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Abstract Correlated neural activities such as synchroniza-
tions can significantly alter the characteristics of spike transfer
between neural layers. However, it is not clear how this syn-
chronization-dependent spike transfer can be affected by the
structure of convergent feedforward wiring. To address this ques-
tion, we implemented computer simulations of model neural
networks: a source and a target layer connected with different
types of convergent wiring rules. In the Gaussian-Gaussian (GG)
model, both the connection probability and the strength are given
as Gaussian distribution as a function of spatial distance. In the
Uniform-Constant (UC) and Uniform-Exponential (UE) models,
the connection probability density is a uniform constant within a
certain range, but the connection strength is set as a constant
value or an exponentially decaying function, respectively. Then
we examined how the spike transfer function is modulated under
these conditions, while static or synchronized input patterns were
introduced to simulate different levels of feedforward spike syn-
chronization. We observed that the synchronization-dependent
modulation of the transfer function appeared noticeably different
for each convergence condition. The modulation of the spike
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transfer function was largest in the UC model, and smallest in
the UE model. Our analysis showed that this difference was
induced by the different spike weight distributions that was gen-
erated from convergent synapses in each model. Our results sug-
gest that, the structure of the feedforward convergence is a crucial
factor for correlation-dependent spike control, thus must be con-
sidered important to understand the mechanism of information
transfer in the brain.

Keywords Spike transfer function - Feedforward networks -
Synaptic convergence - Spike synchrony - Neural oscillation

1 Introduction

Correlated neural activities are commonly found in the brain
(Salinas and Sejnowski 2001). In a large neural network, mutual
interaction between individual neurons often induces correlated
neural activities such as periodic oscillations in firing rate, as
reported in both experimental (Buzsaki et al. 1992; Buzsaki
and Draguhn 2004; Courtemanche et al. 2003; Donoghue et al.
1998; Engel and Singer 2001; Klimesch 1996; Singer and Gray
1995) and computational studies (Engel and Singer 2001; Fries
2005). In general, correlated neural spike activities appear as
various forms of spike synchronization (Gray and McCormick
1996; Salinas and Sejnowski 2001; Varela et al. 2001; Ward
2003) and may play an important role in the information pro-
cessing in the brain (Engel et al. 2001; Fries et al. 2001; Ward
2003; Womelsdorf et al. 2007). A number of studies have report-
ed that disruption of neural synchronization can result in a cog-
nitive dysfunction (Basar and Giintekin 2008; Dinstein et al.
2011; Grice et al. 2001; Hammond et al. 2007; Schnitzler and
Gross 2005; Uhlhaas and Singer 2006, 2010). In particular, pre-
vious studies have reported that correlated neural activities can
alter spike transfer functions between neural layers (Fries 2005,
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2009; Ratté et al. 2013; Wang et al. 2010), implying that varying
spike transfer may play a role in modulating the dynamics of a
neural network. However, it is not clear yet, if this
synchronization-dependent spike transfer, which might work as
a mechanism of dynamic control of spike transfer, can be
achieved conditionally on a specific feedforward pathway struc-
ture, or rather, be achieved independent of underlying circuitry.
Here we address this question by performing computer simula-
tions of feedforward neural networks with different types of con-
vergent synaptic connections.

A feedforward network is generally composed of unidirec-
tional interlayer connections from the lower (source) to the
higher (target) level neural layers (Felleman and Van Essen
1991; Kumar et al. 2010). In most cases, each cell in the target
layer receives input from more than one source cell through
convergent synaptic connections, as observed in the
thalamocortical connections in the visual system (Hubel and
Wiesel 1962). Here we hypothesize that the achievement of
synchronization-dependence of spike transfer is reliant on
convergent wiring in the feedforward pathway.

To test our idea, we developed a model simulation of three
convergence rules that have different spatial distributions of syn-
aptic connection probability and strength. This included one
where the connection probability and the strength were indepen-
dent of the spatial distance between source and target cells, and
one where all the connection parameters systemically changed as
a function of neural distance. Then we examined how the spike
transfer function changes under these conditions, while we varied
the synchronization level of input spikes.

We first confirmed that the spike transfer function of the
model neural network alters depending on the level of input
synchronization. In addition, we found that the modulation of
spike transfer function strongly depends on the convergence-
wiring rule, because the synchronization-dependency of trans-
fer function appeared significantly different in each conver-
gence model. We observed that the spike transfer function of
the target neuron was sensitively altered by the convergence
structure, because the weight distribution of input spikes were
significantly different in each convergence condition, even for
identical input sources.

This result suggests that feedforward convergence is a cru-
cial factor for achieving the correlation-dependent spike trans-
fer in neural systems, and may provide insight about the mech-
anism of information processing in the brain.

2 Materials and methods
2.1 Development of cell mosaics
To decide the spatial distribution of cells in source and target

layers, we used an adapted version of a pairwise interaction
point process (PIPP) model, which is a computational model
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of cell mosaic development (Eglen et al. 2005), where each
cell is relocated until the new position satisfies the designed
mosaic statistics (Fig. 1a,b). As a modification of the PIPP
model, we introduced a local repulsive interaction between
the nearby cells that induces a gradual shift of each cell posi-
tion. Source and target layers were developed independently
from an initial random distribution of cells. To avoid the sam-
pling bias in the boundary area, the target layer was designed
smaller than the source layer, with different unit distances for
source (d,) and target (d;) layers, dg = 2.2dr.

For the local repulsive interaction, we used a sigmoidal

. - . .
function F' (7)) so that the strength of repulsion increases
as two cells at X'; and X', get closer.

@ (5<(7]<23)

a
F(7) =1 ree[{([71-9) /o) ] |
0 (otherwise)
where 7 = X |— x5, the coefficienta = 10>, % = % and

the parameters for sigmoidal function were a=1.6, ¢=5.7d
and 6=0.089d.

At each time ¢, velocity of a cell V', is decided by the sum
of all repulsive interactions between the target and other cells,

s

Fnet,t

— — =1

Vi= Vil + Foay

— —

Frery = > Fi=c|Via| X Vi
1

To prevent too fast movement of cells, c| Vo | X V- wWas
added as a friction term, where ¢ = 0.1. We allowed 5000
iterations for the development of each mosaic.

2.2 Single model neuron

We developed a single model neuron in the target layer using
NEURON simulator (Carnevale and Hines 2006), based on
the Hodgkin-Huxley model (Hodgkin and Huxley 1952) as:

dv
CE =g (V_VL)_GNa(V_VNa)_GK(V_VK)_GCaT (V_VCaT)
—ge(t)(v-"VE)

where C is membrane capacitance, g; is leakage conductance,
g 1s excitatory synaptic conductance from input spikes, Gy is
conductance for X ion channel, and Vy is reversal potential for
the X ion channel. We included a sodium channel (Na), a
potassium channel (K), a T-type calcium channel (CaT), and
an excitatory synaptic input channel (£). The ion channel con-
ductance terms Gy,, Gk, and G, rare functions of membrane
potential v, and take the general form as in previous studies
(Hodgkin and Huxley 1952). The parameter values were
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Fig.1 Different models of convergence in feedforward neural networks.
(a) Part of source and target layer of feedforward network and its
distribution of nearest neighbor distance (d); ds is the expected unit
distance between two cells in the source layer when every cell is
distributed in a perfectly hexagonal lattice pattern. Each layer was
developed from a revised PIPP model. The terms 1 and o are the
average and standard deviation of the nearest neighbor distance of the
mosaic structure, respectively. (b) Structure of a feedforward neural
network. (c—e) Three different convergence rules. A target cell samples
convergent input from source cells in range (7)) with synaptic connection
strength (w). Estimated number of total synaptic connections (1) and sum
of connection strength (Xw) of a target cell were set to be equal between
models. (¢) Gaussian-Gaussian (GG) model: Both the connection proba-
bility and the strength are given as Gaussian distribution as a function of

determined from previous studies (Hodgkin and Huxley 1952),
as G, = 120 mS/em’, G =36 mS/em’, G, = 0.4 mS/em’, Ger
=2 mS/em?, En,=55mV, Ex=—80mV, E; =—65mV, Ec,r=
126.1 mV . A single neuron was designed as a point model of
cylindrical shape with both height and diameter equal to 28 pm.
The membrane capacitance was set to 1 pF/cm? and resistance to
200 ohm- cm. All the synaptic interactions, or excitatory

distance between source and target cells. (d—e) Uniform-Constant (UC)
and Uniform-Exponential (UE) models: The connection probability is
uniform within a certain range and the connection strength is set as a
constant (UC) or an exponentially decaying function (UE), respectively.
The dotted lines indicate the range of allowed variation of connection
strength across target neurons. (f) Sum of connection strength (Xw) for
different conditions of convergence: Xw increases as 7, or w, increases.
P,, was selected for further analysis. (g-h) Amplitude of oscillation in
mean firing rate of source neurons modulates the level of synchronization
in source activity: (g) Static (A,= 0) input generated by source cells, (h)
Synchronized input (As= 1). Top, Instantaneous firing rate of source cells.
Bottom, Raster plot of spikes in 100 source cells. Synchronization in spike
timings is observed for synchronized input

postsynaptic conductance (EPSC) were modeled as two-
parameter alpha function, gz(f) =w - [exp(—#/72) — exp(—t/T1)],
where 1= 1 ms and 7»= 3 ms are the rise and decay time con-
stants, and w is a synaptic-strength weight factor (Carnevale and
Hines 2006). The activities of neurons in the network were sim-
ulated for five seconds in each trial, and were repeated for 10
trials.
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2.3 Model feedforward networks of different convergence
rules

To build up a simple feedforward network, we first developed
cell mosaics of source and target layers of network, using an
adapted version of a pairwise interaction point process (PIPP)
model (Eglen et al. 2005), which assumes a local repulsive
interaction between neighboring cells (Fig. 1a, see Methods
2.1 for detailed model design). The source and target layers
included 1150 and 166 cells, respectively. For simplicity, all
the neurons were assumed to be excitatory and all the spatial
length units were normalized with the expected unit distance
(ds ) between two cells in the source layer when every cell is
distributed in a perfectly hexagonal lattice pattern. To develop
various convergent connections between the source and target
layers (Fig. 1b), we designed three wiring rules that consider
only two variables: connection probability and connection
strength (Fig. 1c,d, and e).

First, in the Gaussian-Gaussian (GG) model, which is con-
ventionally used for inter-neural connectivity in network mod-
el studies (Paik et al. 2009; Paik and Glaser 2010; Ringach
2004), the synaptic connection probability and connection
strength follow the 2D Gaussian as a function of distance

between the source and target cells: y = A exp (— %) , where
d is distance between cells, A is the maximum probability at
d =0, and o is the standard deviation, which controls the width
of the Gaussian curve (Fig. lc, leff). For connection probabil-
ity in our model, A was set to 0.85 within the range of con-
nection 7.= 30, and to 0 outside this range (McLaughlin et al.
2000; Reid and Alonso 1995). Under this condition, we could
estimate the expected number of convergent connections per
target neuron, 7, from the area below the connection probabil-
ity distribution (Fig. 1c, middle). Using this number n in the
GG model, we made a calibration between convergence
models so that the actual number of connections was about
the same in all models. Next, the connection strength for the
GG model was defined similarly, by the same Gaussian func-
tion where the maximum strength of connection w, was set as
a variable to determine the strength level of synaptic connec-
tions (Fig. lc, right).

For the other two convergence rules, Uniform-Constant
(UC) and Uniform-Exponential (UE) models, the connection
probability does not depend on the distance between the
source and target cells. This connection probability is set as
a uniform distribution within the range 7, estimated in the GG
model (Fig. 1d and e, middle), and the constant value of this
connection probability is calculated so that the expected num-
ber of connections per target neuron becomes the same as n in
the GG model.

The connection strength for each target cell in the UC and
UE models were also normalized so that the expected value of
total connection strength (), w) for each target cell was the
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same in all models. In the UC model, the connection strength
of every synapse connected to a specific target cell was set to a
constant, wc,' (Fig. 1d, right), which is the mean of connection
strength connected to that target cell in the GG model. In the
UE model, which is based on the observation of
thalamocortical circuits (Jin et al. 2011), the strength of each
connection was randomly sampled from an exponentially
decaying probability distribution, p(w) = X\ exp(—Aw), inde-
pendent of the distance between the source and target cell
(Fig. le, right). Also in this case, the value of \ was properly
chosen so that the sum of connection strength was always
equal to that in GG model. Due to the stochastic process in
connection wiring, the value of w, and X slightly vary for each
target cell.

2.4 Variation of convergence parameters and total
synaptic weight

In our convergence models described above, the sum of all
convergent synaptic connection weight for a target neuron can
be represented by two parameters in the GG model:
range of connection, r. and strength of connection, w,
(Fig. lc). This is because the other two models are set
to have the same amount of total synaptic weight as the
GG model. In general, r. decides how many source
cells will be connected to a target cell, and w,. deter-
mines how strong the connections will be. As each pa-
rameter increases, the total feedforward connection
strength > w increases. To test various cases of conver-
gence parameters and connection strength >w within
each model, we simulated the activity of a model net-
work for 36 parameter sets (P1—Ps4, Fig. 11).

2.5 Static and synchronized input spike patterns

To simulate different conditions of input spike correlation, two
types of input pattern (static and synchronized (Sync) inputs)
were designed to provide a source activity for the feedforward
network (Fig. 1g, h). The static input pattern of a source cell
was generated by a Poisson spike generator with constant
mean firing rate, f,= 20 Hz (Fig. 1g, fop). On the other hand,
for synchronized input, mean firing rate f{¢) of the spike gen-
erator of each cell was given as a sinusoidal function (Fig. 1h,
top) as

f(t) = fo(1 +Assin2nf p5ct))

Because the phase of the oscillation is identical for all the
source neurons, this oscillation induces synchronized activity
in the input spikes of source neurons (Fig. 1g, h, bottom). For
the synchronized input pattern, we simulated different levels
of oscillation by varying A from O (no synchronization, or
static; Fig. 1g) to 1 (Strong synchronization; Fig. 1h). The
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frequency of oscillation f,,,. was set to 40 Hz to model a gam-
ma band oscillation.

3 Results

3.1 Synchronization-dependent response modulation
in a feedforward network

We investigated the synchronization-dependent spike transfer
of'the three different convergent feedforward model networks.
We measured the response of target neurons while varying the
spike patterns of the source neurons, from static to strongly
synchronized (A= 0 to 1), as different levels of synchronized
input.

To investigate the response activity of the target lay-
er, the “spike transfer function” of a network was esti-
mated by measuring the firing rate of the target layer as
the response (R) to a given input of fixed spike counts.
Furthermore, “synchronization-dependent spike transfer”
was defined as the ratio between spike transfer for syn-
chronized input and for static input (Rsync/Rsiatic), tO
examine the effect of input synchronization more
precisely.

First, we compared the spike transfer between the conver-
gence models. For a fixed parameter set, we observed that
spike transfer increased as the input synchronization became
stronger (Fig. 2a). Interestingly, we noted that the mean firing
rate of the target neurons appeared different across the con-
vergence models for each type of given input. Because our
main interest was not the spike transfer itself, but how
much the response increased for the synchronized input,
we measured the “synchronization-dependent spike
transfer”, the ratio between the responses for static and
synchronized input patterns (Rgync/Rstatic) (Fig. 2b).
Although the response itself was greatest in the UE
model for all the input, the ratio of increase of firing
rate for synchronized input was greatest in the UC mod-
el. For further statistical analysis, we selected three con-
ditions of synchronization A= 0 (static), 0.5 (weak
Sync), 1 (strong Sync), and confirmed that both the
mean firing rate and the ratio between the static and
synchronized conditions were significantly different across con-
vergence models in all cases (* p = 5.7x107%, ** p=9.2x107'°,
sk p = 1.1x107'°, one-way ANOVA followed by post hoc
Bonferroni analysis; Fig. 2c and * p = 4.8x1077, **
p = 1.7x10""*, one-way ANOVA followed by post hoc
Bonferroni analysis; Fig. 2d).

Next, to confirm the difference between the models for the
other convergence conditions, we observed that the mean fir-
ing rate of target neurons increased as the total feedforward
connection strength (Xw) increased in the 36 different condi-
tions of parameter sets (P;-P3) we tested (Fig. 2e). This

relationship between the sum of synaptic weight 2w and the
firing rate of response was well fitted to a linear function. We
found that the slope of this linear fit noticeably varied as we
varied the input spike correlation from static to synchronized
patterns (Fig. 2¢). In all three convergence models (GG, UC,
and UE), the slope increased as the correlation level in the
input increased (* p = 7.2x107 "7, % p = 1.0x107 22, #wk
p = 1.4x102*, one-way ANOVA followed by post hoc
Bonferroni analysis; Fig. 2f). This result confirms that syn-
chronized or temporally correlated inputs can transfer more
spikes than uncorrelated inputs in a feedforward network. In
other words, even when the number of input spikes is the
same, the number of transferred spikes can significantly vary
depending on the level of input synchronization. This
suggests a synchronization-dependent modulation of
spike transfer. Interestingly, we observed that the mod-
ulation of spike transfer by input correlation appeared
different across the convergence models (* p = 4.2x10 2,
one-way ANOVA followed by post hoc Bonferroni analysis;
Fig. 2g). We found that the change of the slope in the response
function induced by input synchronization was significantly
larger in the UC convergence model than in the GG or UE
models. In other words, the spike-transfer function of the net-
work with UC-type convergence was more susceptible to the
change of synchronization level than that with the other two
convergence types.

To examine this further, we compared the response firing
rates of the system to static input and to strongly synchronized
input, for each condition of Xw (Fig. 2h). We confirmed that
the response activity to synchronized input was always higher
than that to static input, because the slope of the
Response(Static) vs. Response(Sync) graph was always great-
er than 1. More importantly, we found that this slope is larger
in UC model than in the other two models for both weak and
strong synchronization-input conditions (* p = 3.9x10 "4, #*
p = 2.4x10%', one-way ANOVA followed by post hoc
Bonferroni analysis; Fig. 2i). This result shows that
the modulation of spike transfer by synchronization is
the most significant in UC-type convergence, and sug-
gests that the structure of the feedforward convergence
is a critical factor for achieving a synchronization-dependent
spike transfer.

We performed additional simulations to investigate the ef-
fect of heterogeneous oscillation phase of each individual
source neuron activity (Supplementary Fig. S1). We ob-
served, in all three models, that the response increased
as the oscillating phase of each individual neuron was
more sharply synchronized, similar to the result where
synchronization was modulated by the amplitude of os-
cillation (Fig. 2a, b). We were also able to estimate the
response dependence on the phase synchronization by
calculating the response change ratio (Supplementary
Fig. Slc). Again, the response of the UC model was
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Fig. 2 Response firing rate increases as input is synchronized, with the
greatest increase in UC model. (a) Response (R) of target neurons for
different degree of synchronization in the activity of source neurons. The
response increases as Ay increases. A= 0, 0.5, 1 are chosen for further
analysis. Shaded area indicates standard variation. (b) Response for
different degree of synchronization normalized by the response for
static input (A= 0). As Arincreases, the response increases most in the
UC model. The average of the ratio at A,=11is 3.31, 2.51, and 1.57; in the
UC, GG, and UE model, respectively. Each curve is fitted to a cubic
polynomial and #* > 0.99 in all the models. In the magnified inset,
arrows indicate the threshold of A; at which more response is induced
than by static input, where each curve exceeds 5% above ‘1°. Threshold is
at Ay = 0.142, 0.173, and 0.272; in the UC, GG, and UE model,
respectively. (¢) Response (R) of target neurons for a particular set of
parameter condition, P,, (One-way ANOVA followed by post hoc
Bonferroni analysis, * p = 5.7x107¢, *% p = 9.2x]0 10, ==
p = 1.1x107'°). (d) Ratio of R for strongly/weakly synchronized and
static input (One-way ANOVA followed by post hoc Bonferroni analysis,
*p=4.8x10"° ** p=17x10""*. Change of R appears most significant
in the UC model. (e) Response of GG model for static and synchronized
(weak: A= 0.5, strong: 1) input. Pearson correlation coefficient () and p-

most dependent on the degree of phase synchronization,
similar to the oscillation strength dependence in Fig. 2.

3.2 Synchronization-dependent spike transfer for a single
spike input

Next, we tested to see if the convergence-dependent modula-
tion of the spike transfer is also observed in response to a
single spike input. In each simulation condition above, we
examined the average response per single input spike in each
neuron (Fig. 3a). Specifically, in each target neuron, we esti-
mated the average number of induced spikes (V) after every
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value of linear fitting for every input pattern are shown. (Pearson corre-
lation coefficient, » = 0.94, 0.96, 0.98 and p = 2.2x107'¢, 2.3x1072°,
2.2x107% for static, weakly and strongly synchronized input, respective-
ly) Responses of the UC and UE models are not shown. (f) Slope between
response and 2w in each model (One-way ANOVA followed by post hoc
Bonferroni analysis, * p = 7.2x107 7, #% p = 1.0x10 22, #*x*
p = 14x10"**. In every model, slope increases as the input pattern is
better synchronized. (g) Ratio of slope for strong synchronization over
static input in each model (One-way ANOVA followed by post hoc
Bonferroni analysis, * p = 4.2x10 2). Increase of slope for synchronized
input is greatest in the UC model. (h) Responses of three models for static
and strongly synchronized input. Pearson correlation coefficient () and p-
value of linear fitting are shown for every model. (Pearson correlation
coefficient » = 0.95, 0.95, 0.95 and p = 1.6x107"7, 1.9x107"°, 3.6x10>
for UC, GG, UE model, respectively) The plot between static and weakly
synchronized input is not shown. (i) Slope between response for strongly/
weakly synchronized input and static input (One-way ANOVA followed
by post hoc Bonferroni analysis, * p = 3.9x107", #% p =2.4x107"). The
ratio of response for synchronized input over response for static input is
greatest in the UC model

single input spike was received. Here, N is defined as the area
above the mean response level in the histogram of output
spikes, after each input spike to the cell (Fig. 3a). For example,
in the UC model at P,,, N=0.11 for static input, and N = 0.48
for strong synchronization. To investigate the dependency on
the input synchronization, the ratio of N between synchro-
nized and static input patterns are compared in each model
(* p = 1.4x107, n.s. p = 0.094, one-way ANOVA followed
by post hoc Bonferroni analysis; Fig. 3b). We found
that this ratio was highest in the UC model and that
the ratios of different convergence models were statisti-
cally distinguishable.
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Fig. 3 Synchronization-dependent response is greatest in the UC model.
(a) The number of average target spikes (V) induced by one source spike
for static and synchronized input pattern in UC model at P,,. N is counted
by excess target spike activity over the mean of the output-spike proba-
bility (dashed line). (b) Ratio of N between strongly/weakly synchronized
and static input (One-way ANOVA followed by post hoc Bonferroni
analysis, * p = 1.4x107, n.s. p = 0.094). Increase of N for synchronized
input is greatest in the UC model. (¢) Phase-dependent spike transfer in
each cycle of input oscillation. Variation of response for strong

This result reveals that every single input spike may have a
different probability of inducing a spike response, depending on
change in the correlation level of inputs. Moreover, this
correlation-dependent response modulation appeared strongest
in UC-type feedforward convergence, compared to UE and GG
types. From these results, we confirmed that the synchronization-
dependent spike transfer is most significant in the UC model,
from both population and single-spike level analysis.

Although N was different across static and synchronized
input, the peak of output spike chance was consistently at 6 ms
of delay from an input spike for different levels of synchroni-
zation. Considering that an identical set of rise and decay time
constants in EPSC was used in all models, the length of delay
is expected to mainly depend on the form of EPSC, rather than
the degree of oscillation or the convergence structure. The
dynamics of delay was not investigated further, because our
main interest was the varying part of the network originated
by the different convergence structures.

b
N Sync I'N Static
6 *
s UC
0
©
04
Strong Sync Weak Sync
Phase tuning of response
15 mm UC
N GG
mm UE
10
«
-~
B

Strong Sync

Weak Sync

synchronization is normalized by response for static input during one
period of oscillation at P,,. W is amplitude and § is full width at half
maximum of tuning curve. Dotted line at ‘1’ indicates the average re-
sponse level for static input. (d) Phase tuning between output response
and oscillation of input spike pattern (¥/9) (One-way ANOVA followed
by post hoc Bonferroni analysis, * p = 1.3x107, n.s. p = 0.26). The
degree of tuning between input and output for strong synchronization is
greatest in the UC model

3.3 Oscillation phase-dependent spike transfer

Next, to test if the convergence-dependent response modula-
tion we found could be instantaneously controlled by the tem-
poral correlation of input spikes, we investigated the phase-
dependency of spike transfer in each cycle of input oscillation
(Fig. 3¢). In a period of input oscillation (1/40 Hz =25 ms), we
counted the average number of induced spikes as a function of
the oscillation phase (colored solid lines), and compared this
with the spike responses to static input (black dashed line). We
observed that the spike responses in synchronized inputs are
phase-locked to different degrees, depending on the oscilla-
tion strength in all convergence conditions. To analyze this
quantitatively, we measured the amplitude (¥) and the width
(6, full width at half maximum) of the spike response curve
and calculated W/$ as the index of sharpness of phase tuning.
We found that the value of W/§ appears noticeably different
across convergence types, and is higher in UC model than in
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the other two (* p = 1.3x107>, n.s. p = 0.26, one-way ANOVA
followed by post hoc Bonferroni analysis; Fig. 3d), sug-
gesting that UC-type convergence can best perform a
synchronization-dependent spike filter, or transfer con-
trol, among the models we tested.

Our results show that the types of feedforward convergence
circuits may determine the effectiveness of synchronized input
spikes in a way that the network becomes either a very dy-
namic synchronization-dependent spike filter, or just a robust
relay station that is independent of input spike correlation.
Among those convergence models we tested, we found that
UC-type feedforward convergence could work as an effective
control of spike transfer that modulates spike transfer depend-
ing on the instantaneous change of spike correlation in the
input pattern.

3.4 Convergence structure regulates input spike profiles
towards a target cell

Having observed that the spike transfer function and the syn-
chronization dependency of each model network varied sig-
nificantly, we then examined whether this observed difference
between the models could be explained by their feedforward
convergence circuit structures.

In our model network, we confirmed that the distributions
of individual connection weights toward a target cell were
noticeably different across models (Fig. 4a), even though the
total synaptic connection weights were set to be consistent in
all models (area under each plot, Fig. 4a). Thus, we expected
these disparities would induce different input spike profiles for
each target neuron and result in dissimilar target cell activities.

To investigate how the identical source neuron activity is
converted into different input patterns for a target cell by each
convergence structure, we measured the number (V) and the
connection-weight sum (3 w) of input spikes within a tempo-
ral window (5 ms) before every input spike (¢, Fig. 4b) that a
target cell received. We assumed that the strength and syn-
chrony of input spikes can be simply described with these
two parameters (V, >, w). Based on this assumption, we de-
termined whether each input pattern of a parameter set (N,
w) could induce a spike in a target cell after each onset spike
(Fig. 4c). As aresult, we observed that the 2D profiles of input
patterns appear noticeably different across convergence types
(Fig. 4d), indicating that different synaptic convergence con-
ditions induce dissimilar input spike patterns onto a target cell,
even from identical input sources.

On the other hand, the spike probability for each condition
of (N, Y w) appears fairly similar across models (Fig. 4e, See
Supplementary Fig. S2 for details). This is understandable
because this result is dependent on the target cell response
function only, which is identical in all models. This observa-
tion shows that we can use the same spike probability function
to estimate output activity level for all models, for a given
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input profile. Using this result, we evaluated the expected
number of target spikes (Fig. 4f) by multiplying the target
spike probability (Fig. 4¢) and the measured input profile of
(N, Yw) in each model (Fig. 4d). Then, we compared the
estimated target cell firing, ® with the simulated result in
Fig. 2c, d. The estimated response, ®, in the UC, GG, and
UE models for both static and synchronized input patterns
were noticeably different from each other (* p = 3.7x107*,
% p=1.1x107°, % p =8.9x10 %, one-way ANOVA follow-
ed by post hoc Bonferroni analysis; Fig. 4g), and well agreed
with the observed result in Fig. 2¢. In addition, we calculated
the expected synchronization-dependency of network activi-
ties, from the ® ratio for static and synchronized input patterns
in each model. The observed result showed significant differ-
ence across the models (* p = 1.8x1074, #* p= 2.5x1071,
one-way ANOVA followed by post hoc Bonferroni analysis;
Fig. 4h), and agreed fairly well with the simulation result in
Fig. 2d. This indicated that the convergence-dependent input
pattern variation could explain the dissimilar synchronization-
dependency character between the models.

3.5 Functional implications across different convergence
types and ranges

In the neural system, it has been observed that the range of
convergence in feedforward networks is not fixed but varies
widely across the regions. For example, between the retina
and the lateral geniculate nucleus (LGN) in thalamus, the
feedforward pathway relies on a very simple wiring rule, a
nearly one-to-one connection between source and target neu-
rons (Usrey et al. 1999), while the wiring from the LGN to the
visual cortex follows a much more complicated convergent
form (Jin et al. 2011) (Fig. 5a). This implies that the wiring
rule of the convergence circuit may be one of the crucial
factors for understanding information processing in the visual
system. Having shown that each model of the feedforward
convergence circuit structure can induce different features of
synchronization-specific spike transfer, here we investigated
the functional implication of convergence by comparing it to
the response of the network from a very small range of con-
vergence (as a model of feedforward wiring from retina to
LGN) to large range (from LGN to visual cortex).

To investigate the way how the source signals are transmit-
ted in each convergence condition, we examined the number
of source spikes that induce an output spike in the target neu-
ron (Fig. 5b). We implemented the source neuron as a Poisson
spike generator with constant mean firing rate of 20 Hz, as in
Fig. 1, and then varied the convergence range of the model
neural network from 0.5 to 1.25, where ‘1’ is the connection
range used in Figs. 2 and 3, and the total connection
strength (3w) was kept the same across all the conver-
gence conditions, as before.
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Fig. 4 Distribution of connection strength regulates response sensitivity
to input synchronization. (a) Averaged distribution of connection strength
(w) of all input synapses onto a target neuron in each model. Black arrow
indicates w = 1.51, the threshold that a single input spike can generate a
target spike (b) Example of input profile parameters (V, >w) within a
temporal window. In the spike trains generated by source cells connected
to a common target cell, the number of input spikes (V) and connection-
weight sum (3 w) of input spikes within a temporal window (5 ms) were
measured before every input spike. (¢) Each input pattern of parameters
(N, Yw) was examined to see if it induced a spike in a target cell or not,
within 10-ms after each onset spike. To avoid over-counting the number
of windows that induced a target spike, only the cases that did not have
any additional input spike between the onset and the target spike was
counted. (d) Distribution of the parameter sets, (N, Y w), of all input
windows for static input. The number of inputs of parameter (N, > w)

We first observed that, in small convergence (range = 0.5),
only around two input spikes within 10 ms could induce a target
spike in all models (* p = 2.2x107'°, #* p = 2.4x10 13, s
p=83x10"" ns. p = 1, One-way ANOVA followed by post
hoc Bonferroni analysis; Fig. 5c), which works as a consistent
spike relay (Fig. 5¢). On the other hand, as the convergence range
became larger, it required a larger number of input spikes within

was counted for each model. (e) Averaged target spike probability of all
three models combined. See Supplementary Fig. S2 for details (f)
Estimated target response in each model obtained by multiplying the
input spike distribution in (d) and the target spike probability in (e). (g)
Target cell firing (P) was estimated by summing all the response matrix
components in (f). They appeared significantly different across models
(One-way ANOVA followed by post hoc Bonferroni analysis, *
p=37x107% % p = 1.1x107°, *** p = 8.9x10°°), and the difference
was consistent with the result simulated in Fig. 2¢ (h) The ® ratios of
static to synchronized input patterns were significantly different across
models, corresponding to the observed result in Fig. 2d (One-way
ANOVA followed by post hoc Bonferroni analysis, * p = 1.8x107%,
p =2.5x10""°). For (g)—(h), the observed results in Fig. 2¢c-d were indi-
cated as orange solid lines for comparison

10 ms to generate an output spike, which was more likely to
occur when source spikes were synchronized. This suggests that
the network with large convergence would be silent for static
input but respond only to synchronized inputs, operating as a
spike synchrony detector.

In addition, when the convergence range was small, we
found that all three models (UC, GG, UE) operated similarly
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Fig. 5 Network with large convergence sensitively responds to input
synchronization, while network with small convergence stably relays
source activity. (a) Illustration of convergence circuits in visual
pathway; a small convergence between the retina and the LGN, and a
large convergence between the LGN and the visual cortex. (b)
Characteristic of spike transfer. The number of source spikes (N) within
10 ms before a target spike indicates how many source spikes are required
to produce a target spike. Larger N implies that more spikes are needed to
provide a target spike. (¢) The number of source spikes N across different
conditions of convergence. As the range becomes larger, N in each model

as a spike relay. However, as the convergence range
became larger, we observed a noticeable difference of
spike transfer between the models (Fig. 5c). Thus, we
found that the spike transfer function of the circuit can
vary greatly by both the range and type of convergence
wiring in sensory information processing, such as in the
visual pathway.

From the perspective of functional implications, a
feedforward network with a small range of convergence could
be specialized for relaying information, as the thalamic receptive
field has a structure similar to that observed in the retina (Usrey
et al. 1999). On the other hand, a network with a large conver-
gence could play a role as a coincidence detector. Revisiting our
main results, a network with a large convergence could modulate
the sensitivity to synchronization, depending on how the synaptic
strength is distributed across the connections. As the range in-
creases, the difference between the convergence types becomes
important, implying functional diversity in the feedforward net-
work. As observed in experimental studies (Jin et al. 2011; Smith
and Héausser 2010), feedforward networks between layers may
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generally increases, implying that the network needs more input spikes
within a short time to generate a target spike. This condition makes the
network with large convergence respond only to synchronized inputs, as a
coincidence detector. Note that the difference between the models be-
comes larger as convergence range increases. This implies that spike transfer
function of a large convergence strongly depends on the structure of conver-
gence circuits. (One-way ANOVA followed by post hoc Bonferroni analysis,
#p=22x10710 %k p = 24x10713, #kk p = 83x107, ns. p = 1). The
average number of connections for a target cell at each range is 4.4, 9.8,
17.5, and 27.2, respectively

provide a basic circuit for information processing through con-
vergence wiring.

4 Discussion
4.1 Oscillation of firing rate and spike synchronization

Correlations in neural spike activities have been studied ex-
tensively in both experimental and theoretical research and a
number of studies have reported that synchronized neural
spikes might be crucial to information processing in the brain
(Buzsaki et al. 1992; Buzsaki and Draguhn 2004,
Courtemanche et al. 2003; Donoghue et al. 1998; Engel
et al. 2001; Engel and Singer 2001; Fries 2005; Gray and
McCormick 1996; Klimesch 1996; Salinas and Sejnowski
2001; Singer and Gray 1995; Varela et al. 2001; Ward 2003;
Womelsdorf et al. 2007). In accordance with the view that the
spike transfer between neural layers may control the network
dynamics, it also has been suggested that the brain may
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process information selectively through synchronization-
dependent modulation of response function or gain of the
neural system (Paik et al. 2009; Paik and Glaser 2010).
Although the appearance of neural selectivity originated by
the convergence between neural layers has been studied in
detail (Huerta-Ocampo et al. 2014; Morgan et al. 2016;
Wang et al. 2010), there has been little study of whether this
synchronization-dependent modulation of spike activity is de-
pendent on the structure of the convergent circuit, or if there is
any crucial factor in the convergent structure to control it.

In the current study, first we found that oscillations in the
input firing rate could control the synchronization of spike
trains. This is consistent with the general idea that various
kinds of neural oscillations observed in brain may work as
dynamic controllers of neural correlation (Basar et al. 2000;
Bastos et al. 2014; Fries et al. 2001; Koepsell et al. 2009; Paik
et al. 2009; Paik and Glaser 2010; Salinas and Sejnowski
2001; Uhlhaas and Singer 2010; van Kerkoerle et al. 2014,
Wang et al. 2010; Ward 2003). Next, we found that the re-
sponse of feedforward neural networks is, in general, altered
by the level of input synchronization to a certain degree. This
suggests that synchronization-dependent neural activity mod-
ulation is a generally applicable mechanism for the control of
neural response function, even without any changes in the
neural circuit such as the number or strength of synaptic
connections.

4.2 Synchronization-dependent activity depends
on the convergent connection rules

More importantly, we found that synchronization-dependent
spike transfer modulation is strongly influenced by the struc-
ture of a circuit, in relation to the convergent rule of
feedforward wiring. In previous anatomical studies, it was
observed that there exist various types of convergent wiring
in feedforward neural networks (Felleman and Van Essen
1991; Hubel and Wiesel 1962). For example, in visual sys-
tems the feedforward pathway from the retina to the thalamus
relies on a very simple wiring rule, close to the one-to-one
connection between source and target neurons, while wiring
from the thalamus to the visual cortex follows a much more
complicated convergent form (Jin et al. 2011; Usrey et al.
1999). This reveals that even in the same feedforward path-
way, the structure of feedforward wiring between different
layers may have different convergent structures.

Our results suggest that the different convergence struc-
tures may work as a different type of synchronization-
dependent spike transfer modulator. As we showed in our
result, one type of convergence rule may more dynamically
modulate the system’s transfer function as the input synchro-
nization increases or decreases, while another type of conver-
gent circuit is relatively insensitive to the change of input
correlation. As a result, two types of feedforward circuit may

be able to work as a type of information filter or gate, and the
brain may develop a different type of convergence structure in
different regions of the neural system, as needed for optimal
function.

The next question to ask is how these various convergent
structures develop in the brain. For example, one possible
mechanism that could account for this synaptic wiring could
be activity-dependent refinement of neural structure (Butts
et al. 2007; Chedotal and Richards 2010; Soto-Trevifo et al.
2001). It also might be relevant to a common notion that
neurons seek optimal wiring rules that minimize the cost of
wiring under particular functional constraints (Bullmore and
Sporns 2012; Chen et al. 2006; Chklovskii and Koulakov
2004; Kaiser and Hilgetag 2006; Young and Scannell 1996).
In general, it is possible that the optimal wiring rule may vary
under different developmental constraints, or by functional
structures that should be achieved during development.

In addition, a number of studies suggest that feedback from
cortex to subcortical layer, or top-down processing, could
contribute to the modulation of feedforward neural activity
(Buschman and Miller 2007; Buzsaki and Draguhn 2004;
Engel et al. 2001; Moldakarimov et al. 2015; Romei et al.
2010; Saalmann et al. 2007). Our result implies that one pos-
sible way to achieve top-down control of the incoming input is
to affect the feedforward convergent connection by changing
the synaptic weight distribution so that it modulates the
synchronization-dependency of the circuits. Further develop-
mental study might be helpful to validate this scenario.

4.3 Various frequency bands of neural oscillation
and spike transfer modulation

Among the known brain rhythms, gamma frequency oscilla-
tions are considered one of the most interesting features of
brain activity and a large number of studies have reported
the possible relationship between gamma oscillations and var-
ious brain functions (Engel and Singer 2001; Fries 2009; Fries
et al. 2007; Paik and Glaser 2010; Sohal et al. 2009; Tiesinga
and Sejnowski 2009; Uhlhaas and Singer 2010; Zheng and
Colgin 2015). Here we designed our simulation of the oscil-
lating input at 40 Hz, to mimic a gamma-band oscillation.
Thus, our results could be interpreted as a mechanism by
which the neural system responds to the synchronization in-
duced by gamma band oscillations. This may provide insight
into related problems, such as the modulation of sensory in-
formation by variation of gamma band power or frequency.
Even though we focused on synchronization at gamma
frequency, the mechanism we found here may not be limited
to that case. Our findings about the relationship between the
feedforward convergence and synchronization could general-
ly be applicable to various conditions of neural networks with
gamma or beta frequency oscillations. They might also be
applicable to even more complicated cases, such as those in
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which multiple components of oscillations exist together (e.g.,
theta and gamma, or beta and gamma). Therefore, our findings
here may reveal a general and fundamental mechanism for
how the neural system could make use of temporal correlation
of inputs to achieve a proper control of its response function.

In summary, we conducted a simulation study on the mod-
ulation of information transfer for different level of synchro-
nization of convergent inputs in feedforward networks con-
nected by various convergent rules. Overall, we found that the
synchronization-dependent spike transfer strongly depends on
the feedforward convergence circuit of a neural network. Our
results suggest that, not only the correlation of input spikes,
but also the convergent synaptic connectivity patterns in a
network, need to be considered to understand the mechanism
of information transfer in the brain.
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