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Abstract: Although most of the early research studies on fractional-order systems were based on
the Caputo or Riemann–Liouville fractional-order derivatives, it has recently been proven that these
methods have some drawbacks. For instance, kernels of these methods have a singularity that occurs
at the endpoint of an interval of definition. Thus, to overcome this issue, several new definitions of
fractional derivatives have been introduced. The Caputo–Fabrizio fractional order is one of these
nonsingular definitions. This paper is concerned with the analyses and design of an optimal control
strategy for a Caputo–Fabrizio fractional-order model of the HIV/AIDS epidemic. The Caputo–
Fabrizio fractional-order model of HIV/AIDS is considered to prevent the singularity problem,
which is a real concern in the modeling of real-world systems and phenomena. Firstly, in order
to find out how the population of each compartment can be controlled, sensitivity analyses were
conducted. Based on the sensitivity analyses, the most effective agents in disease transmission and
prevalence were selected as control inputs. In this way, a modified Caputo–Fabrizio fractional-order
model of the HIV/AIDS epidemic is proposed. By changing the contact rate of susceptible and
infectious people, the atraumatic restorative treatment rate of the treated compartment individuals,
and the sexual habits of susceptible people, optimal control was designed. Lastly, simulation results
that demonstrate the appropriate performance of the Caputo–Fabrizio fractional-order model and
proposed control scheme are illustrated.

Keywords: HIV model; treatment compartment; Caputo–Fabrizio fractional; optimal control; sensi-
tivity analysis

1. Introduction

Over the past several years, various studies have been carried out to construct an
appropriate mathematical model for various disease dynamics, including those of tubercu-
losis, malaria, and HIV [1–5]. Mathematical modeling of diseases plays an important role
in profound understanding of the system for the purpose of disease control due to the fact
that it enables long- and short-term prediction of disease incidence [6–11]. Since the study
by [12] on the modeling of diseases, which was a breakthrough in this area, dynamical
systems approaches have been used for a wide variety of diseases. So far, theoretical epi-
demiology has resulted in numerous remarkable technical and conceptual developments.
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The goal of this field of study is not only to analyze and anticipate the spread of various
diseases but also to control it as effectively as possible.

HIV is one of the most hazardous threats to human health. The virus occupies the T
cells in the early stage of HIV. By entering the T cells, HIV viruses which previously could
not replicate by themselves easily build a virus factory [13]. In the last step of the infection,
HIV debilitates the human immune system and brings about acquired immune deficiency
syndrome (AIDS) [14]. An impaired immune system cannot overcome infectious diseases,
and this situation sometimes causes death. Thus, so far, many research studies have focused
on the control of HIV/AIDS infection to find a way to prevent it from spreading.

Despite the long history of fractional calculus, its applications are only a new subject
of interest. Fractional calculus has recently been utilized in various fields of study [15–32].
Also, the modeling of HIV using fractional differential equations has started to attract some
research attention. For instance, a fractional-order model of HIV infection of T cells was
introduced by Ding and Ye [33]. They also investigated the stability of equilibrium via
detailed analysis. Fractional-order differential models of the dynamics of HIV infection of
CD4+ T cells and the dynamics of the tumor–immune system were proposed by Rihan [34].
A fractional-order model for the three stages of HIV epidemics, encompassing drug resis-
tance, was introduced by Pinto and Carvalho [35]. Dutta et al. conducted an analysis on
the fractional-order deterministic HIV/AIDS model during drug therapy treatment [36].

Although most of the early research studies on fractional-order systems were based on
the Caputo or Riemann–Liouville fractional-order derivative, it has been proven that these
methods have some drawbacks. For instance, kernels of these methods have a singularity
that occurs at the endpoint of an interval of definition [37–39]. Thus, to overcome this
issue, several new definitions of fractional derivatives have been introduced [40–45]. The
basic differences among these derivatives are their different kernels, which should be
chosen to satisfy the requirements of various systems. The main differences between the
Caputo–Fabrizio (CF) and the Caputo fractional derivative are that the CF derivative is
obtained using an exponential decay law, but the Caputo derivative is based on a power
law [38,46].

Several research studies have demonstrated the applications of the new fractional
derivatives to practical systems. For instance, the Atangana–Baleanu and CF fractional
derivatives for chaotic systems and fractional delay differential equations were compared
by Atangana et al. [47,48]. They showed that the Atangana–Baleanu fractional results in
noisy information because of its specific memory properties. On the other hand, the CF
fractional derivative yields less noise than the Atangana–Baleanu fractional derivative.
Moore et al. [49] considered HIV/AIDS with an antiretroviral treatment compartment and
proposed a CF fractional equation for this system. They demonstrated the effectiveness of
the CF derivative for modelling HIV/AIDS.

So far, various schemes have been introduced to control nonlinear systems [50–58].
As well, for HIV–immune systems, as nonlinear systems, there are a wide variety of
controllers in the literature, including a fuzzy discrete event system approach [59,60],
feedback control [61,62], sliding mode control [14], and optimal control [63–67]. Among
these controllers, optimal control theory is an effective tool in disease control because it
presents appropriate preventive and treatment strategies by considering various factors
in the optimization function. Hence, optimal control has attracted much attention in this
research area.

To the best of our knowledge, no study has designed a controller for the CF fractional
model of HIV/AIDS. The CF fractional is a new fractional definition that is very beneficial
to the modeling of real-world problems [68]. Moreover, although control of HIV/AIDS has
been studied in the literature, there are still other meaningful behaviors of these systems
during various strategies which need to be further understood. Hence, in this study, the
dynamics of a CF fractional model for HIV/AIDS are studied. Then, an optimal controller
is designed for the system, and various strategies are precisely investigated.
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The rest of this study is presented as follows: Firstly, a CF fractional model for
HIV/AIDS with a treatment compartment is studied in Section 2. In Section 3, the equilib-
rium point of the model and its stability are investigated. In Section 4, sensitivity analysis
for the system is performed. The general formulation of a Fractional Optimal Control
Problem (FOCP) and the necessary conditions for its optimality are described in Section 5.
Fractional optimal control of the HIV/AIDS model is designed in Section 6. Afterward, in
Section 7, the simulation results of several control strategies, such as control using preven-
tion, treatment, and changing of sexual habits, are demonstrated. Lastly, the conclusions
are presented in Section 8.

2. A CF Fractional Model of HIV/AIDS with a Treatment Compartment

A CF fractional model of HIV/AIDS with a treatment compartment was considered
in the current study. The non-dimensional model is written as follows [49]:

CF
0 Dα11

t S(t) = Λ− βI(t)S(t)− µ1S(t)− dS(t)
CF
0 Dα22

t I(t) = βI(t)S(t) + α1T(t)− dI(t)− k1 I(t)− k2 I(t)
CF
0 Dα33

t A(t) = k1 I(t)− (δ1 + d)A(t) + α2T(t)
CF
0 Dα44

t T(t) = k2 I(t)− α1T(t)− (α2 + d + δ2)T(t)
CF
0 Dα55

t R(t) = µ1S(t)− dR(t)

(1)

The initial conditions are

S(0) = S0, I(0) = I0, A(0) = A0, T(0) = T0, R(0) = R0, (2)

where states are defined as follows: S(t) and I(t) denote the number of susceptible patients
and the number of HIV-positive individuals who are infectious, respectively; A(t) is the
number of individuals for whom the treatment is not effective or who are not receiving
ART treatment. The total number of individuals being treated with ART and for whom
the treatment is effective is represented by T(t). R(t) indicates the individuals who have
changed their sexual habits and who are thus immune to HIV infection by sexual contact.
In addition, Λ is the recruitment rate of susceptible individuals into the population. β is
the contact rate between susceptible and infectious individuals. µ1 is the rate at which
susceptible individuals change their sexual habits, and α1 is the rate at which treated
individuals leave the treated compartment and return to the infectious class. δ1 and
δ2 are the disease-induced death rates for individuals in compartments A(t) and T(t),
respectively. k1 is the rate at which members leave the infectious compartment and become
individuals with full-blown AIDS. k2 represents the rate at which individuals with HIV
receive treatment. Finally, α2 is defined as the rate at which treated individuals leave the
treated class and enter the AIDS compartment, A(t). This model is non-dimensional.

3. Equilibrium Point of the Model

In this section, the equilibrium point of the fractional model of HIV/AIDS is obtained.
From [49], the equilibrium point of the system is as follows:

Ed f =
(

Λ
(µ1+d) 0 0 0 Λµ1

d(µ1+d)

)
(3)

where Ed f is the disease-free equilibrium point, and the endemic equilibrium point is

Ee =
(

S∗ I∗ A∗ T∗ R∗
)

(4)

Also, R0 is the basic reproduction number, which can be calculated using the next-
generation matrix method [69,70], and it is as follows:

R0 =
βΛ(α1 + d + δ2 + α2)

(µ1 + d)(d + k1 + k2)(α1 + d + δ2 + α2)− α1k2
(5)
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It was previously proven that the disease-free equilibrium point of the CF fractional
model of HIV/AIDS with treatment compartment Ed f is asymptotically stable [49].

4. Sensitivity Analysis

In this section, sensitivity analysis of the basic reproduction number and the endemic
equilibrium points is conducted. These analyses reveal the factors that have effects on
the populations of different compartments. Using this analysis, we can find out how the
population of each compartment can be controlled in order to control disease transmission
and prevalence. The system parameters that were used in these analyses are given in
Table 1 [49].

Table 1. The system parameters [49].

Parameter Description Value

Λ The recruitment of susceptible people into the population 0.55
β The contact rate between susceptible and infectious people 0.03
d The natural death rate 0.0196
k1 The rate at which leave the infectious class and become individuals with full-blown AIDS 0.15
k2 The rate at which people with HIV receive treatment 0.35
α1 The rate at which treated individuals leave this compartment and return to the infectious compartment 0.08
α2 The rate at which individuals in the treated compartment leave this class and enter the AIDS compartment 0.03
δ1 The disease-induced death rate for individuals of the AIDS compartment 0.0909
δ2 The disease-induced death rate for individuals of the treated compartment 0.0667
µ1 The rate at which susceptible people change their sexual habits 0.03

The following definition delineates the sensitivity analysis procedure that was carried
out in the current study.

Definition 1. The normalized forward sensitivity index of a variable h that depends on parameter l
is defined as Yh

l = δh
δl ×

h
l .

Herein, we calculate the sensitivity indices of R0 to all parameters of the model by
YR0

l = δR0

δl ×
R0

l , where l indicates the parameters of the model.
The reproductive number affects the initial transmission of the disease. Furthermore,

the disease prevalence is highly related to the endemic equilibrium point. Therefore, the
sensitivity of the reproductive number to the system parameters was calculated, and the
results are given in Table 2; the sensitivity indices of the state variables at the endemic
equilibrium point to the model parameters are given in Table 3.

Table 2. Sensitivity indices of to the parameters of the model.

Parameter Description Sensitivity Index

Λ The recruitment of susceptible individuals into the population 1
β The contact rate between susceptible and infectious individuals 1
α1 The rate at which treated individuals leave this compartment and return to the infectious compartment −0.7231
α2 The rate at which individuals in the treated compartment leave this class and enter the AIDS compartment 0.1865
δ1 The disease-induced death rate for individuals of the AIDS compartment 0.0
δ2 The disease-induced death rate for individuals of the treated compartment 0.4147
µ1 The rate at which susceptible people change their sexual habits 0.1333
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Table 3. The sensitivity indices of the state variables at the endemic equilibrium point.

Parameter S* I* T*

Λ 0.0000 0.1237 0.1237
β −1.0000 −0.8762 −0.8762
α1 0.7231 −0.0894 −0.4970
α2 −0.1865 0.0230 −0.1297
δ1 0.0000 0.0000 0.0000
δ2 −0.4147 0.0513 −0.2885
µ1 −0.7382 0.6213 0.6213

The sensitivity index values for the endemic equilibrium point and reproduction
number were calculated using MATLAB and are given in Tables 2 and 3. The sensitivity
indices in Table 3 show that the state variables of the endemic equilibrium point that are
important for us are highly affected by three parameters. The first parameter is β, for which
the sensitivity index is −1 for the first state variable of the endemic equilibrium point, and
this value is −0.8762 for the second and third state variables. The second parameter that
has a large sensitivity index is α1, for which the sensitivity index for the first state variable
is 0.7231, that for the second state variable is −0.0894, and that for the third state variable
is −0.4970. Finally, the third variable is µ1; its sensitivity index values for the first, second,
and third state variables are −0.7382, 0.6213, and 0.6213, respectively.

The results of the sensitivity analyses show that the three aforementioned parameters
may be effective in controlling the disease. Therefore, one control effort is to change the
contact rate between susceptible and infectious people (β). The second control effort is
to change the rate at which people in the treated compartment return to the infectious
class (α1). Finally, the last control effort is to change the rate of changes in sexual habits of
individuals in the susceptible class (µ1).

5. Necessary Conditions for Optimality of an FOCP

This section describes the general formulation of an FOCP and the necessary condi-
tions for its optimality. An FOCP can be defined as follows:

J(u) =
∫ t f

0
L(t, x, u)dt (6)

This is subject to the dynamic constraint

CF
0 Dα

t x(t) = f (t, x, u) (7)

with initial condition x(0) = x0. Here, x(t) and u(t) are state and control vectors, respec-
tively. L and f are differentiable functions, and 0 < α ≤ 1.

Theorem 1. We define a Hamiltonian as follows:

H(t, x, u, λ) = L(t, x, u) + λ ∗ f (t, x, u) (8)

where λ ∈ C1
[
0.t f

]
is a function. If λ, x, u satisfy the equations

CF
0 Dα

t x(t) = ∂H(t, x(t), u(t), λ(t))
∂λ

CF
t Dα

t f
λ(t) = ∂H(t, x(t),u(t),λ(t))

∂x
∂H(t, x(t),u(t),λ(t))

∂u = 0
λ(t f ) = 0

(9)

then (x, u) is the minimizer of Equation (6).
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Proof. Substituting Equation (8) into Equation (6) results in the following equation:

J(u) =
∫ t f

0
(H(t, x, u, λ)− λ. f (t, x, u))dt (10)

The necessary condition for the optimality of an FOCP is Equation (11):

δJ(u) = 0 (11)

Therefore, to obtain the optimal control laws, by taking the variation of Equation (10),
the right side of Equation (10) is calculated:

δJ(u) =
∫ t f

0

[
δx

∂H
∂x

+ δu
∂H
∂u

+ δλ
∂H
∂λ
− δλ.CF

0 Dα
t x(t)− λ.δ

(
CF
0 Dα

t x(t)
)]

dt (12)

where δx, δu, and δλ are the variations of x, u, and λ, respectively. It can be calculated
that [71] ∫ t f

0
λ(t).δ

(
CF
0 Dα

t x(t)
)

dt =
(

CF
t I1−α

t f
λ(t)

)
−
∫ t f

0
δx.
(

CF
0 Dα

t λ(t)
)

dt (13)

Now, by substituting Equation (13) into Equation (12), we have

δJ(u) =
∫ t f

0 [δx[ ∂H
∂x −

CF
0 Dα

t λ(t)]+δu[ ∂H
∂u ]+δλ[ ∂H

∂λ −
CF
0 Dα

t x(t)]]dt+(
CF
t I1−α

t f
λ(t)

)
δx|t=t f

.
(14)

By taking Equation (14) into consideration, it can be concluded that the coefficients of
δx, δu, and δλ must be equal to zero, leading to the following equations:

CF
0 Dα

t x(t) = ∂H(t,x(t),u(t),λ(t))
∂λ

CF
t Dα

t f
λ(t) = ∂H(t,x(t),u(t),λ(t))

∂x
∂H(t,x(t),u(t),λ(t))

∂u = 0
CF
t I1−α

t f
λ(t)|t=t f

= 0

(15)

Since λ(t) is a continuous function, it can be concluded that

CF
t I1−α

t f
λ(t)|t=t f

= λ
(

t f

)
(16)

Also, it has been proven that the following equations hold [72]. �

Lemma 1. The following equations hold:

CF
t Dα

t f
λ(t) =

∂H(t, x(t), u(t), λ(t))
∂x

(17)

CF
0 Dα

t λ
(

t f − t
)
=

∂H
(

t f − t, x
(

t f − t
)

, u
(

t f − t
)

, λ
(

t f − t
))

∂x
(18)

where 0 < α ≤ 1.

Proof. The CF fractional derivative is defined as follows [37]:

CF
0 Dα

t f (t) =
1

1− α

∫ t

0
f ′(x) exp

(
−α

t− x
1− α

)
dx, t > 0 (19)



Entropy 2021, 23, 610 7 of 20

It is obvious that

CF
t Dα

t f
λ(t) =

1
1− α

∫ t f

t
λ′(x) exp

(
−α

x− t
1− α

)
dx (20)

Now, replacing t by t f − t in Equation (20) gives

CF
t f−tD

α
t f

λ
(

t f − t
)
=

1
1− α

∫ t f

t f−t
λ′(x) exp

(
−α

x− t f + t
1− α

)
dx (21)

By defining a new variable as w = t f − x, Equation (21) can be written in the following
form:

CF
t f−tD

α
t f

λ
(

t f − t
)
= 1

1−α

∫ 0
t λ′(tf −w) exp

(
−α t−w

1−α

)
(−dw) = −1

1−α

∫ t
0 (λ(tf −w))′

(22)

Therefore, the optimality conditions are as follows:

CF
0 Dα

t x(t) = ∂H(t,x(t),u(t),λ(t))
∂λ

CF
0 Dα

t λ(t) =
∂H(t f−t,x(t f−t),u(t f−t),λ(t f−t))

∂x
∂H(t,x(t),u(t),λ(t))

∂u = 0

(23)

�

6. Fractional Optimal Control of the HIV/AIDS Model

In this section, using sensitivity analyses, the fractional model of HIV/AIDS proposed
by [49] is modified. The proposed model was developed in order to reduce infection using
control via condom use, u1; optimization of ART treatment via control u2; and changing
individual habits in order to reduce infection by means of control u3. Optimal control was
implemented in order to find the optimal control actions for the modified model developed
in this research. The modified proposed model is written as follows:

CF
0 Dα11

t S(t) = Λ− β(1− ε1u1(t))I(t)S(t)− u3(t)S(t)− dS(t)
CF
0 Dα22

t I(t) = β(1− ε1u1(t))I(t)S(t) + ε2u2(t)T(t)− dI(t)− k1 I(t)− k2 I(t)
CF
0 Dα33

t A(t) = k1 I(t)− (δ1 + d)A(t) + α2T(t)
CF
0 Dα44

t T(t) = k2 I(t)− ε2u2(t)T(t)− (α2 + d + δ2)T(t)
CF
0 Dα55

t R(t) = u3(t)S(t)− dR(t)

(24)

The initial values of the states are

S(0) = S0, I(0) = I0, A(0) = A0, T(0) = T0, R(0) = R0. (25)

In the proposed model, it was assumed that α11 = α22 = α33 = α44 = α55 = α.
As mentioned, u1 is control via condom use, so using this control input, the rate of

contact between the susceptible population and the infectious population can be reduced;
ε1 ∈ (0, 1) measures the effectiveness of condom use. u2 is control of the ART treatment
rate of the population in the treated compartment; ε2ε(0, 1] is the effectiveness of ART
treatment in increasing the level of CD4+ T cells. Lastly, u3 is the rate at which susceptible
people change their sexual habits per unit time.

J(u) =
∫ t f

0

[
AS(t) + BT(t) +

C1

2
u2

1(t) +
C2

2
u2

2(t) +
C3

2
u2

3(t)
]

dt (26)
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Subject to the modified model in Equation (24), the Hamiltonian of the problem is
defined as follows:

H = AS(t) + BT(t) + C1
2 u2

1(t) +
C2
2 u2

2(t) +
C3
2 u2

3(t)+
λ1(Λ− β(1− ε1u1(t))I(t)S(t)− u3(t)S(t)− dS(t))+

λ2(β(1− ε1u1(t))I(t)S(t)+ ε2u2(t)T(t)− dI(t)− k1 I(t)− k2 I(t))+
λ3(k1 I(t)− (δ1 + d)A(t) + α2T(t))+

λ4(k2 I(t)− ε2u2(t)T(t)− (α2 + d + δ2)T(t) + λ5(u3(t)S(t)− dR(t))

(27)

As demonstrated in Equation (23), the necessary conditions for the optimality of (26)
are:

CF
0 Dα

t S(t) = Λ− β(1− ε1u1(t))I(t)S(t)− u3(t)S(t)− dS(t)
CF
0 Dα

t I(t) = β(1− ε1u1(t))I(t)S(t) + ε2u2(t)T(t)− dI(t)− k1 I(t)− k2 I(t)
CF
0 Dα

t A(t) = k1 I(t)− (δ1 + d)A(t) + α2T(t)
CF
0 Dα

t T(t) = k2 I(t)− ε2u2(t)T(t)− (α2 + d + δ2)T(t)
CF
0 Dα

t R(t) = u3(t)S(t)− dR(t)

(28)

For co-states, we have:

CF
0 Dα

t λ1

(
t f − t

)
= A + β

(
1− ε1u1

(
t f − t

))
I
(

t f − t
)(

λ2

(
t f − t

)
− λ1

(
t f − t

))
−
(

u3

(
t f − t

)
+ d
)

λ1

(
t f − t

)
CF
0 Dα

t λ2

(
t f − t

)
= β

(
1− ε1u1

(
t f − t

))
S
(

t f − t
)(

λ2

(
t f − t

)
− λ1

(
t f − t

))
−(d + k1 + k2)λ2

(
t f − t

)
+ k1λ3

(
t f − t

)
+ k2λ4

(
t f − t

)
CF
0 Dα

t λ3

(
t f − t

)
= −(δ1 + d)λ3

(
t f − t

)
CF
0 Dα

t λ4

(
t f − t

)
= −ε2u2(t)λ2

(
t f − t

)
+ α2λ3

(
t f − t

)
+
(

u2

(
t f − t

)
− (α2 + d + δ2)

)
λ4

(
t f − t

)
+ B

CF
0 Dα

t λ5

(
t f − t

)
= −dλ5

(
t f − t

)

(29)

Further,

∂H
∂u1

= C1u1(t) + λ2(t)ε1βI(t)S(t)− λ1(t)ε1βI(t)S(t) = 0
∂H
∂u2

= C2u2(t) + ε2λ2(t)T(t)− ε2λ4(t)T(t) = 0
∂H
∂u3

= C3u3(t)− λ1(t)S(t) + λ5(t)S(t) = 0
(30)

Also, the Lagrange multiplier vector must satisfy Equation (29). Using Equation (30), the
optimal controls are obtained as follows:

u′1(t) =
(λ2(t)ε1βI(t)S(t)−λ1(t)ε1βI(t)S(t))

C1

u′2(t) =
ε2λ4(t)T(t)−ε2λ2(t)T(t)

C2

u′3(t) =
λ1(t)S(t)−λ5(t)S(t)

C3

Then, the optimal controls are defined as follows:

u∗1(t) =


0 i f u′1(t) < 0

u′1(t) i f 0 < u′1(t) < 1
1 i f u′1(t) > 1

u∗2(t) =


0 i f u′2(t) < 0

u′2(t) i f 0 < u′2(t) < 1
1 i f u′2(t) > 1

u∗3(t) =


0 i f u′3(t) < 0

u′3(t) i f 0 < u′3(t) < 1
1 i f u′3(t) > 1
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7. Numerical Simulations

Herein, through numerical simulations, the control of the fractional model of HIV/AIDS
was studied. The proposed optimal control was implemented to minimize the number of
susceptible people, the population of the treated infectious people compartment, and the
cost of control efforts. In this paper, a three-step fractional Adams–Bashforth scheme was
implemented to calculate numerical solutions for the CF fractional differential equations.
The Adams–Bashforth is described first; this method was applied to the state and co-state
fractional equations, Equations (22) and (23). The iterative scheme was used for solving
the system dynamic equations. The iterative algorithm started with a guess at control
efforts during the simulation time, then, using the Adams–Bashforth scheme, the states
and co-states were calculated at each iteration; control efforts were then updated using the
obtained states and co-states, and this continued until the difference in states and co-states
in two sequential iterations became less than a predefined threshold.

Consider the following CF fractional differential equation:

CF
0 Dα

t x(t) = f (t, x, u). 0 < α ≤ 1 (31)

where CF
0 Dα

t (.) is the CF fractional differential equation defined in [49]. By integrating
Equation (31) using the CF fractional integral, we obtain:

CF
0 I α

t

(
CF
0 Dα

t (x(t))
)
= CF

0 I α
t ( f (t, x, u)) (32)

x(t)− x(0) =
1− α

M(α)
f (t, x, u) +

α

M(α)

∫ t

0
f (z, x(z), u(z))dz (33)

The time interval was discretized into steps with an interval of h; we thus have t0 =
0. tk+1 = tk + h. . . . . k = 0 : n− 1. Now, Equation (33) can be rewritten as

x(tk+1)− x(0) =
1− α

M(α)
f (tk, x(tk), u(tk)) +

α

M(α)

∫ tk+1

0
f (z, x(z), u(z))dz (34)

Also, we have

x(tk)− x(0) =
1− α

M(α)
f (tk−1, x(tk−1), u(tk−1)) +

α

M(α)

∫ tk

0
f (z, x(z), u(z))dz (35)

Subtracting Equation (35) from Equation (34) gives

x(tk+1)− x(tk) =
1−α
M(α) ( f (tk, x(tk), u(tk))− f (tk−1, x(tk−1), u(tk−1)))

+ α
M(α)

∫ tk+1
tk

f (t, x(t), u(t))dt
(36)

In order to calculate Equation (36), we approximated the integral
∫ tk+1

tk
f (t, x(t), u(t))dt

by
∫ tk+1

tk
K(t)dt, where K(t) is a Lagrange interpolating polynomial of degree two that can

be calculated using the following formula:

K(t) =
2

∑
i=0

f (tk−i, x(tk−i), u(tk−i))Li(t) (37)

where the Li(z) terms are the Lagrange basis polynomials at each point. Using the afore-
mentioned approximation, it can be proved that∫ tk+1

tk
f (t, x(t), u(t))dv = h

[
23
12 f (tk, x(tk), u(tk))− 4

3 f (tk−1, x(tk−1), u(tk−1))+
5
12 f (tk−2, x(tk−2), u(tk−2))

] (38)
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where v is defined as v =
tk+1−t

h . Then, using Equation (38), the following recursive formula
can be obtained for Equation (36):

x(tk+1) = x(tk) + 1
M(α)

[
(1− α) + 23

12 hα
]

f (tk, x(tk), u(tk))

− 1
M(α)

[
(1− α) + 4

3 hα
]

f (tk−1, x(tk−1), u(tk−1))

+ 5hα
12M(α)

f (tk−2, x(tk−2), u(tk−2))

(39)

There is a truncation error for this approximation [38]. In order to find the solution
of the fractional differential equation of the model Equation (24), we used Equation (39).
During simulations, it was assumed that the order of all fractional derivatives was the
same and was α = 0.95. For simulating the fractional HIV/AIDS model, Equations (28)
and (29) were written in vector form as follows:

CF
0 Dα

t x(t) = f (t, x, u). 0 < α < 1 (40)

CF
0 Dα

t λ
(

t f − t
)
= h

(
t f − t, x

(
t f − t

)
, u
(

t f − t
))

. 0 < α < 1 (41)

Here,

x(t) =


S(t)
I(t)
A(t)
T(t)
R(t)

. f (t.x.u) =


f1(t, x, u)
f2(t, x, u)
f3(t, x, u)
f4(t, x, u)
f5(t, x, u)

.λ(t) =



λ1

(
t f − t

)
λ2

(
t f − t

)
λ3

(
t f − t

)
λ4

(
t f − t

)
λ5

(
t f − t

)


.h(t, x, u) =



h1

(
t f − t, x, u

)
h2

(
t f − t, x, u

)
h3

(
t f − t, x, u

)
h4

(
t f − t, x, u

)
h5

(
t f − t, x, u

)



(42)

Further, f1(t, x, u) = Λ − β(1− ε1u1(t))I(t)S(t) − u3(t)S(t) − dS(t), f2(t, x, u) =
β(1− ε1u1(t))I(t)S(t)+ ε2u2(t)T(t)− dI(t)− k1 I(t)− k2 I(t), f3(t, x, u) = k1 I(t)− (δ1 + d)
A(t) + α2T(t), f4(t, x, u) = k2 I(t) − ε2u2(t)T(t) − (α2 + d + δ2)T(t), and f5(t, x, u) =
u3(t)S(t)− dR(t). Moreover, co-state fractional differential equation vectors were defined
as h1

(
t f − t, x, u

)
= A + β

(
1− ε1u1

(
t f − t

))
I
(

t f − t
)(

λ2

(
t f − t

)
− λ1

(
t f − t

))
−(

u3

(
t f − t

)
+ d
)

λ1

(
t f − t

)
, h2

(
t f − t, x, u

)
= β

(
1− ε1u1

(
t f − t

))
S
(

t f − t
)

(
λ2

(
t f − t

)
− λ1

(
t f − t

))
− (d + k1 + k2)λ2

(
t f − t

)
+ k1λ3

(
t f − t

)
+ k2λ4

(
t f − t

)
,

h3

(
t f − t, x, u

)
= −(δ1 + d)λ3

(
t f − t

)
, h4

(
t f − t, x, u

)
= −ε2u2(t)λ2

(
t f − t

)
+ α2λ3(

t f − t
)
+
(

u2

(
t f − t

)
− (α2 + d + δ2)

)
λ4

(
t f − t

)
+ B, and h5

(
t f − t, x, u

)
= −dλ5(

t f − t
)

. Finally, using the recursive formula in Equation (39), the solution of both
Equations (28) and (29) was obtained. The system parameters for the simulations are given
in Table 1. The optimal controller parameters were considered as A = 20, B = 300, C1 = 1,
C2 = 20, and C3 = 1. In addition, the fractional-order of the CF derivative was consid-
ered as α = 0.98.
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7.1. Strategy A: Control Using Treatment Alone

In this strategy, only the control u2 was used to control the ART rate in the treated
compartment per unit time. Figure 1 shows the results of the simulation of the case when
only the control u2 was applied to the system. It can be seen that for the aim of minimizing
the population of the treated compartment, this control effort performed well, but it had
detrimental effects on other states.
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It can be seen in Figure 2 that control efforts were at 0 for approximately 100 days,
and then they increased and reached 1; again, after a period of time, they returned to 0
linearly, and as is obvious, at the end of the simulation the control efforts u1 had reached a
zero value. It should be noted that for the simulations of the system without a controller,
the values of control inputs were considered to be constant at u1 = 1

ε1
, u2 = 0, and u3 = 0.

Figure 3 depicts the time history of function L when Strategy A was applied to the system.
Based on Figure 3, the optimal controller effectively reduced function L. As shown in
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Figure 1, this strategy (only the use of ART) could not improve the situation for all groups.
Therefore, we need to apply prevention actions with ART, which are investigated in the
next sections.
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7.2. Strategy B: Control Using Treatment and Changes in People’s Sexual Habits

In this section, the behavior of the system was simulated for the case in which u2
and u3 are used to control the ART rate in the treated compartment per unit time and the
proportion of susceptible people who have changed their sexual habits per unit time. The
simulation results show the effectiveness of controlling the aforementioned parameters.
Figure 4 shows that the population of susceptible people decreased significantly compared
to the case with no control effort on the system, and it also shows that the number of
people with full-blown AIDS did not change greatly from that in the case with no control
effort. However, it can be observed that the population of the treated compartment reached
zero over time. Furthermore, it can be seen that the number of people in the removed
compartment increased remarkably.
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As Figure 5 shows, ART was applied to individuals in the treated compartment at its
maximum rate for half of the simulation time, and it dropped and reached zero after about
40 days; it can be concluded that people in the susceptible compartment must maintain
changes in their sexual habits for most of the time, and it can be seen that the control efforts
u3 decreased sharply at the end of the simulation and reached zero. Additionally, Figure 6
demonstrates that Strategy B effectively decreased the value of function L.
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7.3. Strategy C: Control Using Prevention, Treatment, and Changes in Sexual Habits

In this case, all of the control efforts were applied to the system in order to minimize
the predefined cost function, Equation (20). The results of the simulation show that the
population of the susceptible compartment plunged; it remained at a low level and did not
rise again. Besides this, the maximum number of infected people decreased compared to
that in the case with no control effort, and the rate of decrease in the population of infectious
individuals was faster. In addition, Figure 7 shows that the number of individuals with
full-blown AIDS reached zero faster than it did in the case with no control effort. As can be
observed in Figure 7, the maximum number of people in the treated compartment declined
significantly, and the population decreased more sharply than it did in the case where
no control effort was applied to the system. Figure 8 shows the time history of control
efforts; it can be seen that control effort u1 was at 1 for about 400 days, then it decreased
delicately and reached 0, so it can be concluded that the contact rate of susceptible people
and individuals in the infectious class must decrease by the use of condoms at a minimum
rate. In addition, it is obvious that the rate of ART plunged after about 400 days and then
reached zero slowly, so after about 400 days, there is no need for ART. Figure 8 shows that
the individuals in the susceptible people compartment must maintain changes in their
sexual habits until the end of the simulated time period. Figure 9 shows that the value of
function L was reduced by Strategy C.
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Figure 7. The number of individuals under Strategy C, which includes condom use, ART treatment, and
changes in the sexual habits of susceptible patients: (a) Susceptible patients; (b) People who are infectious; (c) Individuals
for whom the treatment is not effective; (d) Individuals being treated with ART for whom the treatment is effective; (e)
Individuals who have changed their sexual habits sufficiently.
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7.4. Comparing Different Strategies

As shown in Figure 1, Strategy A, which only applies ART, could not improve all
groups’ situations. In Strategy B, the situation was better. As demonstrated in Figure 4, the
population of susceptible people decreased significantly compared to that under Strategy
A. In this strategy, the population of the treated compartment reached zero. Strategy C was
the best one. In this strategy, the number of individuals with full-blown AIDS reached zero
faster than it did in other strategies (especially compared with Strategy A). As shown in
Figure 7, the maximum number of people in the treated compartment declined significantly,
and the population of recovered people increased.

Also, to compare the results of all strategies easily, we can investigate the cost functions.
As shown in Figures 3, 6 and 9, the value of the cost function in Strategy A was greater
than those in Strategies B and C. Thus, it can be concluded that Strategy A is less effective
than the other two investigated strategies.



Entropy 2021, 23, 610 17 of 20

8. Conclusions

In this paper, a CF fractional HIV/AIDS model was studied. In order to find control
strategies to control disease, a sensitivity analysis was conducted. The results of the
sensitivity analyses show that three parameters are more effective than others in controlling
the disease. Using the results of these analyses, a modified model was proposed. The
necessary conditions for the optimal control of the disease using control of the contact rate
of susceptible and infectious people, control of the ART rate of the treated compartment
population, and, finally, control of the rate of changes in the sexual habits of susceptible
people were derived. Using a three-step fractional Adams–Bashforth scheme, simulations
for four strategies were conducted, and the results of the simulations show that the best
strategy is to use all of the control efforts simultaneously. Besides this, the results of the
simulations show that the populations of the treated compartment and susceptible people
class decreased at a higher rate under control strategies than when there was no controller.
Furthermore, the population of the removed class increased notably. By considering the
simulation results, it can be concluded that the proposed optimal controller is effective in
controlling the disease. As a future suggestion, the advantages of the CF derivative can
be used in the modeling of other biological systems. Furthermore, the optimal controller
designed in the current paper is given as an open-loop controller. Hence, in a future study,
by developing the proposed controller into a closed-loop one, its performance can be
enhanced in dealing with modeling errors, uncertainties, and external disturbances.
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