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Abstract

Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be
observed in loop regions, rearrangements between secondary structure elements, and con-
formational changes between entire domains. However, most protein structure alignment
methods treat protein structures as rigid bodies. Thus, these methods fail to identify the
equivalences of residue pairs in regions with flexibility. In this study, we considered that the
evolutionary relationship between proteins corresponds directly to the residue—residue
physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we
developed a new protein structure alignment method, contact area-based alignment (CAB-
align), which uses the residue-residue contact area to identify regions of similarity. The
main purpose of CAB-align is to identify homologous relationships at the residue level
between related protein structures. The CAB-align procedure comprises two main steps:
First, a rigid-body alignment method based on local and global 3D structure superposition is
employed to generate a sufficient number of initial alignments. Then, iterative dynamic pro-
gramming is executed to find the optimal alignment. We evaluated the performance and
advantages of CAB-align based on four main points: (1) agreement with the gold standard
alignment, (2) alignment quality based on an evolutionary relationship without 3D coordi-
nate superposition, (3) consistency of the multiple alignments, and (4) classification agree-
ment with the gold standard classification. Comparisons of CAB-align with other state-of-
the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our
benchmark dataset showed that CAB-align performed robustly in obtaining high-quality
alignments and generating consistent multiple alignments with high coverage and accuracy
rates, and it performed extremely well when discriminating between homologous and non-
homologous pairs of proteins in both single and multi-domain comparisons. The CAB-align
software is freely available to academic users as stand-alone software at http://www.pharm.
kitasato-u.ac.jp/bmd/bmd/Publications.html.
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Introduction

During evolution, protein structures are more highly conserved than nucleotide sequences
[1,2]. Therefore, comparing protein structures is a fundamental approach for homology detec-
tion, classification, and functional annotation for novel protein structures [3-5]. In particular,
structural alignment, which assigns amino acids that are equivalent among proteins, is very
useful for detecting functional sites and conserved positions. Many protein structure alignment
methods have been developed in the past two decades. Most of these alignment methods aim
to find the best alignment yielding the maximum number of equivalent amino acids between
proteins with minimal structural deviation following three-dimensional (3D) coordinate
superposition. These methods treat protein structures as rigid bodies and are categorized as
“rigid-body alignment” approaches; these include DALI, FAST, CE, MAMMOTH, TM-align,
and Fr-TM-align [6-11]. The superposition of protein structures in Cartesian space, such as
RMS fitting, is sufficiently fast and accurate [12]. Thus, rigid-body alignment is widely used to
find remote homologs when only proteins with low shared sequence identities are available.

However, proteins are known to be flexible, and this flexibility has an essential role in their
functions, such as catalysis, protein-ligand interactions, and protein-protein interactions [13-
14]. Rigid-body alignment methods cannot find correct alignments for proteins that undergo
structural changes (almost all proteins exhibit small/large movements), and thus they fail to
identify structural similarities in flexible regions. To overcome these issues, a flexible protein
structure alignment approach has been developed called FATCAT [15], which finds the opti-
mal structure alignment with the least number of rigid body movements using a dynamic pro-
gramming (DP) algorithm to connect aligned fragment pairs (AFPs). In the DP algorithm,
FATCAT uses the score calculated from the RMSD of AFPs and the number of twists. There-
fore, FATCAT depends on the 3D coordinate superposition of AFPs. In addition, a flexible and
translation/rotation-invariant alignment method has been proposed that does not use 3D coor-
dinate superposition, which is called maximum contact map overlap (CMO) [16]. In CMO, the
protein structure is represented by residue-residue contact maps, which are defined by the
Euclidean distance between the representative coordinates in the corresponding amino acids.
The CMO algorithm has been studied widely. In particular, Andonov et al. [17] proposed an
exact CMO algorithm using integer programming and Lagrangian relaxation. Wohlers et al.
[18] proposed an approximated CMO score and reported its protein structure classification
performance. Moreover, GR-Align [19] is a fast CMO heuristic method based on generalized
graphlets and the graphlet degree-to-order graph. GR-Align is at least 79 times faster than TM-
align according to the reported results.

Recently, it was shown that residue-residue contacts have strong relationships with corre-
lated mutations in multiple sequence alignments [20]. It was also observed that residue-residue
contacts guide protein folding, and they are highly informative for fold recognition [21-24].
Therefore, we considered that the evolutionary relationships between proteins should reflect
residue-residue physical contacts directly, rather than 3D coordinates. Thus, the assembled
residue-residue physical contacts should reflect a protein fold represented in terms of 3D
coordinates.

Based on the same concept, Olechnovic et al. introduced a contact area difference (CAD)-
based score for evaluating the structural similarity between a protein model and the native
structure [25], where they proposed the use of the residue-residue contact area as a residue-
residue physical contact. Thus, the CAD-score is an extended algorithm based on CMO meth-
ods. They showed that the CAD-score is a more robust evaluation score than the global dis-
tance test total score [26], which is based on 3D coordinate superposition. The CAD-score was
also shown to be robust when assessing the accuracy of protein models for multidomain and
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protein—protein complexes, as well as single-domain proteins. The CAD-score is essentially
unaffected by the domain arrangement, and it can be applied to the flexible alignment method.

In this study, we developed a new protein structure alignment method called contact area-
based alignment (CAB-align), which uses the similarity of the residue-residue contact area.
The main aim of CAB-align is to identify homologous relationships at the residue level between
related protein structures. CAB-align comprises the following three main steps. First, CAB-
align employs a rigid-body alignment method based on local structural similarity. Second,
structural alignment is performed based on global 3D structure superposition to generate a suf-
ficient number of initial alignments. Finally, a heuristic method (iterative DP) is executed
based on the modified CAD-score to obtain the optimal alignment.

In various benchmarks for protein structure alignment, the alignment quality (AQ) is
defined based on comparisons with manually curated gold standard alignments or using geo-
metrical similarity measures. In general, gold standard alignments are used, such as in SISY-
PHUS [27], the Conserved Domain Database [28], and the Homologous Structure Alignment
Database [29]. In these databases, experts consider both the geometric superposition and
sequence-based alignment, as well as manually resolving any conflicts between them. There are
also many types of geometric similarity measures, such as the similarity index, structural align-
ment score, match index [30], and template modeling score [31]. These measures achieve a bal-
ance between the alignment coverage and geometrical deviation after optimal superposition.
Therefore, the superposition of 3D coordinates remains an essential component of structure
alignment methods and AQ evaluations.

However, as mentioned above, our CAB-align method allows flexible protein structure
alignments where proteins are flexible. Therefore, we could not use geometric similarities that
employ superposition based on Cartesian coordinates to assess the performance of this align-
ment method, we employed four main evaluation approaches: (1) agreement with the gold
standard alignment, (2) AQ based on an evolutionary relationship without the superposition of
3D coordinates, (3) consistency among multiple alignments, and (4) agreement with the gold
standard classification.

We compared the performance of CAB-align with the HHalign sequence alignment method
and three representative structure alignment methods that each use different algorithms: rigid-
body alignment (TM-align), flexible alignment (FATCAT), and the residue-residue distance
matrix-based method (DaliLite_v3.3 [32], a standalone version of the DALI server).

Results

We compared CAB-align with three state-of-the-art structure alignment methods, i.e., TM-
align, FATCAT, DaliLite_v3.3 (denoted as DaliLite in this study), and the HHalign sequence
alignment method (except for the quality of alignment), using three evaluation approaches:
quality of alignment, alignment consistency, and agreement with the SCOPe classification [33].

Training and Benchmark Datasets

We used four datasets for training and evaluation: SISYPHUS_ID10, SCOPe_FAMILY, SCO-
Pe_NRI10, and PDB30. SISYPHUS_ID10 is a subset of the SISYPHUS dataset. SISYPHUS con-
tains manually created structural alignments for protein pairs with nontrivial structural
relationships. SISYPHUS_ID10 contains 1,627 alignments with sequence identities of <10%.
SCOPe_FAMILY (2,623 domains in 903 superfamilies and 591 folds) is a subset that represents
each FAMILY in the SCOPe database (Structural Classification of Proteins-Extended; Release
2.03, Oct. 2013). SCOPe_NR10 (3,542 domains in 2,160 families, 897 superfamilies, and 587
folds) is a subset with <10% shared identity from SCOPe. The lists for SCOPe_NR10 and
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SCOPe_FAMILY were taken from the SCOPe website (http://scop.berkeley.edu/). We then
excluded low-quality structures (SPACI score [34] <0.4), NMR structures, and irregular struc-
tures, which had an atom assigned to multiple coordinates from SCOPe_FAMILY and SCO-
Pe_NR10. In SCOPe, each protein structure is split into a domain unit and then classified
according to structural and evolutionary relationships. Therefore, the impact of significant pro-
tein flexibility, such as domain arrangements, is limited in these two datasets. PDB30 is a subset
of the protein data bank (PDB [35], 14 Mar 2014) with <30% shared identity. This dataset
includes single-domain proteins, multidomain proteins, and all types of protein flexibility.

Evaluation Criteria

AQ. First, we evaluated the alignments using the gold standard alignments in SISYPHU-
S_ID10 as the reference. We defined two criteria of agreement and reliability as follows:

N N
Agreement = —=, Reliability = —, (1)
Lref Lali

where N_ is the number of correctly aligned positions, L, is the length of the reference align-
ment, and L,j; is the length of the alignment under evaluation. Positions with gaps were
excluded.

Second, we defined correctly aligned positions based on comparisons with the reference
alignment, which reflected the evolutionary relationship. To generate the reference alignments,
we used the HMM-HMM alignment program (HHalign in HH-suite 2.0 [36]), which com-
pares two hidden Markov models (HMMs). The HMM profiles were generated using hhblits
(included in HHsuit 2.0) against the Uniprot20 database (included in HHsuit 2.0). In this
study, the alignments obtained from HHalign were not considered to be perfect, but they pro-
vided reliable confidence estimates for each aligned position. According to the description of
HHblits, the confidence values obtained for each position by HHalign are highly correlated
with the accuracy of the aligned positions. The confidence values are calculated by comparing
the sequence profiles of the aligned positions. The E-value estimated by HHalign shares high
similarity with the observed E-value. To assess the quality of the alignment, we defined AQ as
the fraction of correctly aligned positions with estimated confidence values not less than a
given threshold, as follows:

CRCUH X
N—fZ ) (2)

conf>x

AQ(x) =

where CR_,,p> and N,z are the number of correctly aligned positions and the number of
positions with confidence values not less than the given value of x in the reference alignment,
respectively.

Consistency of multiple alignments. According to Sadowski and Taylor [37], we assessed
the consistency among triplets of alignments, such as three alignments between A-B, B-C, and
C-A for proteins A, B, and C. In a consistently aligned position, the following condition:

E(A,, Bj) N E(Bj, C,)NE(C,,A,), (3)
is true, where E(A;, B;) denotes that position i in protein A is aligned with position j in protein
B. To evaluate the consistency, we used the coverage (Cov) and relative rate (Rate) of the
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consistent position, which are defined as follows:

N,

C — consist , 4

T min{N,,N,, N} )
N_ .

Rate — consist (5)

ALA,B.C ,

where N,opsis¢ is the number of consistent positions among the triplet alignment, N, is the
number of residues in protein A, and AL, p ¢ denotes the number of positions that are com-
monly aligned regions among the three alignments. Positions with gaps in any of the three
alignments were excluded.

Agreement with SCOPe classification. We assessed the ability to discriminate between
homologous and nonhomologous pairs of proteins based on the agreement with SCOPe classi-
fications. We used the receiver-operating characteristic (ROC) curve and precision-recall curve
(PRC) analysis. The ROC curve plots the recall against the false-positive rate (FPrate). The
PRC plots the precision (or reliability) against the recall (or coverage). The precision, recall,
and FPrate for a given threshold s are defined as follows:

TP FP
Recall = ———, FPrate =

TP
Precision = ——— | , _—
TP, + FP, TP, + N, FP.+ TN,

(6)
where TP; is the number of true positive pairs that are correctly classified as belonging to the
same class (e.g., the same family, superfamily, or fold in SCOPe) based on the threshold s, FP,
is the number of false-positive pairs that are incorrectly classified as belonging to the same class
based on the threshold s, TN is the number of true negative pairs that are correctly assigned as
belonging to a different class based on the threshold s, and FNj is the number of false-negative
pairs that are incorrectly classified as belonging to a different class based on the threshold s.
We used the area under the ROC curve (AUC) and the area under the PRC (AUPRC) as mea-
sures of agreement with the SCOPe classification. The AUC corresponds to the probability that
the proposed structural similarity score will rank a randomly selected domain pair that belongs
to the same class as higher than a randomly selected pair that belongs to a different class. The
AUPRC corresponds to the average precision of the proposed structural similarity score.

Comparison of AQ

SISYPHUS_ID10 benchmark dataset. Table 1 shows the average agreement and reliabil-
ity results for SISYPHUS_ID10 (1627 pairs) using five alignment methods. We also calculated
the similarity score S (Eq 11) and normalized similarity score (NormS) (Eq 16) with the CAB-
align scoring function. As shown in Table 1, DaliLite and CAB-align outperformed the other
methods in terms of agreement and N.. In addition, these two methods generated alignments
with the best and second best S and NormsS on average. These results suggest that the high-
quality alignments tended to have a high similarity score S.

Fig 1 compares the performance of CAB-align and DaliLite based on SISYPHUS_ID10.
DaliLite performed slightly better than CAB-align in terms of the average agreement and reli-
ability, but when we considered the total number of alignments with better performance, CAB-
align (agreement: 557, reliability: 437) performed better than DaliLite (agreement: 434, reliabil-
ity: 352), where both alignment methods generated high-quality alignments (agreement > 0.5,
reliability > 0.5, Fig 1A and 1B). Interestingly, CAB-align and DaliLite obtained relatively simi-
lar NormS averages (Table 1), but Fig 1C shows that CAB-align performed better than DaliLite
in terms of NormS for almost all pairs.
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Table 1. AQ based on SISYPHUS_ID10.

N2 Agreement® Reliability® s NormS®
HHalign 54.9 0.38 0.54 2,706.8 6.4
CAB-align 81.7 0.57 0.48 4,956.8 1.4
TM-align 74.3 0.52 0.49 4,284.0 10.0
FATCAT 741 0.52 0.47 4,240.9 9.9
DaliLite 83.3 0.58 0.50 4,652.0 10.8

& Number of correctly aligned positions.

b Agreement with the reference alignment (Eq 1).

° Reliability of the evaluated alignment (Eq 1).

9 Similarity score obtained from the scoring function in CAB-align (Eq 11).

¢ Normalized score obtained from the scoring function in CAB-align (Eq 16).
All data are average values per alignment.

CAB-align, contact area-based alignment; NormS, normalized similarity score.

doi:10.1371/journal.pone.0141440.1001

When we focused on reliability, although the N, and agreement scores for HHalign were
much lower than those for the other alignment methods, the reliability value was higher for
HHalign than the other methods. This result suggests that the positions aligned by HHalign
were relatively shorter than the other alignments generated by structural alignment methods,
but the aligned regions were the most reliable.

SCOPe and PDB dataset. We used six benchmark datasets to compare AQ, i.e., SCO-
Pe_NR10_all, SCOPe_NR10_el0, SCOPe_FAMILY_all, SCOPe_FAMILY_el0, PDB30_e5,
and PDB30_e10. SCOPe_NR10_all and SCOPe_NR10_el0 contained 6,799 and 3,660 pairs,
respectively, which were constructed from SCOPe_NRI10. In the two datasets, the two proteins
in each pair were chosen from the same family. Consequently, SCOPe_NR10_all and SCO-
Pe_NR10_el0 corresponded to protein pairs where there was a confirmed evolutionary rela-
tionship at the family level in the SCOPe classification. SCOPe_FAMILY _all and
SCOPe_FAMILY_el0 contained 15,790 and 5,730 protein pairs, respectively, which were con-
structed from the SCOPe_FAMILY. The two proteins in each pair were chosen from different
families, but the same superfamily. S1 Table shows the distributions of the fold classes.

B
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Fig 1. Comparison of DaliLite and CAB-align in terms of the agreement, reliability, and NormS values based on SISYPHUS_ID10. (A) Scatter plots of
agreement, (B) reliability, and (C) NormS. The numbers of pairs belonging to each area are indicated. For example, 557 CAD-align alignments had better
agreement values than DaliLite, where the agreement values for CAB-align and DaliLite were both higher than 0.5. CAB-align, contact area-based alignment.

doi:10.1371/journal.pone.0141440.g001
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PDB30_e5 and PDB30_el0 contained 182,907 and 122,626 protein pairs, respectively, which
were constructed from PDB30. PDB30_e5 and PDB30_e10 were large benchmark datasets,
which were constructed by focusing on flexible alignments. In SCOPe_NR10_e10, SCOPe_FA-
MILY_el10, and PDB30_e10, each pair also had a significant relationship with E-values< 10719,
which were estimated by HHalign. Similarly, each pair in the PDB30_e5 had an E-value<10~°.

Fig 2 shows the average values of AQ(n) (n =1, 2, .. .,9) for the six benchmark datasets. For
all datasets (Fig 2A-2F), CAB-align and DaliLite performed better than all of the alignment
methods with any confidence value obtained from HHalign. Interestingly, for five of the six
benchmark datasets, CAB-align performed better than the other alignment methods in terms
of AQ(0). As shown in Table 1, the alignments obtained from HHalign had the highest reliabil-
ity. Thus, CAB-align is a robust structural alignment method that obtains high-quality align-
ments, which had high agreement with HHalign.

Comparison of the Consistency of the Triplet Alignments

To assess the consistency of the alignments, we used six datasets that comprised triplets of
alignments from the aforementioned protein pair datasets. In total, 7,384, 2,173, 50,630,
14,689, 1,403,291, and 790,623 triplets of alignments were obtained from SCOPe_NR10_all,
SCOPe_NR10_e10, SCOPe_FAMILY _all, SCOPe_FAMILY_el0, PDB30_e5, and PDB30_el0,
respectively.

S2 Table shows the average number of consistent positions (N,ss:)> length of a commonly
aligned position (AL), coverage (Cov), and relative rate (Rate) for the five alignment methods
using the six datasets. Fig 3 shows a plot of Cov against Rate. Based on the Rate, HHalign per-
formed the best with all six datasets. These results correlated with the high reliability of HHalign
for the SISYPHUS_ID10 benchmark dataset (Table 1). By contrast, DaliLite had the highest Cov
and N_psis Scores, and CAB-align had the second highest scores for Cov and N_,,,sis» €xcept for
SCOPe_NR10_el0.

High scores are necessary for Cov and Rate, but they are not sufficient to obtain an accurate
alignment. Thus, the consistency (Cov and Rate) does not directly represent the AQ. However,
a high degree of consistency, which is derived from structural similarity, is necessary for
improving multiple alignments. Fig 3 shows that the Cov score with CAB-align was comparable
with that of DaliLite.

Comparison of the Classification Performance

To assess the classification performance, we used two benchmark datasets obtained from SCO-
Pe_NR10 and SCOPe_FAMILY, which comprised single domains, where these two benchmark
datasets are denoted as NR10 and FAMILY, respectively. Each benchmark dataset contained
249,500 domain pairs (500 versus 500 domains), excluding 500 same-domain pairs. The NR10
dataset contained 120 pairs from the same family, 732 pairs from the same superfamily, and
1,774 pairs with the same fold. The FAMILY dataset contained 410 pairs from the same super-
family and 1,288 pairs with the same fold. According to the SCOPe classification, the domain
pairs within the same family or superfamily correspond to an evolutionary relationship. The
fold only group proteins with similar structures; therefore, some domain pairs with the same
fold only share structural similarity, and no evolutionary relationship has been confirmed. Fur-
thermore, to assess the performance with multidomain proteins, we constructed a benchmark
dataset containing 99,792 protein pairs selected from PDB30. In this multidomain benchmark
dataset, all of the proteins contained at least two domains assigned by SCOPe. For this multido-
main benchmark dataset, we defined a pair of proteins with no common domain class (i.e.,
family, superfamily, and fold) as negative; otherwise, the pairs were defined as positive. The
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Fig 2. Comparison of the AQ for six benchmark datasets. (A) SCOPe_NR10_all (6,799 pairs), (B) SCOPe_NR10_e10 (3,660 pairs), (C)
SCOPe_FAMILY_all (15,790 pairs), (D) SCOPe_FAMILY_e10 (5,730 pairs), (E) PDB30_e5 (182,907 pairs), and (F) PDB30_e10 (122,626 pairs). The
methods are shown in order from top to bottom on the left (n = 0) of (A): CAB-align, DaliLite, FATCAT, and TM-align. CAB-align, contact area-based
alignment; PDB, protein data bank.

doi:10.1371/journal.pone.0141440.g002

multidomain benchmark dataset contained 946 pairs from the same family, 3,100 pairs from
the same superfamily, and 5,762 pairs with the same fold. We evaluated the agreement between
the five alignment methods and the SCOPe classifications at three levels (family, superfamily,
and fold) using ROC and PRC analyses. Table 2 shows the AUC and AUPRC results for the
family, superfamily, and fold recognition tests. The ROC curve and PRC for the superfamily
recognition tests are plotted in Figs 4 and 5, respectively. For the two single-domain bench-
mark datasets (NR10 and FAMILY in Table 2), HHalign obtained outstanding AUPRC results
but relatively low AUC results for the superfamily recognition tests, which corresponds to the
evolutionary relationship. These results indicate that when the profile-profile alignment has
sufficient sequence similarity, the homologous domain pairs can be detected with a high aver-
age precision but lower recall (or coverage) than the structure alignment methods.

Table 2 shows the results of the comparison between CAB-align and the other structural
alignment methods, which indicate that CAB-align and TM-align obtained very similar scores,
with the best or second best performance in terms of AUC for the NR10 and FAMILY bench-
mark datasets. Interestingly, CAB-align and TM-align also obtained very similar ROC curve (Fig
4A and 4B) and PRC (Fig 5A and 5B). These results are attributable to the limitations of the
structural alignment method and the use of a benchmark dataset that only contained single
domains. High flexibility (such as a domain rearrangement) is rare within a single protein
domain; therefore, the key advantages of CAB-align are not applicable. CAB-align only per-
formed slightly better than TM-align in terms of the AUC in the superfamily recognition test
with both NR10 and FAMILY. The PDB30 row in Table 2 shows the performance with multido-
main benchmark datasets. The ROC curve and PRC are plotted in Figs 4C and 5C, respectively.
DaliLite obtained the best AUC and AUPRC results in the superfamily recognition test. The per-
formance of CAB-align was comparable with that of DaliLite. A comparison of the results
obtained using the single-domain and multidomain benchmark datasets showed that CAB-align,
FATCAT, and DaliLite performed better than TM-align with the multidomain benchmark data-
set. These results indicate that these three alignment methods can handle potential domain—
domain rearrangements because of their flexibility. In particular, the results of the single- and
multidomain recognition tests indicate that CAB-align is a robust structural alignment method
for predicting whether a protein pair has superfamily relationships with a high probability.

As shown in Table 2, the number of alignments returned by DaliLite was very low. To
remove the bias caused by this imbalance, we constructed three additional datasets. After
removing the failed alignments from NR10, FAMILY, and PDB30, we used 47,547 (NR10),
44,234 (FAMILY), and 43,219 (PDB30) alignments, which were returned by all five alignment
methods. The reduced NR10 dataset contained 111 pairs from the same family, 683 pairs from
the same superfamily, and 1,592 pairs with the same fold. The reduced FAMILY dataset con-
tained 368 pairs from the same superfamily and 1,057 pairs with the same fold. The reduced
PDB30 contained 888 pairs from the same family, 2,887 pairs from the same superfamily, and
5,151 pairs with the same fold.

Table 3 shows the AUC and AUPRC results for the family, superfamily, and fold recogni-
tion tests. The ROC and PRC obtained from the superfamily recognition tests are plotted in
Figs 6 and 7, respectively. Similar to the results in Table 2, in the superfamily recognition test,
CAB-align obtained the best AUC scores for the single-domain benchmark datasets and Dali-
Lite yielded outstanding results for the multidomain benchmark dataset.

PLOS ONE | DOI:10.1371/journal.pone.0141440 October 26, 2015 9/28



el e
@ ' PLOS ‘ ONE A Flexible Protein Structure Alignment Method

] A scope NR10_all . B scope NR10 e10
0.65 | ] 0.65 | +D -
06 | 1 06 | X 1
DaliLite
© 0.55 r CAB-aIign+|:| 8 o 0.55 r ]
()] (o))
o 05 1 < 1 ® 05 1
() -ali ()
2 045 | s  Malign ] 2 045 1
3 FATCAT 3
0.4 | ] 04 | ]
M HHalign
0.35 | ] 0.35 | ]
03 | ] 03 | ]
0.25 e 0.25 S
04 05 06 07 08 09 1 04 05 06 07 08 09 1
Rate Rate
C scoPe FAMILY all . D scope FAMILY e10
0.65 | ] 0.65 | ]
06 | ] 06 | = ]
0.55 | ] 0.55 | ]
3 3 e
o 05 1 1 ® 05 r X ]
9 O 3 -
g 045 N ] g 045 ]
0.4 | X ] 0.4 | ]
035 % . 0.35 | ]
03 | ] 03 | ]
0.25 - 0.25 e
04 05 06 07 08 09 1 04 05 06 07 08 09 1
Rate Rate
E PDB30 e5 F  PDB30 e10
0.65 | ] 0.65 | ]
06 | ] 06 | ]
o 055 1 . 055 L x|
& 05°¢ - & 05°¢ X -
] o) X
g 045 0 ] g 045 ]
O + O
0.4 | < " 0.4 | ]
0.35 | X ] 0.35 | ]
03 | . 03 | ]
0.25 T S 0.25 S
04 05 06 07 08 09 1 04 05 06 07 08 09 1
Rate Rate

PLOS ONE | DOI:10.1371/journal.pone.0141440 October 26, 2015 10/28



el e
@ ' PLOS ‘ ONE A Flexible Protein Structure Alignment Method

Fig 3. Consistency of alignments based on six datasets. (A) SCOPe_NR10_all (7,384 triplets), (B) SCOPe_NR10_e10 (2,173 triplets), (C)
SCOPe_FAMILY_all (50,630 triplets), (D) SCOPe_FAMILY_e10 (14,689 triplets), (E) PDB30_e5 (1,403,291 triplets), and (F) PDB30_e10 (790,623 triplets).
PDB, protein data bank.

doi:10.1371/journal.pone.0141440.9003

Contribution of Each Step

To assess the contribution of each step in the CAB-align method, we evaluated two compo-
nents used in CAB-align denoted as step 1 and step 2. As shown in Fig 8, step 1 corresponds to
the alignments obtained from the 290 initial alignments in the CAB-align procedure. These
290 initial alignments were generated by structure alignment based on the local structural simi-
larity. Step 2 corresponds to the alignments obtained from the 580 initial alignments. These
580 initial alignments were generated by structure alignment based on the local and global
structural similarities. We selected the alignments from 290 and 580 alignments using the
CAB-align scoring function (Eq 11) for step 1 and step 2, respectively.

Table 4 shows the AQ results based on SISYPHUS_ID10. Fig 9 shows the AQ results based
on SCOPe_NR10 and SCOPe_FAMILY. Table 5 shows the classification performance with the
single-domain benchmark datasets.

The results for CAB-align and step 2 are presented in Table 5 (SISYPHUS_ID10 benchmark
dataset). For step 2, S and NormS were lower than the values derived from CAB-align.

Table 2. Classification performance with three benchmark datasets.

Family® Superfamily® Fold'
Method AuUC? AUPRC" AUC AUPRC AUC AUPRC #
NR10? HHalign 0.951 0.230 0.912 0.527 0.821 0.355 249500
CAB-align 0.990 0.231 0.984 0.419 0.951 0.562 242556
TM-align 0.992 0.260 0.970 0.428 0.945 0.549 249500
FATCAT 0.976 0.169 0.935 0.241 0.898 0.243 249500
DaliLite 0.975 0.171 0.958 0.496 0.915 0.579 48734
FAMILY® HHalign 0.897 0.455 0.803 0.236 248502
CAB-align 0.968 0.418 0.937 0.435 236682
TM-align 0.959 0.396 0.952 0.485 248502
FATCAT 0.921 0.281 0.911 0.236 248502
DaliLite 0.956 0.386 0.922 0.463 46218
PDB30° HHalign 0.980 0.697 0.935 0.732 0.853 0.583 99792
CAB-align 0.978 0.716 0.914 0.662 0.861 0.586 91860
TM-align 0.975 0.706 0.866 0.608 0.801 0.546 99792
FATCAT 0.978 0.717 0.900 0.536 0.861 0.476 99792
DaliLite 0.976 0.643 0.937 0.733 0.892 0.705 47170

& Total of 249,500 domain pairs selected randomly from SCOPe_NR10.

P Total of 249,500 domain pairs selected randomly from SCOPe_FAMILY.

¢ Total of 99,792 protein pairs selected randomly from PDB30.

4 SCOPe classification.

9 Area under the ROC curve.

h Area under the PRC.

" Number of alignments calculated from the alignment program.

The best performances among the four structure alignment methods are indicated in bold.

AUC, area under the ROC curve; AUPRC, area under the PRC; CAB-align, contact area-based alignment; PDB, protein data bank; PRC, precision-recall
curve; ROC, receiver-operating characteristic.

doi:10.1371/journal.pone.0141440.t002
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Fig 4. ROC curves for the five alignment methods in the superfamily recognition test. (A) NR10 benchmark dataset. (B) FAMILY benchmark dataset.
(C) PDB30 benchmark dataset. PDB, protein data bank; ROC, receiver-operating characteristic.
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A Superfamily recognition (NR10)

However, step2 performed marginally better than CAB-align in terms of agreement and reli-
ability. The advantage of iterative DP in terms of the AQ was not observed with the SISPHU
S_ID10 benchmark dataset. In addition, Fig 9 shows that CAB-align performed better than
step 2 with all of the benchmark datasets. In terms of the classification performance, Table 5
shows that CAB-align obtained the best AUC score, but step 2 had the best AUPRC score for
superfamily recognition. These results suggest that (1) step 2 dramatically improves the perfor-
mance from step 1, and (2) iterative DP improves the agreement with HHalign, thereby yield-
ing highly reliable alignments.

Computational Time

Table 6 shows the average computation time for the five alignment methods with the SISY-
PHUS_ID10 benchmark dataset (1,627 pairs). We used a general Linux computing system
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Fig 5. PRCs obtained using the NR10 and FAMILY datasets in the superfamily recognition test. (A) NR10 benchmark dataset. (B) FAMILY benchmark
dataset. (C) PDB30 benchmark dataset. PDB, protein data bank; PRC, precision-recall curve.

doi:10.1371/journal.pone.0141440.9005
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Table 3. Classification performance based on three benchmark datasets using the alignments returned by all methods.

Family Superfamily Fold
Method AUC AUPRC AUC AUPRC AUC AUPRC #
NR10 HHalign 0.927 0.240 0.896 0.572 0.795 0.437 47547
CAB-align 0.987 0.243 0.962 0.443 0.924 0.617 47547
TM-align 0.988 0.265 0.954 0.447 0.919 0.597 47547
FATCAT 0.957 0.171 0.862 0.257 0.808 0.277 47547
DaliLite 0.975 0.173 0.957 0.502 0.915 0.576 47547
FAMILY HHalign 0.893 0.533 0.756 0.322 44234
CAB-align 0.962 0.449 0.927 0.497 44234
TM-align 0.953 0.457 0.939 0.544 44234
FATCAT 0.878 0.326 0.839 0.289 44234
DaliLite 0.959 0.408 0.924 0.460 44234
PDB30 HHalign 0.971 0.702 0.923 0.754 0.838 0.641 43219
CAB-align 0.973 0.723 0.877 0.680 0.815 0.625 43219
TM-align 0.970 0.721 0.845 0.635 0.780 0.599 43219
FATCAT 0.969 0.720 0.860 0.565 0.819 0.533 43219
DaliLite 0.975 0.650 0.939 0.745 0.894 0.712 43219

& Number of alignments.
Note that the results shown are based only on alignments returned by all five alignment methods.

doi:10.1371/journal.pone.0141440.t003

(Intel Xeon E5506 CPU at 2.13 GHz and 12 GB memory). We found that CAB-align was about
two times slower than DaliLite. As described earlier, CAB-align generates a maximum of 580
seed alignments and performs iterative DP for each alignment. Thus, the speed of CAB-align is
attributable to these complex processes.

Examples

Figs 10 and 11 show examples of flexible protein comparisons between two calmodulin-like
proteins (Incx_A and 2sas_A) using CAB-align and DaliLite. Fig 10 shows the aligned regions
and calcium-binding regions in the protein structures. Fig 11 shows the structural alignments,

/ \ Superfamily recognition (NR10) B Superfamily recognition (FAMILY) C Superfamily recognition (PDB30)
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Fig 6. ROC curves for the five alignment methods using the alignments returned by all methods. (A) NR10 benchmark dataset. (B) FAMILY
benchmark dataset. (C) PDB30 benchmark dataset. PDB, protein data bank; ROC, receiver-operating characteristic.

doi:10.1371/journal.pone.0141440.9006
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Fig 7. PRC for the five alignment methods using the alignments returned by all methods. (A) NR10 benchmark dataset. (B) FAMILY benchmark
dataset. (C) PDB30 benchmark dataset. PDB, protein data bank; PRC, precision-recall curve.

doi:10.1371/journal.pone.0141440.9007

secondary structures, and calcium-binding regions assigned by UniProtKB [38]. In this case,
HHalign identified a significant relationship (E-value = 1.2 x 107°%) and a reliable alignment
for 146 positions between the two calmodulin-like proteins. The alignment obtained by CAB-
align had a higher AQ score (AQ(5) = 0.80) than DaliLite (AQ(5) = 0.43). Moreover, Fig 11
shows that CAB-align could align three calcium-binding regions, whereas DaliLite only aligned
one calcium-binding region.

Figs 12 and 13 show examples of protein structure comparison between 2c2f_A and 1j30_A,
which are included in SISYPHUS benchmark dataset. Compared with the reference alignment
in SISYPHUS (Fig 13), the alignment obtained by CAB-align had a higher agreement value
(0.99) than DaliLite (0.47). CAB-align could align four helix regions for this example.

Discussion

In this study, we applied residue-residue contact area information to protein structure align-
ment, and we developed a novel flexible protein structure alignment method called CAB-align.
The main aim of CAB-align is to identify homologous relationships at the residue level between
related protein structures whenever local or global conformational changes occur. CAB-align
comprises two main steps: first, 580 initial alignments are generated based on local and global
structural similarities, and second, a similarity score S (Eq 11) is calculated from the residue-
residue contact area matrix, which is then maximized by iterative DP. To distinguish homolo-
gous pairs of proteins from nonhomologous pairs without a size dependency, the S value is
normalized by considering the total area of the inter-residue contacts.

We evaluated the performance and advantages of CAB-align using a manually created gold
standard benchmark dataset (SISYPHUS) and three large benchmark datasets, i.e., SCOPe_-
FAMILY, SCOPe_NR10, and PDB30. Our comparison of CAB-align with other state-of-the-
art protein structure alignment methods (TM-align, FATCAT, and DaliLite) showed that
CAB-align was robust, and it obtained high-quality alignments for protein pairs with known
evolutionary relationships. Moreover, CAB-align generated consistent multiple alignments
with high coverage and accuracy rates, which were comparable with those obtained by DaliLite.
Finally, CAB-align performed well at discriminating between homologous and nonhomolo-
gous pairs of proteins in both single- and multidomain comparisons.
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Table 4. AQ of the components of CAB-align based on SISYPHUS_ID10.

Ncorrect Agreement Reliability s? Norms®
CAB-align 81.7 0.57 0.48 4956.8 1.4
Step 1 51.9 0.36 0.31 3464.8 8.0
Step 2 83.7 0.58 0.49 4553.6 10.6

@Alignment score S obtained from the CAB-align scoring function (Eq 11).
PNormalized score NormS obtained from the CAB-align scoring function (Eq 16).
All of the data represent average values per alignment.

doi:10.1371/journal.pone.0141440.t004

These results suggest future applications for the CAB-align algorithm. For example, the produc-
tion of high-quality alignments will facilitate the identification of functionally important positions
and the functional annotation of novel proteins. CAB-align will also allow us to discover novel evo-
lutionary relationships at the residue level. The consistent multiple alignments obtained by CAB-
align will help to identify structurally conserved regions as well as improving template-based
modeling methods based on multiple templates. At present, there are many types of structural clas-
sification databases for single proteins (e.g., SCOP [39], SCOPe [33], CATH [5], PDBeFold [2],
and FSSP [3,40]) or protein—protein complexes (PDBePISA [41]). The good classification perfor-
mance of CAB-align is necessary for classifying new protein structures. The newly classified data
will also contain previously unknown structural and evolutionary relationships.

The stand-alone software CAB-align and lists of the benchmark datasets are freely available
to academic users at http://www.pharm kitasato-u.ac.jp/bmd/bmd/Publications.html

Materials and Methods

Fig 8 provides a flowchart that illustrates the CAB-align procedure. In this section, we describe
the detailed protocols used by CAB-align.

Surface Representation for Each Amino Acid Residue

To calculate the residue-residue contact area matrix, we used a modified smooth surface
model: the simple piecewise quadratic meatball algorithm. For the surface of the kth amino
acid residue, the shape of the surface is defined by the points x, which satisfy the following
equations:

=3 Gleg) =1, )

0 lf(cri - |x _gi| < O)

G(x,g) = —x—gl)’ ;
(.8) =\ L= b —gl) otherwise . ®
(cr;— 1)

where Nj, is the number of atoms in the kth amino acid residue, g; is the center of an atom 7, G()
is a density function, r; is a van der Waals radius value of atom i, and ¢ is a density coefficient that
controls the degree of smoothness. In this study, we set ¢ to 1.5, so the distances between any
smoothed surfaces and the center of atoms were less than 1.5x(the van der Waals radius). We
used Marching Cubes triangulation to define the triangle surface, vertices, and edges. The voxel
size was set to 1.0 A. The extracted surface was used to calculate the residue-residue contact area,
where the distance between the surfaces of different residues was less than 2.8 A. In this study, we
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Fig 9. AQ of the components of CAB-align. (A) SCOPe_NR10_all (6,799 pairs), (B) SCOPe_NR10_e10 (3,660 pairs), (C) SCOPe_FAMILY _all (15,790
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doi:10.1371/journal.pone.0141440.9009

defined an inter-residue contact area between the Ith and mth residues as the sum of the surface

area for the interactions between the mth and Ith residues on each residue (Fig 14).
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Table 5. AUC and AUPRC scores for the components of CAB-align.

Method

NR10 CAB-align
step1
step2

FAMILY CAB-align
Step 1
Step 2

doi:10.1371/journal.pone.0141440.t005

Table 6. Computational time.

HHalign
CA-align
TM-align
FATCAT
DaliLite

@Average computational time for an alignment pair, excluding the preprocessing step.
PAverage computational time required to preprocess a PDB file.

doi:10.1371/journal.pone.0141440.1006

Family Superfamily Fold

AUC AUPRC AUC AUPRC AUC AUPRC

0.990 0.231 0.984 0.419 0.951 0.562

0.973 0.299 0.940 0.297 0.873 0.284

0.992 0.263 0.982 0.468 0.952 0.564
0.968 0.418 0.937 0.435
0.922 0.359 0.870 0.264
0.963 0.456 0.949 0.460

Our smooth surface model was used to approximate the solvent excluded surface (SES),
which is defined by a spherical probe with a radius of 1.4 A rolling over all the atom spheres.
SES is used widely to represent the surface of a molecule, and it can be calculated by various
algorithms [42,43]. Our smooth surface model correlated highly with the SES values derived
from MSROLL [43]. The average deviation was 8.3 A? (6.4%), and the linear correlation coeffi-
cient was determined as 0.995 when taking 49,458 amino acid residues from a random selec-
tion of 200 protein structures.

Generation of the Initial Alignments

To generate various initial alignments, we employed the Smith-Waterman DP algorithm [44]
according to the local and global structural similarities (Steps 1 and 2 in Fig 8). The local struc-
tural similarities were generated based on the unit-vector root mean square (URMS) distance
between all pairs of heptapeptides, as described in the MAMMOTH algorithm [9], whereas the
global structural similarities were obtained using a combination of MAMMOTH and the TM-
align algorithm.

First, we found 290 initial alignments based on the local structural similarity with various
gap open and extension penalties. According to the MAMMOTH algorithm, the score matrix
used in the DP phase is defined as follows:

(URMS* — URMS"™)

S(I,m) = A(URMS® — URMS™" 9
(1,m) Al ) )
: 10, URMS® > URMS"™
A(URMS® — URMS™) = , (10)
0, otherwise

Seconds/pair® # Precalculation® #
5.97 1627 98.99 412
21.98 1627 0.33 413
0.79 1627
5.38 1627
10.45 1627
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Fig 10. Example of a structure comparison between two calmodulin-like proteins. (A and C) Open-dumbbell conformation, 1ncx_A. (B and D) Closed
conformation, 2sas_A. (A) Alignment of 1ncx_A by CAB-align. (B) Alignment of 2sas_A by CAB-align. (C) Alignment of 1ncx_A by DaliLite. (D) Alignment of
2sas_A by DaliLite. The aligned regions are rainbow color coded from blue to red. The calcium-binding regions assigned by UniProt are shown by sticks.
CAB-align, contact area-based alignment.

doi:10.1371/journal.pone.0141440.9010

where URMS" is the expected minimum URMS between two random heptapeptides, which we
set to 0.917. The affine gap penalty is defined as g(k) = o + B(k — 1), where k is the number of
gaps, and o and 8 denote gap open and extension penalties, respectively. We used 11 gap open
penalties ranging from 0 to 50 (step size = 5.0) and six extension penalties ranging from 0 to 10
(step size = 2.0). In total, we employed 58 combinations of @ and 3 in the DP phase, where o >
B. In our study, the optimal alignments based on local similarity were not sufficient to generate
the best alignment with the highest residue-residue contact area similarity. Thus, we also gen-
erated four suboptimal alignments [45] for each DP. The suboptimal alignments were gener-
ated by iteratively updating the similarity score matrix S(k, [). During each iteration, S(k, I) for
the previously aligned positions was decreased by 10%, and the forward trace DP matrix was
then updated and thus a new alignment was generated, which was changed slightly compared
with the previously computed alignment.
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Fig 11. Examples of structural alignments between two calmodulin-like proteins. (A) Structural alignment by CAB-align. (B) Alignment graph produced
by HHalign and CAB-align. (C) Structural alignment by DaliLite. (D) Alignment graph produced by HHalign and DaliLite. (A and C) The asterisks represent
the calcium-binding regions. CAB-align, contact area-based alignment.

doi:10.1371/journal.pone.0141440.g011

We obtained more than 290 initial alignments based on the global structural similarity.
These 290 alignments were then re-aligned to maximize the TM-score based on a heuristic iter-
ation described in TM-align [10]. In this procedure, the gap open and extension penalties were
set to 0.6 and 0, respectively. As result, 580 initial alignments were obtained from DP based on
the local/global structural similarities.
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|

Fig 12. Example of a structure comparison using the SISYPHUS benchmark dataset. (A, C) 2c2f_A. (B, D) 1j30_A. (A) Alignment of 2c2f_A by CAB-
align. (B) Alignment of 1j30_A by CAB-align. (C) Alignment of 2c2f_A by DaliLite. (D) Alignment of 1j30_A by DaliLite. The aligned regions are rainbow color-
coded from blue to red. CAB-align, contact area-based alignment.

doi:10.1371/journal.pone.0141440.g012

Iterative DP with a Contact Area Similarity Score

Following the removal of redundancies from the 580 initial alignments, the remaining align-
ments were subjected to iterative Smith—~Waterman DP based on the residue-residue contact
area matrix (Step 3 in Fig 8). To align the residue-residue contact area matrix for proteins A

and B, we defined the simple similarity score as follows:

S=323"000), (11)

where i and j denote a pair of aligned residues from A and B as i = (i, ig) and j = (j4, jp), L is
the length of the alignment, and 8 is the similarity measure for a residue pair using the residue-
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Fig 13. Examples of structural alignments between 2c2f_A and 1j30_A. (A) Alignment graph produced using SISYPHUS and CAB-align. (B) Alignment
graph produced using SISYPHUS and DaliLite. CAB-align, contact area-based alignment.

doi:10.1371/journal.pone.0141440.g013

residue contact area. For 0, we modified the CAD-score by considering two points: (1) strong
overprediction of the contact is better than entirely missing the contact and (2) the similarity
measure is a symmetrical function based on proteins A and B. 6 is defined as follows:

Ao — et —a’ |} +max{0,a’ —l|at. —a’ |}), (12)

iada iada ip.jp ip.jp iada ig.jp

0(i,j) = w,;(max{0,a

0 |iA _jAl <1 or ‘iB _jB‘ <1
wy=9 1 liy=jud =5 and |iy—j[ =5, (13)

y otherwise

wherea] , anda; ; are the residue-residue contact areas between aligned positions i and j of
A and B, respectively, and w; is a weight function used to control the overcounting of nearby
contact when the sequence separation is less than five.

DP was applied to the similarity matrix to find an optimal alignment in a heuristic manner,
which was calculated from the given initial alignment and the residue-residue contact area
matrix. The preliminary similarity matrix M for all pairs of residues between proteins A and B
is calculated as follows:

L

M((ky k) =MK) = > 00k, (14)

i,(ka—ia)(kp—ip)>0

where M(k) denotes the similarity between residues k4 in protein A and kg in protein B when
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Fig 14. Calculation of the residue-residue contact area matrix for the input PDB file (PDBID: 1dgx_A). PDB, protein data bank.
doi:10.1371/journal.pone.0141440.g014

the other aligned positions i = (iy, i) are not changed for the given alignment (Fig 15). As

shown in Fig 15B and Eq 14, the conflicted pairs are ignored when (k4 — is)(kg — ig) < 0.
However, M is too restrictive to improve the alignment by DP and only the local optimal

alignments were obtained in our study. Therefore, M is converted into M' by considering

A Protein A B Mk, k)
12345678 91011 K,

AN
N\

Protein B
oLe8 L9 v ¢€ ¢ |
=X
/

Fig 15. Calculation of the similarity matrix M from the given alignment. (A) The given alignment. The black cells represent the aligned pairs in protein A
and B. (B) In the matrix M, the similarity score of the residue pair (k,,kp) is calculated from the comparison between other aligned positions. The gray cells are
ignored. The curved lines represent the comparison between two residue pairs (Eq 12).

doi:10.1371/journal.pone.0141440.9015
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neighboring residues using a sliding window. M’ is defined as follows:

2Ny + 1

! S M((k,— N, +p.k,— N, +p),  (15)

M ((ky, kp)) = M'(k) = 5o

0<kA7Nw+pSNA7
0<k,—N,+p<N,

where N, and Ny are the number of residues in protein A and B, respectively, and N,, defines
the size of the window. Thus, 2N,, + 1 corresponds to the window size. M' approximates the
similarity between the two fragments, i.e., N,, residues around k, and kp (Fig 16).

Starting from the given initial alignment, the heuristic method (iterative DP) was applied to
obtain an optimal alignment. Step 3 in Figs 8 and 17 summarizes the iterative DP. First, the
window size was set to 11 (i.e.,., N,, = 5), and M' was then calculated from the given alignment

A v (kk)

k

A

B wmk,-1k-1) C  Mk.k) D wmk,+1k+1)

K,-1 k K -1

\

k-1

)

.

Fig 16. Calculation of the similarity matrix M’ with a window size of three. (A) In the matrix M, the similarity score for the residue pair (ka,kp) is calculated
from the two orange cells (M(k,—1,kp,—1) and M(k.+1,kp+1)) and the red cell M(k,,kp). (B) Similarity score for the residue pair (k,—1,k,—1). (C) Similarity score
for the residue pair (k,,kp). (D) Similarity score for the residue pair (k,+1,kp+1). The black cells represent the aligned positions in the given alignment. The
gray cells represent the ignored pairs.

doi:10.1371/journal.pone.0141440.9016
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Fig 17. Protocols employed for iterative DP with a window size of three. (A) The given alignment. (B) The similarity score matrix M’ is updated by the
alignment. (C) DP is performed using the M’ and a new alignment is generated. DP, dynamic programming.

doi:10.1371/journal.pone.0141440.9017

(Fig 17A and 17B). DP was performed and after each round of DP, the similarity matrix M'
was updated based on the alignment obtained (Fig 17B). The iterative DP was repeated until
the similarity score S converged, or 10 iterations were reached. After this set of iterations, the
size of the window was reduced, and iterative DP was then repeated again. The size of the win-
dow was reduced gradually for N,, = {5, 3, 1} (Fig 8). Finally, the best alignment was obtained
with the highest S value. The parameters y (Eq 13) and the gap open penalty in iterative DP
were optimized based on a training dataset (a subset of the SCOPe_FAMILY) by maximizing
the average AQ(5). The training dataset contained 4,144 protein pairs with a significant evolu-
tionary relationship (E-value < 107! and a reliable alignment length (>100). Moreover, to
confirm the evolutionary relationship, both proteins in the pair had to belong to the same

B T, T,=12 C T, T,=135

0.6

AVE(SIT)

o4 g

0.2 02 0.2

0 0 [ 0 0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
S S S
Fig 18. Distributions of the normalized score, NormS. The contour lines are plotted at interval values of 10.0 for NormS. The vertical line represents the
average rate of S (i.e., 0.5%(S/T4+S/Tg)). The horizontal line represents the similarity score S. (A) Ta:Tg=1:1,(B) Ta:Tg = 1:2,and (C) T4:Tg = 1:5. NormS,
normalized similarity score.

doi:10.1371/journal.pone.0141440.9018
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superfamily. Our parameter optimization indicated that the optimal parameter was y = 0.5,
and the gap open penalty in iterative DP was 90.

Normalized Similarity Score

The raw similarity score S represents the degree of a common inter-residue contact area
between two proteins according to the alignment, but it depends on the size of the proteins. A
pair of large proteins usually has a large S value. Due to this size dependency, S cannot be used
to compare the similarities of different protein pairs. The main aim of the normalization is to
distinguish homologous pairs of proteins from nonhomologous pairs. Thus, we propose a
NormS that considers the total inter-residue contact area as follows:

S S
(T (T

Norm$ = (16)
where S is the similarity score of the alignment (Eq 11), T4 and Tj are the total inter-residue
contact areas in proteins A and B, respectively, and pow is a multiplier factor. When pow is set
to 0.7, the NormsS has two interesting features: (1) the protein pair with a higher S tends to have
a higher NormsS, and (2) the higher relative rate of S against T, and Tj tends to yield a higher
NormS§ (Fig 18). The parameter pow was optimized based on 500 proteins from the SCOPe_-
FAMILY by maximizing the AUC for superfamily recognition. Based on the parameter optimi-
zation for pow, a value of 0.7 was found to be optimal.
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