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Abstract: Many correlations are available in the literature to predict the higher heating value (HHV)
of raw biomass using the proximate and ultimate analyses. Studies on biomass torrefaction are
growing tremendously, which suggest that the fuel characteristics, such as HHV, proximate analysis
and ultimate analysis, have changed significantly after torrefaction. Such changes may cause high
estimation errors if the existing HHV correlations were to be used in predicting the HHV of torrefied
biomass. No study has been carried out so far to verify this. Therefore, this study seeks answers
to the question: “Can the existing correlations be used to determine the HHV of the torrefied
biomass”? To answer this, the existing HHV predicting correlations were tested using torrefied
biomass data points. Estimation errors were found to be significantly high for the existing HHV
correlations, and thus, they are not suitable for predicting the HHV of the torrefied biomass. New
correlations were then developed using data points of torrefied biomass. The ranges of reported
data for HHV, volatile matter (VM), fixed carbon (FC), ash (ASH), carbon (C), hydrogen (H) and
oxygen (O) contents were 14.90 MJ/kg–33.30 MJ/kg, 13.30%–88.57%, 11.25%–82.74%, 0.08%–47.62%,
35.08%–86.28%, 0.53%–7.46% and 4.31%–44.70%, respectively. Correlations with the minimum mean
absolute errors and having all components of proximate and ultimate analyses were selected for
future use. The selected new correlations have a good accuracy of prediction when they are validated
using another set of data (26 samples). Thus, these new and more accurate correlations can be useful
in modeling different thermochemical processes, including combustion, pyrolysis and gasification
processes of torrefied biomass.

Keywords: biomass; torrefaction; higher heating value; proximate analysis; ultimate
analysis; correlations

1. Introduction

Biomass is widely-available renewable energy resource with balanced CO2 emissions and
absorption. However, for the proper use of biomass resources, their physical, chemical and
thermodynamic properties play an essential role in designing energy systems [1]. For instance,
the higher heating value (HHV), which gives the energy content of biomass, is considered to be
an important fuel parameter for designing a combustion system [2]. The HHV refers to the total
energy released by a kg of fuel when it is completely burnt out. The experimental procedure, as it
requires a properly insulated adiabatic bomb calorimeter, for determining the HHV of a fuel is
burdensome [3]. Therefore, having an accurate correlation is always an asset for a design engineer.
There are many correlations to predict the HHV of raw biomass using the proximate and ultimate
analyses. A detailed review on such correlations has been presented in Moreno et al. [3]. However,
the use of such correlations would only be appropriate if the estimation errors were in the acceptable
range. Estimation of errors between the model predicted and the measured HHV of biomass is
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expressed using different parameters, such as the mean absolute error (MAE), the average absolute
error (AAE) and the average bias error (ABE) [1,2,4–12].

To devise HHV predicting empirical correlations using multiple variables’ linear or non-linear
regression analysis of many data points, one can consider HHV as a dependent parameter and the
components of proximate (volatile matter, fixed carbon and ash contents) and ultimate analyses (carbon,
hydrogen and oxygen contents) as independent parameters. Akkaya [10] has adopted this approach,
which assumes HHV as a function of two, three and four independent variables, to develop proximate
analysis-based empirical correlations. Among all of the analyzed HHV correlations, Akkaya [10]
concluded that the correlation with four independent variables (moisture, fixed carbon, volatile matter
and ash contents) has the least error of estimation and can be used for the future. Parikh et al. [7] have
also initially proposed the various form of correlations that include both linear and non-linear effects
of different components of the proximate analysis. They then selected empirical correlation with all
three components of the proximate analysis because it has the minimum prediction error. A similar
methodology was also adopted by Nhuchhen and Salam [1] to derive HHV predicting correlation
using all components of the proximate analysis in the ratio forms.

However, one may argue that the selection of correlations with all components of proximate and
ultimate analyses may not be the correct approach, as the fixed carbon content or the oxygen content
may be replaced by the linear combination of other components. As it will not improve the prediction
power of correlation, such correlations with all components of proximate and ultimate analyses can
be avoided. Another aspect of developing empirical correlations is the use of a wide range of data
points. As the basis of the derivation of HHV predicting correlations is only a statistical analysis of the
data points incorporated in the analysis, such correlations will not be valid beyond the range of the
used data points. In addition, the correlation derived for a limited type of species or materials will
not be applicable for other types of materials. This study, thus, excludes the correlations with all of
the components of proximate and ultimate analyses and uses only the data points collected for the
torrefied biomass produced from various biomass species.

Recently, research on biomass torrefaction that can enhance the biomass fuel characteristics has
increased significantly. Many studies have shown that the torrefaction process, a thermal pretreatment
method, increases the HHV, hydrophobicity, grindability and combustion properties. Studies have
found that the torrefaction of biomass has changed components of both the proximate and ultimate
analyses. Typically, the dry torrefaction process is carried out at atmospheric pressure condition
in a temperature range of 200–300 ◦C and in an inert environment, whereas the wet torrefaction
process deploys a reactor with highly pressurized water in relatively low-temperature conditions
(180–230 ◦C) [13]. The changes in the properties of torrefied biomass depend on different operating
and design parameters, such as temperature, pressure, residence time, working media, particle size,
type of feedstock and reactor types. For instance, a high torrefaction temperature leads to more
devolatilization reactions and causes a more solid mass loss compared to that at low temperature.
More on the effect of torrefaction on biomass and the technologies of torrefaction are reviewed in
different publications [13–17].

While torrefaction reduces the percentage of volatile matter, it increases the percentage of the
fixed carbon and ash contents in the torrefied biomass. This increases the fuel ratio (fixed carbon to
volatile matter contents) of biomass and decreases the char reactivity [18]. This could lead to a more
stable combustion process of the torrefied biomass compared to that of the raw biomass. In the same
manner, the torrefaction process reduces the oxygen to carbon (O/C) and hydrogen to carbon (H/C)
ratios of biomass and makes biomass more compatible with coal.

Given the major changes in the proximate and ultimate analyses of the torrefied biomass, it may
be erroneous to use the existing HHV correlations, which were developed using raw biomass, for
predicting the HHV of the torrefied biomass. Though one may argue that the existing expressions,
which are valid for a wide range of biomass materials, may also be useful to determine the HHV of
the torrefied biomass, this study thus examines and confirms if the existing correlations based on
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the proximate and ultimate analyses can be used or not. At the time of writing this paper, no such
correlations, which use HHV, proximate analysis and ultimate analysis of torrefied biomass, are also
reported in the literature. This study, therefore, includes (i) reviewing the published literature on
biomass torrefaction and collects the information on proximate and ultimate analyses, (ii) reviewing
the published correlations to predict the HHV of raw biomass, (iii) examining if the currently available
correlations can be used to predict HHV of the torrefied biomass or not, (iv) developing new forms of
correlations for predicting HHV using a large number of published data points of the proximate and
ultimate analyses for the torrefied biomass and (v) validating the selected correlations with another set
of data.

2. Materials and Methods

Different published papers were reviewed to gather the information on proximate, ultimate and
heating value analyses of both the raw and torrefied biomass materials. The collected information
(in dry basis) from the literature for torrefied and raw biomass materials are summarized in
Table S1 [12,19–47] and Table S2 [2,7,9,12,19–28,30–35,37–60], respectively. Both tables are provided
in the supplementary file. Before validating the existing HHV correlations, HHV values of raw and
torrefied biomass were plotted with different components of the proximate and ultimate analyses to
get a visual insight.

In order to validate if the existing correlations can be deployed or not, only a few selected existing
HHV correlations were tested to predict the HHV of the torrefied biomass from Table S1. To ensure
all types of existing correlations get tested, different types of correlations that contain (a) only one
component; (b) only two components; (c) three or more components and (d) non-linear terms of
proximate and ultimate analyses were selected for testing purposes. Estimation errors were calculated
for the selected existing correlations using data from Table S1. Disagreements between the predicted
and the measured HHV of torrefied biomass were analyzed by calculating the estimation errors. More
discussions are presented in Section 3.2.

There could be a number of possible new forms of correlations that can predict the HHV of
torrefied biomass. Thus, the authors have used various new forms of correlations to incorporate the
individual and combination effects of different components of the proximate and ultimate analyses.
Table 1 presents all of the new form of correlations analyzed in this study. Constant terms a, b, c, d, e, f,
g and h are determined using the principle of the least sum square error between the measured and
predicted HHV values of torrefied biomass materials. Constant terms were initially guessed and then
iterated to minimize the sum of square errors (∑N

i=1(Pi −Mi)
2).

Table 1. Studied new forms of higher heating value (HHV) correlations using proximate and ultimate
analyses. PSP, present study proximate; PSU, present study ultimate.

Representation New Forms of Correlations

Proximate analysis
PSP1 HHV = a + b× ASH
PSP2 HHV = a + b× FC
PSP3 HHV = a + b×VM
PSP4 HHV = a×VM + b× FC
PSP5 HHV = a× FC + b× ASH
PSP6 HHV = a× ASH + b×VM
PSP7 HHV = a + b×VM + c× FC
PSP8 HHV = a + b× FC/VM
PSP9 HHV = a + b× FC + c× FC2

PSP10 HHV = a + b×VM + c× FC + d×VM2 + e× FC2

PSP11 HHV = a + b×VM + c× ASH + d×VM2 + e× ASH2

PSP12 HHV = a + b× FC + c× ASH + d× FC2 + e× ASH2
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Table 1. Cont.

Representation New Forms of Correlations

Ultimate analysis
PSU1 HHV = a + b× C
PSU2 HHV = a + b× H
PSU3 HHV = a + b×O
PSU4 HHV = a + b× C + c× H
PSU5 HHV = a + b× C + c×O
PSU6 HHV = a + b× H + c×O
PSU7 HHV = a + b× C + c× H + d× N + e×O
PSU8 HHV = a + b×O/C
PSU9 HHV = a + b× H/C
PSU10 HHV = a + b×O/C + c× H/C
PSU11 HHV = a + b× C + c× C2

PSU12 HHV = a + b× C + c× H + d× C2 + e× H2

PSU13 HHV = a + b× C + c×O + d× C2 + e×O2

PSU14 HHV = a + b×O/C + c× (O/C)2

PSU15 HHV = a + b×O/C + c× H/C + d× (O/C)2 + e× (H/C)2

PSU16 HHV = a + b× C2 + c× C + d× H + e× CH + f × N

Estimation Errors

The correlation is said to be the best-fitted regression line if the error of the estimation tends
to zero [1]. However, it would be not possible to have such correlations. Therefore, three forms of
estimation errors, including the mean absolute error (MAE), average absolute error (AAE) and average
biased error (ABE), were calculated to select statistically-appropriate HHV correlations. All of the
estimation errors are determined as:

MAE =
N

∑
i=1
|Pi −Mi|/N

AAE =

(
N

∑
i=1
|Pi −Mi|/Mi

)
/N

ABE =

(
N

∑
i=1

(Pi −Mi)/Mi

)
/N

where P and M represent the predicted and measured HHV of the biomass sample, respectively.
N (246) is the number of sample data used for the regression analysis. While the AAE measures
the degree of closeness between the predicted and measured HHV values, the ABE tells the degree
of overestimation and underestimation of the HHV values. On the other hand, the MAE provides
the amount of error in the same unit that the physical quantity has. This study has considered the
correlation with the lowest MAE value as a probable best correlation. Therefore, the predicted HHV
values will not be exactly the same as the experimentally-measured data. Different studies [1,2,4–12]
have adopted this approach of analyzing the estimation errors for developing empirical correlations to
predict the HHV of biomass and coals.

3. Results and Discussion

3.1. Scatter Distribution of Data

Figures 1 and 2 show how the HHV of biomass varies with different components of the proximate
and ultimate analyses, respectively. Figure 1a indicates that the variation of HHV with the volatile
matter content (VM) of raw biomass and of torrefied biomass has the opposite trend. While HHV of
the torrefied biomass decreases with the increase in volatile matter content, the HHV of raw biomass
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increases with the VM. This tells us that the predicted HHV value of the torrefied biomass using the
existing HHV correlations with a volatile matter term will have a high degree of uncertainty. On the
other hand, Figure 1b,c show that the HHV values are in the same trend with the fixed carbon (FC)
and ash (ASH) contents of both the torrefied and raw biomass. The scattered plot of the HHV with
the FC shows that the HHVs of raw and torrefied biomass have a good trend and can be fitted to
a single curve using FC as an independent variable. However, the variation of the HHV values with
the ash content cannot be predicted by a single correlation. The existing correlations with the term ash
content will underestimate the HHV of the torrefied biomass. Considering these facts, one can note
that the HHV correlations based on the proximate analyses developed for the raw biomass have to be
modified if they were to be used for torrefied biomass. Since the torrefaction process can affect all of the
components of the proximate analysis, it is always good to have a new correlation with all components
of the proximate analysis. This would help to incorporate all changes in the torrefied biomass.
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Figure 1. Variation of the HHV values of raw and torrefied biomass: (a) fixed carbon content; (b) volatile
matter content; and (c) ash content.
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The variations of the HHV of both the raw and torrefied biomass with respect to the compositions
of the ultimate analysis are shown in Figure 2. Though the HHV values of the raw and torrefied
biomass show a good relation with carbon content, hydrogen and oxygen contents have a more
scattered distribution of the HHV values. The HHV of both raw and torrefied biomass increases
with the carbon content, which agrees with the current studies [8,11]. While the HHV increases with
the hydrogen content of raw biomass, it decreases in the torrefied biomass (Figure 2b). However,
the HHV values decrease with the increase in the O/C and H/C ratios for both raw and torrefied
biomass. Despite that a small change in nitrogen or sulfur contents may change the HHV, this study
excluded variations of HHV with them because their concentrations in biomass materials were very
small (Tables S1 and S2).
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Figure 2. Variation of the HHV values with the compositions of ultimate analysis: (a) carbon;
(b) hydrogen; (c) oxygen; (d) O/C; and (e) H/C.

In addition to this, one can see from Figures 1 and 2 that the variance of data points for the
torrefied biomass is more compared to that for the raw biomass. One may argue that the trend should
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be the opposite as the torrefaction process degrades raw biomass and produces a more homogenized
product. However, one should also need to consider that the data points of torrefied biomass used for
plotting Figures 1 and 2 have a wide variety of torrefied products produced from the different types
of torrefaction processes, including dry torrefaction, wet torrefaction and pressurized torrefaction.
The product qualities also depend on the operating conditions (temperature and time). The degree
of degradation of raw biomass varies heavily based on the temperature of torrefaction and holding
time. Additionally, the product qualities are also affected by the type of reactors (fixed bed, rotary
reactor and fluidized bed reactors). Considering these, the large variances found in Figures 1 and 2 for
torrefied biomass are reasonable.

3.2. Validation of Existing Correlations Using Data from Torrefied Biomass

From Figures 1 and 2, it is clear that existing correlations with individual proximate and ultimate
analyses terms cannot be used to estimate the HHV of the torrefied biomass. To determine the
possibility of using existing correlations, estimation errors for the selected existing correlations were
calculated using the set of data presented in Table S1. Tables 2 and 3 present the estimation errors for the
existing HHV correlations based on proximate and ultimate analyses of torrefied biomass, respectively.

Table 2. Estimation errors of existing proximate analysis-based correlations using the properties of the
torrefied biomass. VM, volatile matter; FC, fixed carbon; AAE, average absolute error; ABE, average
bias error.

Equation (P) Existing Proximate Analysis-Based Correlations MAE AAE ABE Ref.

1 HHV = 20.067 − 0.234ASH 3.67 15.48 −15.14 [61]
2 HHV = 26.601 − 0.304ASH − 0.082VM 2.89 12.26 −11.80 [61]
3 HHV = −10.81408 + 0.3133(FC + VM) 3.70 15.81 −15.29 [5]
4 HHV = 0.196FC + 14.119 3.03 13.37 −10.43 [4]
5 HHV = 0.312FC + 0.1534VM 3.33 14.43 −13.94 [4]
6 HHV = 0.3543FC + 0.1708VM 1.58 6.88 −3.29 [6]
7 HHV = 0.356248VM − 6.998497 6.85 28.94 −25.56 [62]
8 HHV = −0.0066FC2 + 0.5866FC + 8.752 3.66 15.50 −13.28 [63]
9 HHV = −0.0066VM2 + 0.7371VM + 1.2305 3.62 15.26 −12.08 [63]
10 HHV = 19.914 − 0.2324ASH 3.80 16.08 −15.79 [8]
11 HHV = −3.036 + 0.2218VM + 0.2601FC 3.39 14.36 −14.06 [8]
12 HHV = 0.3536FC + 0.1559VM − 0.0078ASH 2.25 9.82 −8.04 [7]
13 HHV = −0.1882VM + 32.94 3.24 14.68 −6.23 [64]
14 HHV = 0.1905VM + 0.2521FC 2.69 10.61 −10.61 [9]
15 HHV = 20.86 − 0.261ASH 3.14 13.19 −12.28 [65]
16 HHV = −13.173 + 0.416VM 8.75 37.27 −35.84 [65]
17 HHV = −2.057 − 0.092ASH + 0.279VM 6.99 29.71 −28.66 [65]
18 HHV = 35.4879 − 0.3023ASH − 0.1905VM 1.73 7.58 −3.68 [12]
19 HHV = 19.2880 − 0.2135VM/FC − 1.9584ASH/VM + 0.0234FC/ASH 3.40 14.19 −12.82 [1]
20 HHV = 18.96016 − 0.22527ASH 4.69 20.06 −19.94 [66]

Table 3. Estimation errors of existing ultimate analysis-based correlations using the properties of the
torrefied biomass.

Equation (U) Existing Ultimate Analysis-Based Correlations MAE AAE ABE Ref.

1 HHV = −3.147 + 0.468C 1.49 6.66 3.26 [65]
2 HHV = −1.642 − 0.024ASH + 0.475(C + N) − 0.376(H + N) 1.58 7.00 2.52 [65]
3 HHV = 23.668 − 7.032H − 0.002A2 + 0.005C2 + 0.771H2 + 0.019N2 2.95 12.93 11.11 [65]
4 HHV = −0.763 + 0.301C + 0.525H + 0.064O 1.73 7.24 −5.78 [61]
5 HHV = −1.3675 + 0.3137C + 0.7009H + 0.0318O 1.71 7.20 −5.96 [8]
6 HHV = 0.335C + 1.423H − 0.154O − 0.145N 1.59 6.99 5.35 [4]
7 HHV = 0.3259C + 3.4597 1.37 5.96 −2.37 [8]
8 HHV = 0.4373C − 1.6701 1.37 6.13 2.27 [67]
9 HHV = (3.55C2 − 232C − 2230H + 51.2CH + 131N + 20600)×10−3 1.09 4.81 −0.52 [68]
10 HHV = 0.879C + 0.3214H + 0.056O − 24.826 5.51 25.43 23.88 [11]
11 HHV = 0.924C − 22.403 7.14 31.10 30.19 [11]
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Proximate analysis-based correlations have more estimation errors compared to the ultimate
analysis-based correlations. Moreover, one can confirm that the average biased error (ABE) was
found to be negative for all reported correlations based on the proximate analysis. This confirms that
the existing proximate analyses-based HHV correlations underestimate the higher heating value of
torrefied biomass. The best correlation among the tested ultimate analysis-based correlations was
the correlation presented (bolded in Table 3) by Friedl et al. [68]. However, given the fact that there
are significant disagreements between the predicted and measured HHV values of torrefied biomass,
the authors emphasize to the readers of this paper that they need be very cautious before using the
existing HHV correlations. If they need to be used, it is encouraged to use the reported data from
Table S1 for the validation.

3.3. New HHV Predicting Correlations

As the range of HHV and compositions (proximate and ultimate analyses) of torrefied biomass
are changed significantly, it is essential to find the new correlations for predicting the HHV, which is
applicable mainly for the torrefied biomass. This section provides the probable estimation errors
of different possible forms of the new correlations presented in Table 1. The estimation errors were
calculated by using the data points from Table S1. Correlations with the low MAE values could be
used for predicting the HHV of the torrefied biomass. Tables 4 and 5 present the summaries of the
estimation errors calculated for the studied new HHV correlations based on the proximate analysis and
the ultimate analysis, respectively. The total data points of torrefied biomass used was 246. The ranges
of reported data for HHV, VM, FC, ASH, C, H and O were 14.90 MJ/kg–33.30 MJ/kg, 13.30%–88.57%,
11.25%–82.74%, 0.08%–47.62%, 35.08%–86.28%, 0.53%–7.46% and 4.31%–44.70%, respectively.

Table 4. Comparison of the estimation errors of the developed correlations using proximate analysis of
torrefied biomass (PSP, present study proximate analysis-based correlation).

Equation (P) Developed Proximate Analysis-Based Correlations and Estimation Errors MAE AAE ABE Ref.

1 HHV = 22.9976 − 0.1135ASH 2.14 9.37 1.53 PSP1
2 HHV = 18.1418 + 0.1438FC 1.78 8.17 1.14 PSP2
3 HHV = 26.2841 − 0.0604VM 2.11 9.59 1.61 PSP3
4 HHV = 0.1846VM + 0.3525FC 1.38 6.17 0.60 PSP4
5 HHV = 0.6663FC − 0.0575ASH 6.60 29.64 −15.56 PSP5
6 HHV = 0.3545ASH + 0.2960VM 4.39 18.73 −1.88 PSP6
7 HHV = 2.4830 + 0.1602VM + 0.3225FC 1.40 6.25 0.75 PSP7
8 HHV = 21.1811 + 1.8812FC/VM 1.96 9.00 1.44 PSP8
9 HHV = 20.4755 + 0.0007FC + 0.0018FC2 1.73 7.97 1.12 PSP9
10 HHV = 3.7950 − 0.2177VM − 0.4096FC + 0.0011VM2 − 0.0004FC2 1.39 6.24 0.73 PSP10
11 HHV = 36.4042 − 0.2177VM − 0.4096ASH + 0.0005VM2 + 0.0023ASH2 1.38 6.21 0.72 PSP11
12 HHV = 19.5785 + 0.1111FC − 0.2602ASH + 0.0007FC2 + 0.0030ASH2 1.37 6.17 0.72 PSP12

Table 5. Comparison of the estimation errors of the developed correlations using ultimate analysis of
torrefied biomass (PSU, present study ultimate analysis-based correlation).

Equation (U) Developed Ultimate Analysis-based Correlations and Estimation Errors MAE AAE ABE Ref.

1 HHV = 4.4804 + 0.3194C 1.25 5.66 0.64 PSU1
2 HHV = 24.7975 − 0.4680H 2.23 10.01 1.72 PSU2
3 HHV = 26.5113 − 0.1278O 2.08 9.44 1.57 PSU3
4 HHV = 1.4036 + 0.3409C + 0.3586H 1.21 5.43 0.59 PSU4
5 HHV = 2.4544 + 0.3381C + 0.0300O 1.23 5.52 0.62 PSU5
6 HHV = 25.0602 + 0.9092H − 0.2290O 2.03 9.22 1.49 PSU6
7 HHV = 3.6165 + 0.3181C + 0.6107H − 0.4380N − 0.0613O 1.21 5.44 0.58 PSU7
8 HHV = 27.0624 − 7.8378O/C 1.88 8.54 1.35 PSU8
9 HHV = 28.1442 − 50.0874H/C 2.04 9.24 1.46 PSU9
10 HHV = 26.8463 − 8.8867O/C + 8.8489H/C 1.87 8.52 1.35 PSU10
11 HHV = 5.1906 + 0.2957C − 0.0002C2 1.25 5.66 0.64 PSU11
12 HHV = 7.8546 + 0.1255C + 0.1563H + 0.0018C2 − 0.0320H2 1.21 5.44 0.59 PSU12
13 HHV = 3.3965 + 00.3359C − 0.0666O + 0.0001C2 + 0.0019O2 1.23 5.54 0.62 PSU13
14 HHV = 27.2908 − 8.8671O/C + 0.9733(O/C)2 1.88 8.55 1.36 PSU14
15 HHV = 25.5411 − 186247O/C + 103.1710H/C + 8.0136(O/C)2 − 515.0026(H/C)2 1.85 8.45 1.32 PSU15
16 HHV = 32.7934 + 0.0053C2 − 0.5321C − 2.8769H + 0.0608CH − 0.2401N 1.13 5.01 0.49 PSU16
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Among the studied new forms of proximate analysis-based HHV correlations, PSP4 (present
study proximate), PSP11, and PSP12 (bolded in Table 4) have the lowest MAE values. Therefore,
they can be used to predict the HHV of torrefied biomass materials with a good accuracy. Considering
the ABE values, PSP4 (bold and italic in Table 4) shows the lowest ABE value. It is thus selected for
future use. However, the predicted values, because of the positive ABE value of 0.60, will be slightly
higher than the actual HHV values of torrefied biomass.

Among 16 new forms of ultimate analysis-based HHV correlations, the correlation PSU16 (present
study ultimate; bold and italic in Table 5) has the lowest MAE value. It could, therefore, be deployed to
predict the HHV of torrefied biomass. However, it also predicts a slightly higher HHV value than the
actual HHV of torrefied biomass as the bolded correlation also has a small positive ABE value of 0.49.

Comparing the estimation errors in Tables 4 and 5, one can see that the MAE values in Table 5 are
much smaller than those values presented in Table 4. This confirms that the proximate analysis-based
correlations will have more prediction error compared that of the ultimate analysis-based correlations.
Therefore, one should be very careful to use proximate analysis-based HHV correlation to predict the
HHV of torrefied biomass.

Despite that identical terms were used in determining the coefficients, PSU16 has a very different
coefficient as compared to the correlation presented by Friedl et al. [68]. This may be due to a wide
variety of data used, which will allow having more than one optimal solution in a multivariate
regression process [68]. In addition to this, the authors also emphasize here that one should not be
confused with the sign of the coefficient terms of the selected new correlations. The negative constant
term for FC of the selected correlation (PSP4) does not represent the actual relation between HHV and
FC (Figure 1a). Similarly, the negative coefficient of C-terms in the selected correlation (PSU16) does
not represent the actual relation between HHV and C (Figure 2a).

The direct relationship between HHV and individual components of proximate and ultimate
analyses as shown in Figures 1a–c and 2a–c can be explained from developed correlations PSP (1–3)
in Table 4 and PSU (1–3) in Table 5, respectively. The HHV of torrefied biomass increases with the
increase in FC content, but decreases at high volatile matter and ash contents. Similarly, the HHV of
torrefied biomass increases with the increase in carbon content, but decreases at high hydrogen and
oxygen contents.

3.4. Validation of the Selected New Correlations

Another set of data of torrefied biomass in Table 6 (26 samples) has been adopted to validate the
selected new correlations. Figures 3 and 4 show the deviation of the predicted and measured HHV
values using the newly-selected proximate analysis-based correlation (PSP4) and the newly-selected
ultimate analysis-based correlation (PSU16), respectively. From Figures 3 and 4, it is confirmed that the
ultimate analysis-based correlation has a better prediction compared that to the proximate-based
correlation. Two additional lines of ±10% for Figure 3 and ±4% for Figure 4 are also shown,
representing the percentage error of prediction. The residual distribution in Figure 3 does not look to
be a perfectly normal distribution. Though there are few residuals on the negative side, most of the
residuals are concentrated towards the positive side. This may be due to the positive ABE value that
was found for the selected new HHV correlations. This can be supported from Figure 4, which shows
how the residuals are distributed around the centerline. As the ultimate analysis-based correlation has
a smaller ABE value compared to the proximate analysis-based correlation, the residuals in Figure 4
are more normally distributed around the centerline than in Figure 3.
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Table 6. HHV, proximate analyses and ultimate analyses for model verification (dry basis).

Material
MJ/kg Proximate Analysis (%) Ultimate Analysis (%)

Ref.
HHV VM FC ASH C H N O S

Corn stover

18.59 75.38 18.39 6.23 45.88 5.90 0.50 41.52 0.05

[69]

18.69 74.87 18.89 6.24 45.76 5.90 0.46 41.67 0.04
18.88 75.50 18.64 5.85 45.65 5.86 0.52 42.23 0.05
18.74 75.57 18.90 5.54 46.03 5.92 0.44 42.13 0.04
18.86 76.24 18.04 5.73 46.09 5.88 0.47 41.91 0.06
18.75 75.10 18.94 5.96 45.26 5.78 0.50 42.53 0.04
18.99 75.12 19.29 5.61 46.02 5.85 0.48 42.11 0.06
18.65 74.78 18.18 7.04 45.72 5.80 0.51 40.96 0.05
18.85 74.20 19.25 6.53 45.19 5.71 0.60 42.07 0.04
18.52 74.76 18.36 6.87 45.10 5.66 0.62 41.84 0.05
19.22 73.17 19.71 7.11 45.60 5.64 0.61 41.22 0.05
19.16 74.27 19.43 6.30 45.31 5.70 0.57 42.26 0.04
19.23 73.14 20.27 6.59 45.54 5.63 0.56 41.89 0.05
19.43 72.84 20.06 7.09 45.31 5.60 0.58 41.63 0.04
19.26 70.38 22.03 7.58 47.35 5.27 0.76 39.13 0.06
19.07 70.54 22.72 6.73 47.92 5.37 0.68 39.36 0.04
19.87 68.28 24.65 7.07 48.01 5.07 0.74 39.14 0.05
19.58 68.48 24.82 6.70 48.36 5.14 0.75 39.13 0.05
19.91 65.03 27.34 7.63 48.94 4.99 0.69 37.82 0.05

Olive stones

20.99 77.40 20.40 2.20 50.30 6.50 0.30 40.10 0.00

[70]
21.99 75.50 22.30 2.20 53.30 6.40 0.20 37.90 0.00
24.64 67.80 29.40 2.80 58.30 6.10 0.40 32.40 0.00
25.79 61.20 35.80 2.90 62.10 5.80 0.30 28.80 0.00

Rape straw 18.84 72.33 20.99 6.67 47.23 5.22 0.00 41.19 0.00
[71]

Wheat straw
19.15 68.59 24.24 7.17 48.49 6.62 0.00 38.11 0.00
21.73 56.85 33.52 9.62 56.12 4.63 0.00 29.97 0.00
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Figure 3. Validation of the selected proximate analysis-based correlation: PSP4 (error ±10%).
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The authors would also like to emphasize here that though the selected empirical correlations
are based on a wide range of torrefied biomass materials, they have only small fractions of nitrogen
and sulfur contents. Thus, the selected correlations may produce high estimation errors if they
were to be used to predict HHV of materials with high nitrogen and sulfur contents. In addition,
the empirical correlation developed in this study does not account for how the torrefaction process
is carried out. Though the information used in this study includes torrefied materials produced
from various torrefaction technologies (dry, wet and pressurized torrefaction) at different operating
conditions (time, temperature, particle size, working media, pressure, heating rate and material types),
the selected empirical correlations may also lead to a greater prediction error if they needed to predict
HHV of torrefied biomass produced from a new technology.

4. Conclusions

The torrefaction process changes the properties of biomass. The changes in the properties affect
the existing HHV predicting correlations. Results showed that not all existing HHV correlations could
be deployed to predict the HHV of torrefied biomass. Estimation errors of correlations based on the
proximate analysis were found significantly higher compared to the ultimate analysis-based HHV
correlations. New correlations were then determined using the least sum square error method in
Microsoft Excel. Comparing the MAE, AAE and ABE, new correlations with the least MAE value are
selected to predict the HHV of torrefied biomass. The newly-selected correlations for predicting the
HHV of torrefied biomass are:

HHV = 0.1846VM + 0.3525FC

HHV = 32.7934 + 0.0053C2 − 0.5321C− 2.8769H + 0.0608CH − 0.2401N

The newly-selected correlations were then validated using another set of data (26 torrefied
biomasses). They have good prediction accuracy within the error band of ±10% and are better than
the existing correlations. Therefore, they could be used to predict the HHV of torrefied biomass.
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These correlations would be of a great interest in the present context where research is growing
on biomass torrefaction, and such correlations can help in reducing the cost of experimental tests and
in saving testing time. The authors would like to declare here that though these new correlations
could predict the HHV of torrefied biomass with a good accuracy, this paper does not indicate that the
existing correlations are not suitable for predicting the HHV of raw biomass.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5354/4/1/7/s1.
Table S1: HHV, proximate analyses and ultimate analyses of torrefied biomass (dry basis); Table S2: HHV,
proximate analyses and ultimate analyses of raw biomass (dry basis).
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