulfide bond

7 Secondary structure: I
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Case study: D227Y of CD23.  CD23 is the low-affinity receptor for IgE and is expressed on the surface of 
several hematopoietic cells74, such as lymphocytes75, monocytes76, follicular dendritic cells77,78, and bone marrow 
stromal cells79. Several stimuli regulate the expression of CD23, a critical factor for B-cell activation, growth, and 
IgE production (OMIM#151445). The D227Y mutation arising from an alteration of the FCER2 gene has been 
reported in head and neck squamous cell carcinoma (HNSCC)80 and the colorectal neuroendocrine carcinoma 
mutational analyses project81. D227 is located in one of the conserved double-loops; the interface between CD23 
and the carbohydrate protein, Fcε 3–4. Importantly, calcium (Ca2+) is a regulated ligand for CD23 binding affin-
ity and Ca2+ binding enables loop1 and loop4 to change the conformation and increase the binding affinity. 
D227 (loop1) and D258 (loop4) form additional salt bridges between CD23 and Fcε 3–482,83. Other bounds are 
involved in CD23 and Fcε 3–4 binding, while D227Y affects the binding affinity and IgE antitumor functioning 
(Fig. 4).

The boxplots of microenvironment descriptors in Fig. 4 depict the subgroup with the ASP to the TYR muta-
tion. In several descriptors in Fig. 5, the distribution of cancer-related SAVs differs significantly from that of the 
neutral SAVs, with a 95% confidence interval by two sample z-test (z score > 1.96, p < 0.05). The z score is defined 
by z = (x1−x2)−(µ1−µ2)

√

σ2
1
n1

− σ2
2
n2

 , where (x1 − x2) and (µ1 − µ2) are the observed and expected differences between cancer-

related and neutral SAVs, respectively. σ1 and n1 are the standard error and amount for the cancer-related SAVs 
group, and σ2 and n2 are for the neutral SAVs group. The cancer-related SAVs are located in the relatively low 
packing density region, encompassing Cα atoms, nitrogen, or oxygen located in a single SAV chain, or in whole 
protein. D227Y in CD23 has a low WCN value in a single SAV chain but a relatively high WCN value in whole 
protein or other chains (Fig. 5a–c), because D227 is located in the interface of CD23 and  Fcε 3–4, and is involved 
in their binding. Subsequently, the cancer-related SAVs have lower distributions of H-neutral (AGPHY), V-small 
(GASCTPD), V-large (MHKFRYW), Z-low polarizability (GASDT), Z-high polarizability (KMHFRYW), P-neu-
tral polarity (PATGS), F-basic (HKR), F-nonpolar (AFILMPVW), E-basic (HKR), E-aromatic (FWY) and 
E-aliphatic1 (AGP) with the surrounding amino acids. This unique surrounding pattern is also found in the case 
of D227Y in CD23 (Fig. 5d–i).

Table 4.   List of descriptors in the microenvironment-based feature set.

# Feature name # Feature name

1 WCN: Cα atoms in SAV chain 17 WCN: Z-high polarizability (KMHFRYW)

2 WCN: Nitrogen atoms in SAV chain 18 WCN: P-low polarity (LIFWCMVY)

3 WCN: Oxygen atoms in SAV chain 19 WCN: P-neutral polarity (PATGS)

4 WCN: Cα atoms in whole protein 20 WCN: P-high polarity (HQRKNED)

5 WCN: Nitrogen in whole protein 21 WCN: F-acidic (DE)

6 WCN: Oxygens in whole protein 22 WCN: F-basic (HKR)

7 WCN: Cα atoms in other chains 23 WCN: F-polar (CGNQSTY)

8 WCN: Atoms in other molecules 24 WCN: F-nonpolar (AFILMPVW)

9 WCN: H-polar (RKEDQN) 25 WCN: E-acidic (DE)

10 WCN: H-neutral (GASTPHY) 26 WCN: E-basic (HKR)

11 WCN: H-hydrophobic (CVLIMFW) 27 WCN: E-aromatic (FWY)

12 WCN: V-small (GASCTPD) 28 WCN: E-amide (NQ)

13 WCN: V-medium (NVEQIL) 29 WCN: E-small hydroxyl (ST)

14 WCN: V-large (MHKFRYW) 30 WCN: E-sulfur-containing (CM)

15 WCN: Z-low polarizability (GASDT) 31 WCN: E-aliphatic 1 (AGP)

16 WCN: Z-neutral (PATGS) 32 WCN: E-aliphatic 2 (ILV)

Table 5.   Comparisons of the five-fold cross-validation performance values in the training set of two 
prediction systems based on three feature sets, combined by second-layer SVM. All predictions were optimized 
using MCC as the fitness function.

System Feature set Accuracy Sensitivity Specificity MCC Precision F1 score

CanSavPrew

Sequence 0.7450 0.4350 0.8620 0.3202 0.5434 0.4832

Structure 0.6995 0.3946 0.8146 0.2176 0.4454 0.4185

Microenvironment 0.7184 0.3988 0.8391 0.2536 0.4832 0.4370

Combined 0.7983 0.4356 0.9357 0.4452 0.7199 0.5428

CanSavPrewm

Sequence 0.8471 0.6292 0.9293 0.5978 0.7706 0.6928

Structure 0.8022 0.4737 0.9262 0.4609 0.7078 0.5676

Microenvironment 0.8311 0.5774 0.9268 0.5509 0.7487 0.6520

Combined 0.8973 0.7837 0.9404 0.7382 0.8328 0.8075
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Table 6.   The five-fold cross-validation performance values in the training set of the CanSavPrewm system for 
each wild-type (WT) residue and the total (bolded).

WT TP TN FP FN Accuracy Sensitivity Specificity MCC Precision F1 score

ALA 119 616 41 68 0.8709 0.6364 0.9376 0.6081 0.7438 0.6859

CYS 43 93 4 2 0.9577 0.9556 0.9588 0.9040 0.9149 0.9348

ASP 160 375 37 56 0.8519 0.7407 0.9102 0.6664 0.8122 0.7748

GLU 212 341 67 42 0.8353 0.8346 0.8358 0.6602 0.7599 0.7955

PHE 67 118 9 18 0.8726 0.7882 0.9291 0.7331 0.8816 0.8323

GLY 192 406 31 44 0.8886 0.8136 0.9291 0.7528 0.8610 0.8366

HIS 69 182 6 8 0.9472 0.8961 0.9681 0.8710 0.9200 0.9079

ILE 97 428 9 19 0.9494 0.8362 0.9794 0.8436 0.9151 0.8739

LYS 80 258 5 18 0.9363 0.8163 0.9810 0.8357 0.9412 0.8743

LEU 154 292 29 24 0.8938 0.8652 0.9097 0.7702 0.8415 0.8532

MET 55 199 3 8 0.9585 0.8730 0.9851 0.8835 0.9483 0.9091

ASN 78 333 7 12 0.9558 0.8667 0.9794 0.8643 0.9176 0.8914

PRO 150 324 39 50 0.8419 0.7500 0.8926 0.6512 0.7937 0.7712

GLN 68 200 12 15 0.9085 0.8193 0.9434 0.7714 0.8500 0.8344

ARG​ 216 1,189 59 112 0.8915 0.6585 0.9527 0.6538 0.7855 0.7164

SER 202 376 56 15 0.8906 0.9309 0.8704 0.7724 0.7829 0.8505

THR 118 490 15 32 0.9282 0.7867 0.9703 0.7907 0.8872 0.8339

VAL 97 681 14 59 0.9142 0.6218 0.9799 0.6912 0.8739 0.7266

TRP 23 41 1 1 0.9697 0.9583 0.9762 0.9345 0.9583 0.9583

TYR​ 47 169 7 17 0.9000 0.7344 0.9602 0.7356 0.8704 0.7966

TOTAL 2,247 7,111 451 620 0.8973 0.7837 0.9404 0.7382 0.8328 0.8075

Figure 2.   Training set ROC curves in two prediction systems. (a) Total groups in the two systems; (b) A, C, D, 
E groups; (c) F, G, H, I groups; (d) K, L, M, N groups; (e) P, Q, R, S groups; (f) T, V, W, Y groups.
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Case study: E194G of CASQ.  The calsequestrin (CASQ) is a Ca2+ buffering protein, capable of storing 
large amounts of Ca2+ in cardiac and skeletal muscles. Ca2+ is an essential molecule that can regulate diverse 
cellular processes, such as gene transcription, cell proliferation and migration84–86. Although most research into 
the CASQ has focused on cardiac muscle, CASQ in the Ca2+ signaling pathway is also vital in cancer research87, 
as this pathway is highly correlated with tumor growth and metastasis88. Importantly, T189, E194 and D196 can 
form a pack in the CASQ that harbors Ca2+89; this Ca2+ binding can be destroyed by the substitution E194G, 
causing the protein to lose its functionality (Fig. 6).

In the subgroup in which GLU mutates to GLY, none of the microenvironment descriptors of cancer-related 
or neutral SAVs reveal significant differences at the 95% confidence interval, although several relevant descrip-
tors are found in the case of E194G in the CASQ. That is, E194 exhibits higher WCN values of oxygen in a 
single SAV chain, as well as higher WCN values of atoms in other molecules, due to the fact that the CASQ is 

Figure 3.   Protein structures of the PI3K/p85 α complex. The PI3K (wheat color) and p85 α (gray color) 
complex (PDB ID: 5DXU) in the cartoon is drawn by PyMOL100. ARG104 (illustrated by the green spheres) is a 
neutral SAV that mutates to CYS. The other residues shown in the pink spheres are all cancer-related SAVs.

Table 7.   Predicted results for the 14 SAVs of the PI3K.

SAV Type Score Predicted results

P57S Cancer-related 0.8590 TP

Q75K Cancer-related 0.9973 TP

R104C Neutral 0.1016 TN

K111E Cancer-related 0.6590 TP

P134L Cancer-related 0.7545 TP

S361F Cancer-related 0.9408 TP

N380H Cancer-related 0.9521 TP

L634F Cancer-related 0.8879 TP

H677R Cancer-related 0.0507 FN

E713K Cancer-related 0.8438 TP

A723V Cancer-related 0.8595 TP

I776T Cancer-related 0.9656 TP

G890R Cancer-related 0.9350 TP

L977I Cancer-related 0.8000 TP
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GLU- and ASP-rich, as well as a Ca2+ buffering protein (Fig. 7a,b). Furthermore, higher WCN values were found 
in the microenvironment around E194 than in the third quartile of cancer-related SAVs in H-polar (RKEDQN), 
V-medium (NVEQIL), Z-low polarizability (GASDT), P-high polarity (HQRKNED), F-acidic (DE), and E-basic 
(HKR) descriptors and were lower than WCN values in the first quartile in E-sulfur-containing (CM) amino 
acid. Figure 7 depicts the microenvironment descriptor boxplots in the subgroup in which GLU mutates to GLY.

Discussion
Many cancer-related tools are based on genetic or protein sequence information, because of limited protein 
structure information. Next-generation sequencing technology has led to the large-scale application of genomic 
information in cancer research and human health90–93. The crucial limitation of this information is that while the 
technology may determine tumor risk or recurrence, cause and effect remain undetermined. The launch of the 
Human Proteome Project (HPP) has enriched our understanding of the human proteome blueprint responsible 
for complex diseases, including cancer. Approximately 20,000 human cancer-related proteome studies have 
been recorded in PubMed since 201194. However, it remains very difficult to construct a 3-dimensional protein 
structure from these proteins, which explains why the widely used cancer prediction tools incorporate sequences 
of genetic information or sequence information of proteins. Importantly, the spatial conformation of protein 
forms the functional unit.

In this study, we describe how we developed a protein structure-based system, CanSavPre, to predict cancer-
related single amino acid variations. Protein sequence and structure descriptors are used in the model train-
ing process. Our prediction system displays excellent performance, and its structural and microenvironmental 
properties enable us to observe mutating amino acids that generate malfunctioning proteins. Critical descriptors 
emerge through use of the feature selection procedure. Figure 8 shows the heatmap of selected features in each 
training group of two prediction systems. For each descriptor, the color represents how many times were selected 
during four training repeats with different fitness functions. Mutated residues and their functional impact can 
be characterized by analyzing the selected feature sets. Although further study is needed to reveal the cancer 
mechanism in most selected features, our results indicate that it is possible to reliably predict cancer-related SAVs.

We also found that it is essential to divide the training data into proper subsets, according to the wild-type 
and mutated SAVs. Each amino acid with its unique characteristics plays a different role in protein construction. 
The heatmap in Fig. 8 also indicates that the profiles of selected features in CanSavPrewm are more legible than 
those in CanSavPrew. The resulting discrepancies influence changes in protein conformation activity, to differ-
ent degrees. The data from our two-level prediction system optimize the outcomes from a system that uses only 

Figure 4.   The superimposed structure containing CD23 apo and holo forms is obtained from the CD23 
complex binding with Ca2+ and Fcε 3–4. The green cartoon represents the structure of the Ca2+-free wild-type 
CD23 lectin domain (PDB ID: 4G96)83. The structure of the CD23 holo form bound to Ca2+ complexed with 
Fcε 3–4 (PDB ID: 4GKO)83 is drawn in gray- and wheat-colored cartoons. Ca2+ is shown in a yellow bubble; 
the magnified view shows the interface of CD23 and  Fcε 3–4. The D227 of the CD23 apo form is shown in the 
green stick. The salt bridges forming residues in the CD23 holo form and Fcε 3–4 complex are highlighted with 
sticks.
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one level. However, the complexities of protein function in the extensive cellular networks necessitate critical 
information that identifies cancer-related SAVs.

The SAVs in the independent sets 30 and 40 were predicted using the CanSavPrewm system and the prediction 
performance is illustrated in Table 8. Although a difference in prediction performance is evident between the 
independent sets and the training set, this is largely because the performance is optimized by a genetic algorithm 
in the training set. Our purpose was to extract significant features using an optimization procedure. Thus, per-
formance in the training set is the upper bound of prediction. Another reason for the difference in prediction 
performance between sets might be too few cancer-related SAVs in the training and independent sets. In the 
training set, the average amount of cancer-related SAVs in the 100 subgroups of the CanSavPrewm system is less 

Figure 5.   Boxplots of the microenvironment descriptors in the ASP that are altered to the TYR subgroup. 
All microenvironment descriptors are divided into nine groups: (a) atoms in the SAV chain; (b) atoms in 
whole protein; (c) atoms in other chains or molecules; (d) H-group; (e) V-group; (f) Z-group; (g) P-group; (h) 
F-group; and (i) E-group. The white and grey boxes represent the distribution of cancer-related and neutral 
SAVs. Red-framed boxes indicate that two sample z-testing revealed a significant difference between cancer-
related and neutral SAVs, with a 95% confidence interval (z score > 1.96, p < 0.05). Labels of descriptors selected 
by the genetic algorithm are bolded in the x-axis. Star symbols denote the D227Y cases in CD23.
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than 30; the average amount is much smaller in the independent sets. The performance of independent sets 
might therefore be distorted, necessitating a greater number of cancer-related SAVs. Nevertheless, compared 
with DEOGEN2, which is mainly developed for deleterious amino acid variant prediction and publicly available, 
our prediction system performs better than DEOGEN2 in both two independent sets (Table 8).

Proteins are dynamic molecules with distinct, flexible structures that facilitate allosteric interactions between 
small molecules or proteins. For our prediction system, we focused on these interactions, i.e., physical contacts 
between proteins and molecules. A limitation of the crystal-protein structure is that it is capable of revealing 
only one condition of the protein–protein interaction. The critical purpose of a protein complex is to reflect 
interactions between single chain proteins. These interactions typically represent functional properties and are 
expected to be maintained through the genetic algorithm for feature selection. Importantly, technical limitations 
of the crystal structure prevent the formation of a protein complex in some conditions. Thus, some protein struc-
tures only include a part of the complex. These single chain proteins might restrict the range of our prediction 
system, because their conformations may differ from those of the protein complex. Our research seeks to define 
the phenomenon underlying cancer-related variations and how differences in conformations influence protein 
interactions, despite the limited available data on the protein complex.

Our case studies have used several different proteins to illustrate our protein structure-based system. In the 
first example, the PI3K protein family is well recognized for its association with cancer. The strict rule for our data 
extraction means that CD-HIT, the cluster database, filters out the homologous proteins and avoids weighting 
the mutation residues for the training model. Thus, the isoform PI3Kcδ is selected as the representative isoform, 
even though PI3Kca is one of the most readily recognized isoforms in cancer research95,96. The most frequent and 
pathogenic mutation residues recorded in the TCGA, E542K and E545K, are predicted correctly in our system 
(see Supplementary Fig. S1). The evidence suggests that these two hotspot mutations induce glycolysis in cervical 
cancer cells via the β-catenin/SIRT3 signaling pathway97. Both glutamic acid mutations (E542K and E545K) are 
located in the helical domain. Biochemical studies have demonstrated that these mutated residues interact with 
p85a, so the alteration may affect the inhibitory activity of p85a98.

Our prediction system also provides observations of the microenvironment for the SAV residues. The other 
case studies discussed in our results illustrate how the feature processes cope with the descriptors such as, for 
example, how the feature selection process manages ASP alteration patterns. This process also yields critical detail 
regarding ASP alterations (Fig. 4). ASP is a polar amino acid with a negative charge and the carboxyl group in 
the side chain of aspartic acid allows it to accept hydrogen atoms. Our model calculates the area surrounding 
the ASP. When the area surrounding the cancer-related ASP is unoccupied space, our model observes fewer 
basic amino acids compared with neutral ASP environments. This implies that, in this situation, the ASP might 
assume an interaction role with protein, whereby an ASP mutation can lead to an abnormal protein and different 
binding activity. This might explain how cellular changes result in tumor activity, as is illustrated in our second 
case study. In contrast, GLU is an amino acid with high polar residues and a negative charge that is also involved 
in the hydrogen atom acceptor role, with a distinctly different pattern to that of ASP (Fig. 6). Cancer-related 
GLUs are located in a denser region within a hydrophobic environment. Although ASP and GLU share similar 
characteristics, their different microenvironments justify construction of the prediction modules.

Figure 6.   Protein structure of the human skeletal calsequestrin. The structure of CASQ (PDB ID: 3UOM)89 in 
the cyan-colored cartoon is drawn by PyMOL. All of the yellow bubbles are Ca2+ in CASQ. Three Ca2+ binding 
residues are highlighted with sticks in deep pink. E194G is a cancer-related SAV.
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We suggest that protein structure and microenvironment features are the cornerstones of cancer research. 
Slight alterations in protein conformation properties may change the functional activity of molecular interactions. 
Clarifying protein structure is critical to understanding how a protein mutation can lead to cancer. However, 
the critical necessity for the protein structures is also the limitation of our prediction systems. Many emerging 
computational methods are attempting to clarify protein structure. For those proteins that only have sequence 
information, scientists can use a homology modeling method or an artificial intelligence system to extract the 
details needed for structural information. Notably, AlphaFold2 is considered to be an excellent solution to the 
problematic issue of protein folding99. As more protein structures become available over time, our model will 
benefit from the enriched databases, regardless of whether the data are sourced from experimental or predicted 
methods.

Figure 7.   Boxplots of the microenvironment descriptors in the GLU that are altered to the GLY subgroup. All 
microenvironment descriptors are divided into nine groups: (a) atoms in SAV chain, (b) atoms in whole protein, 
(c) atoms in other chains or molecules, (d) H-group, (e) V-group, (f) Z-group, (g) P-group, (h) F-groups, and (i) 
E-groups. The white and grey boxes represented the distribution of cancer-related and neutral SAVs. The label 
of selected descriptors by the genetic algorithm are bold in the x-axis. The symbol stars denote the values of each 
feature in the case of E194G located at CASQ.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13599  | https://doi.org/10.1038/s41598-021-92793-w

www.nature.com/scientificreports/

In conclusion, we have developed a structure-based cancer-related single amino acid variation prediction 
system. This system not only displays excellent performance, but it also observes how the amino acid substitu-
tion influences protein activities. The descriptors provided by our system may offer targets for further research. 
Moreover, performance is markedly enhanced by the fact that the model includes conformation properties and 
details of the microenvironments surrounding SAVs. Furthermore, our algorithm detects the best combination of 
feature vectors for examining specific amino acid variations. Importantly, our model is a user-friendly web-based 
tool that scientists will find extremely useful when performing cancer research and precision medicine, particu-
larly when investigating rare tumor mutations. The many genetic mutations in human cancers offer us numerous 
targets and possibilities that may be incorporated into our model, emphasizing its importance in cancer research.
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